Skip to content
2000
image of Unravelling the Mechanism of Methylophiopogonanone A Against Esophageal Squamous Cell Carcinoma Based on Network Pharmacology and Molecular Docking

Abstract

Introduction

Esophageal squamous cell carcinoma (ESCC) stands as one of the deadliest cancers globally. Given the urgent clinical need for more precise and comprehensive therapeutic strategies, the phytocompound methylophiopogonanone A (MO-A) demonstrates the potential as a candidate for ESCC treatment. This study aimed to verify the therapeutic effect of MO-A against ESCC and unveil its underlying mechanism.

Methods

Three compound-protein interaction databases were utilized to predict the molecular targets of MO-A. Subsequently, potential therapeutic targets of ESCC were identified based on the GEO database. KEGG pathway and GO function enrichment analyses were then performed by using these two sets of targets, respectively. Through the integrative analysis of these two target sets, core targets of MO-A with therapeutic potential against ESCC were determined. Protein-protein interaction network analyses and molecular dockings were executed by using these targets. Two human-derived ESCC cell lines were enrolled for biological validation, including cell viability, colony formation, and cell cycle assays.

Results

This study predicted 200 potential targets of MO-A and uncovered 138 key targets associated with the progression of ESCC. Enrichment analyses and PPI networks underscored the involvement of cell cycle-related genes in ESCC development. Four proteins were determined as core MO-A targets for ESCC treatment, including AURKA, AURKB, CDC25B, and TOP2A, which partake in the regulation of the cell cycle. Finally, the inhibitory effect of MO-A on ESCC cell proliferation was validated , primarily through inducing cell cycle arrest at the G2/M phase in ESCC cells.

Discussion

These results revealed the anti-ESCC potential of MO-A, a plant-derived flavonoid, using integrated bioinformatics and biological experiments. While findings provide a mechanistic basis for the efficacy of MO-A, limitations include reliance on computational and models. Further studies should be conducted to evaluate the pharmacological properties and safety of MO-A across multiple models, alongside more comprehensive structure-activity relationship studies to inform drug optimization prior to clinical translation.

Conclusion

MO-A can impede ESCC growth by triggering cell cycle G2/M arrest, positioning it as a novel and promising phytocompound for ESCC therapy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096387327250906212020
2025-09-25
2025-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096387327250906212020/BMS-CCDT-2025-38.html?itemId=/content/journals/ccdt/10.2174/0115680096387327250906212020&mimeType=html&fmt=ahah

