Skip to content
2000
image of Multi-omics Approaches to CCAAT/Enhancer-Binding Protein Beta in Oral Squamous Cell Carcinoma: Crosstalk Between Tumor Cells andTumor-Associated Macrophages Driving Disease Progression

Abstract

Background

CCAAT/Enhancer-Binding Protein Beta (CEBPB) is an important transcription factor that regulates tumor progression. However, the mechanism by which CEBPB regulates the progression of Oral Squamous Cell Carcinoma (OSCC) remains incompletely understood. Tumor progression depends on complex intercellular interactions within the tumor microenvironment. The purpose of this study was to investigate the role and epigenetic regulatory mechanisms of CEBPB in interactions between OSCC cells and tumor-infiltrating immune cells.

Methods

Bulk RNA-seq, ChIP-seq, and scRNA-seq data were obtained from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. The HOMER algorithm was employed to identify enhancers and predict the CEBPB-binding motif. Cell cluster analysis, functional enrichment, and intercellular interaction analysis were performed using the “Seurat” R package. H3K27ac enrichment at GAS6 enhancers was validated by ChIP-qPCR. Metastatic OSCC cells with CEBPB knockdown or GAS6 overexpression were established and co-cultured with THP-1 cells. IL-10 and IL-6 secretion from co-cultured THP-1 cells was detected ELISA. Chemotaxis of OSCC cells toward THP-1 cells was assessed through a Transwell assay.

Results

CEBPB was upregulated in OSCC and correlated with poor prognosis. By integrating H3K27ac ChIP-seq and bulk RNA-seq data, 131 CEBPB-regulated enhancer-controlled genes were identified in lymph node metastatic OSCC cells. scRNA-seq analysis revealed eight major cell clusters in primary foci and lymph node metastases, including T/NK cells, malignant epithelial cells, B/plasma cells, macrophages, fibroblasts, dendritic cells, endothelial cells, and mast cells, with the malignant epithelial cells stratified into distinct sub-clusters. CEBPB expression was elevated in malignant epithelial cells of lymph node metastases compared to primary foci. Furthermore, 15 pairs of enhanced ligand-receptor interactions were identified in lymph node metastases relative to primary foci. GAS6 was a CEBPB-regulated enhancer-controlled gene, primarily mediating interactions between malignant cells and macrophages. CEBPB knockdown in metastatic OSCC cells significantly impaired their chemotaxis toward co-cultured THP-1 cells, and downregulated IL-10/IL-6 secretion and CD206 expression in co-cultured THP-1 cells. Conversely, GAS6 overexpression reversed these inhibitory effects.

Conclusion

CEBPB activated GAS6 transcription in metastatic OSCC cells. The CEBPB/GAS6 axis in metastatic OSCC cells enhanced their chemotaxis toward macrophages and promoted the M2 polarization of macrophages, thereby facilitating the establishment of an immunosuppressive microenvironment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096387374250823190214
2025-09-18
2025-11-04
Loading full text...

Full text loading...