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Morgan E. Soerjomataram I. Rumgay H. Coleman H.G. Thrift A.P. Vignat J. Laversanne M. Ferlay J. Arnold M. The Global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022 163 3 649 658.e2 10.1053/j.gastro.2022.05.054 35671803
    [Google Scholar]
  4. Deboever N. Jones C.M. Yamashita K. Ajani J.A. Hofstetter W.L. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024 385 e074962 10.1136/bmj‑2023‑074962 38830686
    [Google Scholar]
  5. Yang Y.M. Hong P. Xu W.W. He Q.Y. Li B. Advances in targeted therapy for esophageal cancer. Signal Transduct. Target. Ther. 2020 5 1 229 10.1038/s41392‑020‑00323‑3 33028804
    [Google Scholar]
  6. He S. Xu J. Liu X. Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm. Sin. B 2021 11 11 3379 3392 10.1016/j.apsb.2021.03.008 34900524
    [Google Scholar]
  7. Cao L. Wang X. Zhu G. Li S. Wang H. Wu J. Lu T. Li J. Traditional chinese medicine therapy for esophageal cancer: A literature review. Integr. Cancer Ther. 2021 20 15347354211061720 10.1177/15347354211061720 34825600
    [Google Scholar]
  8. Zhang G. Wang X. Xue Q. Combined targeted ion channel therapy: Can it be an alternative choice for esophageal cancer patients? Med. Hypotheses 2018 117 59 62 10.1016/j.mehy.2018.06.010 30077199
    [Google Scholar]
  9. Zhang P. Zhang Q. Li S. Advancing cancer prevention through an ai-based integration of traditional and western medicine. Cancer Discov. 2024 14 11 2033 2036 10.1158/2159‑8290.CD‑24‑0832 39485250
    [Google Scholar]
  10. Maki P. Itharat A. Thongdeeying P. Tuy-on T. Kuropakornpong P. Pipatrattanaseree W. Mingmalairak C. Davies N.M. Ethnopharmacological nexus between the traditional Thai medicine theory and biologically based cancer treatment. J. Ethnopharmacol. 2022 287 114932 10.1016/j.jep.2021.114932 34953977
    [Google Scholar]
  11. Leonti M. Verpoorte R. Traditional Mediterranean and European herbal medicines. J. Ethnopharmacol. 2017 199 161 167 10.1016/j.jep.2017.01.052 28179113
    [Google Scholar]
  12. Gan X. Shu Z. Wang X. Yan D. Li J. Ofaim S. Albert R. Li X. Liu B. Zhou X. Barabási A.L. Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine. Sci. Adv. 2023 9 43 eadh0215 10.1126/sciadv.adh0215 37889962
    [Google Scholar]
  13. Zhao W. Zheng X.D. Tang P.Y.Z. Li H.M. Liu X. Zhong J.J. Tang Y.J. Advances of antitumor drug discovery in traditional Chinese medicine and natural active products by using multi-active components combination. Med. Res. Rev. 2023 43 5 1778 1808 10.1002/med.21963 37183170
    [Google Scholar]
  14. Lu Y. Gao Y. Yang H. Hu Y. Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil. Med. Res. 2022 9 1 69 10.1186/s40779‑022‑00433‑9 36503490
    [Google Scholar]
  15. Mou Z. Chen Y. Hu J. Hu Y. Zou L. Chen X. Liu S. Yin Q. Gong J. Li S. Mao S. Xu C. Jiang H. Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation. Acta Pharm. Sin. B 2024 14 9 3916 3930 10.1016/j.apsb.2024.06.029 39309483
    [Google Scholar]
  16. Peng K.Z. Ke Y. Zhao Q. Tian F. Liu H.M. Hou G. Lu Z. OP16, a novel ent-kaurene diterpenoid, potentiates the antitumor effect of rapamycin by inhibiting rapamycin-induced feedback activation of Akt signaling in esophageal squamous cell carcinoma. Biochem. Pharmacol. 2017 140 16 27 10.1016/j.bcp.2017.05.013 28539264
    [Google Scholar]
  17. Tian Y. Chang S. Xu J. Gong P. Yu B. Qi J. Investigation of the effective components inhibited macrophage foam cell formation in Ophiopogonis Radix. J. Ethnopharmacol. 2022 283 114678 10.1016/j.jep.2021.114678 34563614
    [Google Scholar]
  18. Li N. Zhang J.Y. Zeng K.W. Zhang L. Che Y.Y. Tu P.F. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus. Fitoterapia 2012 83 6 1042 1045 10.1016/j.fitote.2012.05.011 22626747
    [Google Scholar]
  19. Guo X. Wang L. Zhang J. Liu Q. Wang B. Liu, D Thwarting resistance: MgrA inhibition with methylophiopogonanone a unveils a new battlefront against S. aureus. NPJ Biofilms Microbiomes 2024 10 15