References

  1. Tan Y. Wang Z. Xu M. Li B. Huang Z. Qin S. Nice E.C. Tang J. Huang C. Oral squamous cell carcinomas: State of the field and emerging directions. Int. J. Oral Sci. 2023 15 1 44 10.1038/s41368‑023‑00249‑w 37736748
    [Google Scholar]
  2. Hasegawa K. Fujii S. Matsumoto S. Tajiri Y. Kikuchi A. Kiyoshima T. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation. J. Pathol. 2021 253 1 80 93 10.1002/path.5553 32985688
    [Google Scholar]
  3. Panzarella V. Pizzo G. Calvino F. Compilato D. Colella G. Campisi G. Diagnostic delay in oral squamous cell carcinoma: The role of cognitive and psychological variables. Int. J. Oral Sci. 2014 6 1 39 45 10.1038/ijos.2013.88 24287962
    [Google Scholar]
  4. Fan T. Wang X. Zhang S. Deng P. Jiang Y. Liang Y. Jie S. Wang Q. Li C. Tian G. Zhang Z. Ren Z. Li B. Chen Y. He Z. Luo Y. Chen M. Wu H. Yu Z. Pi H. Zhou Z. Zhang Z. Correction to: NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduct. Target. Ther. 2022 7 1 321 10.1038/s41392‑022‑01154‑0 36114206
    [Google Scholar]
  5. SHahinas J. J.; Hysi, D. Methods and risk of bias in molecular marker prognosis studies in oral squamous cell carcinoma. Oral Dis. 2018 24 1-2 115 119 10.1111/odi.12753 29480595
    [Google Scholar]
  6. Han J.H. Jang K.W. Myung C.S. Garcinia cambogia attenuates adipogenesis by affecting CEBPB and SQSTM1/p62-mediated selective autophagic degradation of KLF3 through RPS6KA1 and STAT3 suppression. Autophagy 2022 18 3 518 539 10.1080/15548627.2021.1936356 34101546
    [Google Scholar]
  7. Wang D. Yang L. Yu W. Wu Q. Lian J. Li F. Liu S. Li A. He Z. Liu J. Sun Z. Yuan W. Zhang Y. Colorectal cancer cell-derived CCL20 recruits regulatory T cells to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling. J. Immunother. Cancer 2019 7 1 215 10.1186/s40425‑019‑0701‑2 31395078
    [Google Scholar]
  8. Wang S. Wu J. Zhao W. Li M. Li S. CEBPB upregulates P4HA2 to promote the malignant biological behavior in IDH1 wildtype glioma. FASEB J. 2023 37 4 e22848 10.1096/fj.202201244RRRR 36906285
    [Google Scholar]
  9. Wu H. Liu B. Chen Z. Li G. Zhang Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020 11 4 233 10.1038/s41419‑020‑2426‑z 32300102
    [Google Scholar]
  10. Li W. Tanikawa T. Kryczek I. Xia H. Li G. Wu K. Wei S. Zhao L. Vatan L. Wen B. Shu P. Sun D. Kleer C. Wicha M. Sabel M. Tao K. Wang G. Zou W. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific cebpb isoform in triple-negative breast cancer. Cell Metab. 2018 28 1 87 103.e6 10.1016/j.cmet.2018.04.022 29805099
    [Google Scholar]
  11. Rong L. Chen B. Liu K. Liu B. He X. Liu J. Li J. He M. Zhu L. Liu K. Shi X. Shuai Y. Jin L. CircZDBF2 up-regulates RNF145 by ceRNA model and recruits CEBPB to accelerate oral squamous cell carcinoma progression via NFκB signaling pathway. J. Transl. Med. 2022 20 1 148 10.1186/s12967‑022‑03347‑1 35365168
    [Google Scholar]
  12. Ong C.T. Corces V.G. Enhancer function: New insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 2011 12 4 283 293 10.1038/nrg2957 21358745
    [Google Scholar]
  13. Zabidi M.A. Arnold C.D. Schernhuber K. Pagani M. Rath M. Frank O. Stark A. Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation. Nature 2015 518 7540 556 559 10.1038/nature13994 25517091
    [Google Scholar]
  14. Herz H.M. Enhancer deregulation in cancer and other diseases. BioEssays 2016 38 10 1003 1015 10.1002/bies.201600106 27570183
    [Google Scholar]
  15. Zheng J.Y. Wang C.Y. Gao C. Xiao Q. Huang C.W. Wu M. Li L.Y. MLL3 suppresses tumorigenesis through regulating TNS3 enhancer activity. Cell Death Dis. 2021 12 4 364 10.1038/s41419‑021‑03647‑2 33824309