    [Google Scholar]
  20. Li Z. Wu Y.Y. Yu B.X. Methylophiopogonanone A, an Ophiopogon homoisoflavonoid, alleviates high-fat diet-induced hyperlipidemia: Assessment of its potential mechanism. Braz. J. Med. Biol. Res. 2020 53 3 e9201 10.1590/1414‑431x20199201 32130294
    [Google Scholar]
  21. Yin J. Song Z. Zhang L. Cong J. Methylophiopogonanone A alleviates diabetic cardiomyopathy via inhibiting JNK1 signaling. Cell. Signal. 2025 131 111762 10.1016/j.cellsig.2025.111762 40139620
    [Google Scholar]
  22. He F. Xu B. Chen C. Jia H. Wu J. Wang X. Sheng J. Huang L. Cheng J. Methylophiopogonanone A suppresses ischemia/reperfusion-induced myocardial apoptosis in mice via activating PI3K/Akt/eNOS signaling pathway. Acta Pharmacol. Sin. 2016 37 6 763 771 10.1038/aps.2016.14 27063216
    [Google Scholar]
  23. Liu L. Lyu J. Yang L. Gao Y. Zhao B. Using pharmacokinetic–pharmacodynamic modeling to study the main active substances of the anticancer effect in mice from Panax ginseng–Ophiopogon japonicus. Molecules 2024 29 2 334 10.3390/molecules29020334 38257247
    [Google Scholar]
  24. Liu Q. Lu J.J. Hong H.J. Yang Q. Wang Y. Chen X.J. Ophiopogon japonicus and its active compounds: A review of potential anticancer effects and underlying mechanisms. Phytomedicine 2023 113 154718 10.1016/j.phymed.2023.154718 36854203
    [Google Scholar]
  25. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  26. Nickel J. Gohlke B.O. Erehman J. Banerjee P. Rong W.W. Goede A. Dunkel M. Preissner R. SuperPred: Update on drug classification and target prediction. Nucleic Acids Res. 2014 42 W1 W26 W31 10.1093/nar/gku477 24878925
    [Google Scholar]
  27. Liu W. Xie L. He Y.H. Wu Z.Y. Liu L.X. Bai X.F. Deng D.X. Xu X.E. Liao L.D. Lin W. Heng J.H. Xu X. Peng L. Huang Q.F. Li C.Y. Zhang Z.D. Wang W. Zhang G.R. Gao X. Wang S.H. Li C.Q. Xu L.Y. Liu W. Li E.M. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nat. Commun. 2021 12 1 4961 10.1038/s41467‑021‑25202‑5 34400640
    [Google Scholar]
  28. Perez-Riverol Y. Csordas A. Bai J. Bernal-Llinares M. Hewapathirana S. Kundu D.J. Inuganti A. Griss J. Mayer G. Eisenacher M. Pérez E. Uszkoreit J. Pfeuffer J. Sachsenberg T. Yılmaz, Ş Tiwary, S.; Cox, J.; Audain, E.; Walzer, M.; Jarnuczak, A.F.; Ternent, T.; Brazma, A.; Vizcaíno, J.A. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019 47 D1 D442 D450 10.1093/nar/gky1106 30395289
    [Google Scholar]
  29. Sigrist C.J.A. de Castro E. Cerutti L. Cuche B.A. Hulo N. Bridge A. Bougueleret L. Xenarios I. New and continuing developments at PROSITE. Nucleic Acids Res. 2013 41 Database issue D344 D347 [PMID: 23161676
    [Google Scholar]
  30. Tanoli Z. Schulman A. Aittokallio T. Validation guidelines for drug-target prediction methods. Expert Opin. Drug Discov. 2025 20 1 31 45 10.1080/17460441.2024.2430955 39568436
    [Google Scholar]
  31. Dzau V.J. Laitner M.H. Balatbat C.A. Has traditional medicine had its day? The need to redefine academic medicine. Lancet 2022 400 1481 1486 10.1016/S0140‑6736(22)01603‑8
    [Google Scholar]
  32. El-Behery H. Attia A.F. El-Fishawy N. Torkey H. An ensemble-based drug–target interaction prediction approach using multiple feature information with data balancing. J. Biol. Eng. 2022 16 1 21 10.1186/s13036‑022‑00296‑7 35941686
    [Google Scholar]
  33. Huang Z. Weng X. Ou-Yang L. GFLearn: generalized feature learning for drug-target binding affinity prediction. IEEE J. Biomed. Health Inform. 2025 2025 3538497 10.1109/JBHI.2025.3538497
    [Google Scholar]
  34. Forouzesh A. Samadi Foroushani S. Forouzesh F. Zand E. Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Front. Pharmacol. 2019 10 835 10.3389/fphar.2019.00835 31404334
    [Google Scholar]
  35. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  36. Huth S.W. Oakley, J.V.; Seath, C.P.; Geri, J.B.; Trowbridge, A.D.; Parker, D.L.; Rodriguez-Rivera, F.P.; Schwaid, A.G.; Ramil, C.; Ryu, K.A.; White, C.H.; Fadeyi, O.O.; Oslund, R.C.; MacMillan, D.W.C. μMap photoproximity labeling enables small molecule binding site mapping. J. Am. Chem. Soc. 2023 145 30 16289 16296 10.1021/jacs.3c03325 37471577
    [Google Scholar]
  37. Li Y. Zhang C. Tang D. Wang T. Yan W. Yang L. Bai P. Tang M. Pei H. Chen L. Chen Q. Yang J. Identification of a ligand-binding site on tubulin mediating the tubulin–RB3 interaction. Proc. Natl. Acad. Sci. USA 2025 122 11 e2424098122 10.1073/pnas.2424098122 40067895
    [Google Scholar]
  38. Ekundayo B. Arullampalam P. Gerber C.E. Hämmerli A.F. Guichard S. Boukenna M. Ross-Kaschitza D. Lochner M. Rougier J.S. Stahlberg H. Abriel H. Ni D. Identification of a binding site for small molecule inhibitors targeting human TRPM4. Nat. Commun. 2025 16 1 833 10.1038/s41467‑025‑56131‑2 39828793
    [Google Scholar]
  39. Sun C. Zhu H. Clark S. Gouaux E. Cryo-EM structures reveal native GABAA receptor assemblies and pharmacology. Nature 2023 622 7981 195 201 10.1038/s41586‑023‑06556‑w 37730991
    [Google Scholar]
  40. Zhang Y. Liu D. Guo D. Lin W. Lu W. Hu L. Chen S. Chen C. CPSF3 regulates alternative polyadenylation of CNIH2 to promote esophageal squamous cell carcinoma progression. Cancer Lett. 2024 593 216925 10.1016/j.canlet.2024.216925 38718887
    [Google Scholar]
  41. Huang S.D. Yuan Y. Zhuang C.W. Li B.L. Gong D.J. Wang S.G. Zeng Z.Y. Cheng H.Z. MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma. Mol. Cancer 2012 11 1 51 10.1186/1476‑4598‑11‑51 22867052
    [Google Scholar]
  42. Moody S. Senkin S. Islam S.M.A. Wang J. Nasrollahzadeh D. Cortez Cardoso Penha R. Fitzgerald S. Bergstrom E.N. Atkins J. He Y. Khandekar A. Smith-Byrne K. Carreira C. Gaborieau V. Latimer C. Thomas E. Abnizova I. Bucciarelli P.E. Jones D. Teague J.W. Abedi-Ardekani B. Serra S. Scoazec J.Y. Saffar H. Azmoudeh-Ardalan F. Sotoudeh M. Nikmanesh A. Poustchi H. Niavarani A. Gharavi S. Eden M. Richman P. Campos L.S. Fitzgerald R.C. Ribeiro L.F. Soares-Lima S.C. Dzamalala C. Mmbaga B.T. Shibata T. Menya D. Goldstein A.M. Hu N. Malekzadeh R. Fazel A. McCormack V. McKay J. Perdomo S. Scelo G. Chanudet E. Humphreys L. Alexandrov L.B. Brennan P. Stratton M.R. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat. Genet. 2021 53 11 1553 1563 10.1038/s41588‑021‑00928‑6 34663923
    [Google Scholar]
  43. Chen Y.X. Wang Z.X. Jin Y. Zhao Q. Liu Z.X. Zuo Z.X. Ju H.Q. Cui C. Yao J. Zhang Y. Li M. Feng J. Tian L. Xia X.J. Feng H. Yao S. Wang F.H. Li Y.H. Wang F. Xu R.H. An immunogenic and oncogenic feature-based classification for chemotherapy plus PD-1 blockade in advanced esophageal squamous cell carcinoma. Cancer Cell 2023 41 5 919 932.e5 10.1016/j.ccell.2023.03.016 37059106
    [Google Scholar]
  44. Cao Y.F. Xie L. Tong B.B. Chu M.Y. Shi W.Q. Li X. He J.Z. Wang S.H. Wu Z.Y. Deng D.X. Zheng Y.Q. Li Z.M. Xu X.E. Liao L.D. Cheng Y.W. Li L.Y. Xu L.Y. Li E.M. Targeting USP10 induces degradation of oncogenic ANLN in esophageal squamous cell carcinoma. Cell Death Differ. 2023 30 2 527 543 10.1038/s41418‑022‑01104‑x 36526897
    [Google Scholar]
  45. Ma Z.Q. Feng Y.T. Guo K. Liu D. Shao C.J. Pan M.H. Zhang Y.M. Zhang Y.X. Lu D. Huang D. Zhang F. Wang J.L. Yang B. Han J. Yan X.L. Hu Y. Melatonin inhibits ESCC tumor growth by mitigating the HDAC7/β-catenin/c-Myc positive feedback loop and suppressing the USP10-maintained HDAC7 protein stability. Mil. Med. Res. 2022 9 1 54 10.1186/s40779‑022‑00412‑0 36163081
    [Google Scholar]
  46. Dura P. Salomon J. Te Morsche R.H.M. Roelofs H.M.J. Kristinsson J.O. Wobbes T. Witteman B.J. Tan A.C. Drenth J.P. Peters W.H. High enzyme activity UGT1A1 or low activity UGT1A8 and UGT2B4 genotypes increase esophageal cancer risk. Int. J. Oncol. 2012 40 6 1789 1796 [PMID: 22367021