    [Google Scholar]
  16. Shlyueva D. Stampfel G. Stark A. Transcriptional enhancers: From properties to genome-wide predictions. Nat. Rev. Genet. 2014 15 4 272 286 10.1038/nrg3682 24614317
    [Google Scholar]
  17. Roe J.S. Hwang C.I. Somerville T.D.D. Milazzo J.P. Lee E.J. Da Silva B. Maiorino L. Tiriac H. Young C.M. Miyabayashi K. Filippini D. Creighton B. Burkhart R.A. Buscaglia J.M. Kim E.J. Grem J.L. Lazenby A.J. Grunkemeyer J.A. Hollingsworth M.A. Grandgenett P.M. Egeblad M. Park Y. Tuveson D.A. Vakoc C.R. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 2017 170 5 875 888.e20 10.1016/j.cell.2017.07.007 28757253
    [Google Scholar]
  18. Liu F. Hon G.C. Villa G.R. Turner K.M. Ikegami S. Yang H. Ye Z. Li B. Kuan S. Lee A.Y. Zanca C. Wei B. Lucey G. Jenkins D. Zhang W. Barr C.L. Furnari F.B. Cloughesy T.F. Yong W.H. Gahman T.C. Shiau A.K. Cavenee W.K. Ren B. Mischel P.S. EGFR mutation promotes glioblastoma through epigenome and transcription factor network remodeling. Mol. Cell 2015 60 2 307 318 10.1016/j.molcel.2015.09.002 26455392
    [Google Scholar]
  19. Bayik D. Lathia J.D. Cancer stem cell–immune cell crosstalk in tumour progression. Nat. Rev. Cancer 2021 21 8 526 536 10.1038/s41568‑021‑00366‑w 34103704
    [Google Scholar]
  20. Mi H. Sivagnanam S. Betts C.B. Liudahl S.M. Jaffee E.M. Coussens L.M. Popel A.S. Quantitative Spatial profiling of immune populations in pancreatic ductal adenocarcinoma reveals tumor microenvironment heterogeneity and prognostic biomarkers. Cancer Res. 2022 82 23 4359 4372 10.1158/0008‑5472.CAN‑22‑1190 36112643
    [Google Scholar]
  21. Li Z. Seehawer M. Polyak K. Untangling the web of intratumour heterogeneity. Nat. Cell Biol. 2022 24 8 1192 1201 10.1038/s41556‑022‑00969‑x 35941364
    [Google Scholar]
  22. Nikfar M. Mi H. Gong C. Kimko H. Popel A.S. Quantifying intratumoral heterogeneity and immunoarchitecture generated in-silico by a spatial quantitative systems pharmacology model. Cancers 2023 15 10 2750 10.3390/cancers15102750 37345087
    [Google Scholar]
  23. Swann J.B. Smyth M.J. Immune surveillance of tumors. J. Clin. Invest. 2007 117 5 1137 1146 10.1172/JCI31405 17476343
    [Google Scholar]
  24. Marks D.L. Olson R.L.O. Fernandez-Zapico M.E. Epigenetic control of the tumor microenvironment. Epigenomics 2016 8 12 1671 1687 10.2217/epi‑2016‑0110 27700179
    [Google Scholar]
  25. Jia Q. Wang A. Yuan Y. Zhu B. Long H. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp. Hematol. Oncol. 2022 11 1 24 10.1186/s40164‑022‑00277‑y 35461288
    [Google Scholar]
  26. Sharma A. Cao E.Y. Kumar V. Zhang X. Leong H.S. Wong A.M.L. Ramakrishnan N. Hakimullah M. Teo H.M.V. Chong F.T. Chia S. Thangavelu M.T. Kwang X.L. Gupta R. Clark J.R. Periyasamy G. Iyer N.G. DasGupta R. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. Nat. Commun. 2018 9 1 4931 10.1038/s41467‑018‑07261‑3 30467425
    [Google Scholar]
  27. Choi J.H. Lee B.S. Jang J.Y. Lee Y.S. Kim H.J. Roh J. Shin Y.S. Woo H.G. Kim C.H. Single-cell transcriptome profiling of the stepwise progression of head and neck cancer. Nat. Commun. 2023 14 1 1055 10.1038/s41467‑023‑36691‑x 36828832
    [Google Scholar]
  28. Heinz S. Benner C. Spann N. Bertolino E. Lin Y.C. Laslo P. Cheng J.X. Murre C. Singh H. Glass C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 2010 38 4 576 589 10.1016/j.molcel.2010.05.004 20513432
    [Google Scholar]
  29. Filippakopoulos P. Qi J. Picaud S. Shen Y. Smith W.B. Fedorov O. Morse E.M. Keates T. Hickman T.T. Felletar I. Philpott M. Munro S. McKeown M.R. Wang Y. Christie A.L. West N. Cameron M.J. Schwartz B. Heightman T.D. La Thangue N. French C.A. Wiest O. Kung A.L. Knapp S. Bradner J.E. Selective inhibition of BET bromodomains. Nature 2010 468 7327 1067 1073 10.1038/nature09504 20871596
    [Google Scholar]
  30. Lee J.E. Park Y.K. Park S. Jang Y. Waring N. Dey A. Ozato K. Lai B. Peng W. Ge K. Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nat. Commun. 2017 8 1 2217 10.1038/s41467‑017‑02403‑5 29263365
    [Google Scholar]
  31. Raghavan S. Mehta P. Xie Y. Lei Y.L. Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J. Immunother. Cancer 2019 7 1 190 10.1186/s40425‑019‑0666‑1 31324218
    [Google Scholar]
  32. Wang S. Wang J. Chen Z. Luo J. Guo W. Sun L. Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis. Oncol. 2024 8 1 31 10.1038/s41698‑024‑00522‑z 38341519
    [Google Scholar]
  33. Ruffell D. Mourkioti F. Gambardella A. Kirstetter P. Lopez R.G. Rosenthal N. Nerlov C.A. CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. USA 2009 106 41 17475 17480 10.1073/pnas.0908641106 19805133
    [Google Scholar]
  34. Niehrs C. Calkhoven C.F. Emerging Role of C/EBPβ and epigenetic DNA methylation in ageing. Trends Genet. 2020 36 2 71 80 10.1016/j.tig.2019.11.005 31822355
    [Google Scholar]
  35. Zahid M.D.K. Rogowski M. Ponce C. Choudhury M. Moustaid-Moussa N. Rahman S.M. CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol. Cell. Biochem. 2020 463 1-2 211 223 10.1007/s11010‑019‑03642‑4 31686316
    [Google Scholar]
  36. Greene L.A. Zhou Q. Siegelin M.D. Angelastro J.M. Targeting transcription factors ATF5, CEBPB and CEBPD with cell-penetrating peptides to treat brain and other cancers. Cells 2023 12 4 581 10.3390/cells12040581 36831248
    [Google Scholar]
  37. Xu C. Shen Y. Shi Y. Zhang M. Zhou L. Eukaryotic translation initiation factor 3 subunit B promotes head and neck cancer via CEBPB translation. Cancer Cell Int. 2022 22 1 161 10.1186/s12935‑022‑02578‑y 35459206
    [Google Scholar]
  38. Wang Z. Pang J. Wang L. Dong Q. Jin D. CEBPB regulates the bile acid receptor FXR to accelerate colon cancer progression by modulating aerobic glycolysis. J. Clin. Lab. Anal. 2022 36 11 e24703 10.1002/jcla.24703 36129029
    [Google Scholar]
  39. Zhou Z. Shu Y. Bao H. Han S. Liu Z. Zhao N. Yuan W. Jian C. Shu X. Stress-induced epinephrine promotes epithelial-to-mesenchymal transition and stemness of CRC through the CEBPB/TRIM2/P53 axis. J. Transl. Med. 2022 20 1 262 10.1186/s12967‑022‑03467‑8 35672760
    [Google Scholar]
  40. Ma Y. Chen Y. Zhan L. Dong Q. Wang Y. Li X. He L. Zhang J. CEBPB-mediated upregulation of SERPINA1 promotes colorectal cancer progression by enhancing STAT3 signaling. Cell Death Discov. 2024 10 1 219 10.1038/s41420‑024‑01990‑9 38710698
    [Google Scholar]
  41. Liu D. Zhang X.X. Li M.C. Cao C.H. Wan D.Y. Xi B.X. Tan J.H. Wang J. Yang Z.Y. Feng X.X. Ye F. Chen G. Wu P. Xi L. Wang H. Zhou J.F. Feng Z.H. Ma D. Gao Q.L. C/EBPβ enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat. Commun. 2018 9 1 1739 10.1038/s41467‑018‑03590‑5 29712898
    [Google Scholar]
  42. Sun Z. Zeng B. Liu D. Zhao Q. Wang J. Rosie Xing H. S100A8 transported by SEC23A inhibits metastatic colonization via autocrine activation of autophagy. Cell Death Dis. 2020 11 8 650 10.1038/s41419‑020‑02835‑w 32811814
    [Google Scholar]
  43. Baj-Krzyworzeka M. Mytar B. Szatanek R. Surmiak M. Węglarczyk K. Baran J. Siedlar M. Colorectal cancer-derived microvesicles modulate differentiation of human monocytes to macrophages. J. Transl. Med. 2016 14 1 36 10.1186/s12967‑016‑0789‑9 26838097
    [Google Scholar]
  44. Hammoudeh S.M. Venkatachalam T. Ansari A.W. Bendardaf R. Hamid Q. Rahmani M. Hamoudi R. Systems immunology analysis reveals an immunomodulatory effect of snail-p53 binding on neutrophil- and t cell-mediated immunity in kras mutant non-small cell lung cancer. Front. Immunol. 2020 11 569671 10.3389/fimmu.2020.569671 33381110
    [Google Scholar]
  45. Bai R. Li Y. Jian L. Yang Y. Zhao L. Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol. Cancer 2022 21 1 177 10.1186/s12943‑022‑01645‑2 36071472
    [Google Scholar]
  46. Komohara Y. Jinushi M. Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014 105 1 1 8 10.1111/cas.12314 24168081
    [Google Scholar]
  47. Lloyd A.F. Miron V.E. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination. Front. Cell Dev. Biol. 2016 4 60 10.3389/fcell.2016.00060 27446913
    [Google Scholar]
  48. Qian B.Z. Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010 141 1 39 51 10.1016/j.cell.2010.03.014 20371344
    [Google Scholar]
  49. Noy R. Pollard J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014 41 1 49 61 10.1016/j.immuni.2014.06.010 25035953
    [Google Scholar]
  50. Zhang D. Huang J. Wang F. Ding H. Cui Y. Yang Y. Xu J. Luo H. Gao Y. Pan L. Wu Y. Gong Y. Xie L. Liu Z. Qu Y. Zhang L. Liu W. Zhang W. Zhao S. Yi Q. Niu T. Zheng Y. BMI1 regulates multiple myeloma-associated macrophage’s pro-myeloma functions. Cell Death Dis. 2021 12 5 495 10.1038/s41419‑021‑03748‑y 33993198
    [Google Scholar]
  51. Zhu S. Yi M. Wu Y. Dong B. Wu K. Roles of tumor-associated macrophages in tumor progression: Implications on therapeutic strategies. Exp. Hematol. Oncol. 2021 10 1 60 10.1186/s40164‑021‑00252‑z 34965886
    [Google Scholar]
  52. Zheng W. Umitsu M. Jagan I. Tran C.W. Ishiyama N. BeGora, M.; Araki, K.; Ohashi, P.S.; Ikura, M.; Muthuswamy, S.K. An interaction between Scribble and the NADPH oxidase complex controls M1 macrophage polarization and function. Nat. Cell Biol. 2016 18 11 1244 1252 10.1038/ncb3413 27694890
    [Google Scholar]
  53. Ubil E. Caskey L. Holtzhausen A. Hunter D. Story C. Earp H.S. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J. Clin. Invest. 2018 128 6 2356 2369 10.1172/JCI97354 29708510
    [Google Scholar]
  54. Xiao M. Zhang J. Chen W. Chen W. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2018 37 1 143 10.1186/s13046‑018‑0815‑2 29986759
    [Google Scholar]
  55. Gao L. Wang F. Li H. Yang J. Ren J.G. He K. Liu B. Zhang W. Zhao Y.F. CCL2/EGF positive feedback loop between cancer cells and macrophages promotes cell migration and invasion in head and neck squamous cell carcinoma. Oncotarget 2016 7 52 87037 87051 10.18632/oncotarget.13523 27888616
    [Google Scholar]
  56. Song X. Fu W. Cheang U.K. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022 25 7 104507 10.1016/j.isci.2022.104507 35720266
    [Google Scholar]
  57. Lee C.H. Liu S.Y. Chou K.C. Yeh C.T. Shiah S.G. Huang R.Y. Cheng J.C. Yen C.Y. Shieh Y.S. Tumor-associated macrophages promote oral cancer progression through activation of the Axl signaling pathway. Ann. Surg. Oncol. 2014 21 3 1031 1037 10.1245/s10434‑013‑3400‑0 24276640
    [Google Scholar]
  58. Yang Y. Jin X. Xie Y. Ning C. Ai Y. Wei H. Xu X. Ge X. Yi T. Huang Q. Yang X. Jiang T. Wang X. Piao Y. Jin X. The CEBPB + glioblastoma subcluster specifically drives the formation of M2 tumor-associated macrophages to promote malignancy growth. Theranostics 2024 14 10 4107 4126 10.7150/thno.93473 38994023
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096387374250823190214
Loading
/content/journals/ccdt/10.2174/0115680096387374250823190214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test