    [Google Scholar]
  47. Xu J. Chen T. Liao L. Chen T. Li Q. Xu J. Hu J. Zhou P. Zhang Y. NETO2 promotes esophageal cancer progression by inducing proliferation and metastasis via PI3K/AKT and ERK pathway. Int. J. Biol. Sci. 2021 17 1 259 270 10.7150/ijbs.53795 33390848
    [Google Scholar]
  48. Liu B. Zhang B. Qi J. Zhou H. Tan L. Huang J. Huang J. Fang X. Gong L. Luo J. Liu S. Fu L. Ling F. Ma S. Lai-wan Kwong, D.; Wang, X.; Guan, X.Y. Targeting MFGE8 secreted by cancer-associated fibroblasts blocks angiogenesis and metastasis in esophageal squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2023 120 42 e2307914120 10.1073/pnas.2307914120 37816055
    [Google Scholar]
  49. Zhao Y. Li Y. Zhu R. Feng R. Cui H. Yu X. Huang F. Zhang R. Chen X. Li L. Chen Y. Liu Y. Wang J. Du G. Liu Z. RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m6A modification. Signal Transduct. Target. Ther. 2023 8 1 224 10.1038/s41392‑023‑01428‑1 37264021
    [Google Scholar]
  50. Han L. Xiang X. Fu Y. Wei S. Zhang C. Li L. Liu Y. Lv H. Shan B. Zhao L. Periplcymarin targets glycolysis and mitochondrial oxidative phosphorylation of esophageal squamous cell carcinoma: Implication in anti-cancer therapy. Phytomedicine 2024 128 155539 10.1016/j.phymed.2024.155539 38522311
    [Google Scholar]
  51. Cui Y. Chen X. Liu Y. Wang Q. Tang J. Chen M. Piperlongumine inhibits esophageal squamous cell carcinoma in vitro and in vivo by triggering NRF2/ROS/TXNIP/NLRP3-dependent pyroptosis. Chem. Biol. Interact. 2024 390 110875 10.1016/j.cbi.2024.110875 38242274
    [Google Scholar]
  52. Zhang S. Gao X.J. Ma Y. Song K. Ge M. Ma S. Zhang L. Yuan Y. Jiang W. Wu Z. Gao L. Yan X. Jiang B. A bioinspired sulfur–Fe–heme nanozyme with selective peroxidase-like activity for enhanced tumor chemotherapy. Nat. Commun. 2024 15 1 10605 10.1038/s41467‑024‑54868‑w 39638998
    [Google Scholar]
  53. Goldenson B. Crispino J.D. The aurora kinases in cell cycle and leukemia. Oncogene 2015 34 5 537 545 10.1038/onc.2014.14 24632603
    [Google Scholar]
  54. Chen M. Zhu H. Li J. Luo D. Zhang J. Liu W. Wang J. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. Ann. Med. 2024 56 1 2282184 10.1080/07853890.2023.2282184 38738386
    [Google Scholar]
  55. Zhu Q. Ding L. Zi Z. Gao S. Wang C. Wang Y. Zhu C. Yuan Z. Wei F. Cai Q. Viral-Mediated AURKB cleavage promotes cell segregation and tumorigenesis. Cell Rep. 2019 26 13 3657 3671.e5 10.1016/j.celrep.2019.02.106 30917319
    [Google Scholar]
  56. Du R. Huang C. Liu K. Li X. Dong Z. Targeting AURKA in Cancer: Molecular mechanisms and opportunities for Cancer therapy. Mol. Cancer 2021 20 1 15 10.1186/s12943‑020‑01305‑3 33451333
    [Google Scholar]
  57. Wang-Bishop L. Chen Z. Gomaa A. Lockhart A.C. Salaria S. Wang J. Lewis K.B. Ecsedy J. Washington K. Beauchamp R.D. El-Rifai W. Inhibition of AURKA reduces proliferation and survival of gastrointestinal cancer cells with activated KRAS by preventing activation of RPS6KB1. Gastroenterology 2019 156 3 662 675.e7 10.1053/j.gastro.2018.10.030 30342037
    [Google Scholar]
  58. Tanaka K. Yu H.A. Yang S. Han S. Selcuklu S.D. Kim K. Ramani S. Ganesan Y.T. Moyer A. Sinha S. Xie Y. Ishizawa K. Osmanbeyoglu H.U. Lyu Y. Roper N. Guha U. Rudin C.M. Kris M.G. Hsieh J.J. Cheng E.H. Targeting Aurora B kinase prevents and overcomes resistance to EGFR inhibitors in lung cancer by enhancing BIM- and PUMA-mediated apoptosis. Cancer Cell 2021 39 9 1245 1261.e6 10.1016/j.ccell.2021.07.006 34388376
    [Google Scholar]
  59. Agius E. Bel-Vialar S. Bonnet F. Pituello F. Cell cycle and cell fate in the developing nervous system: The role of CDC25B phosphatase. Cell Tissue Res. 2015 359 1 201 213 10.1007/s00441‑014‑1998‑2 25260908
    [Google Scholar]
  60. Timofeev O. Cizmecioglu O. Settele F. Kempf T. Hoffmann I. Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition. J. Biol. Chem. 2010 285 22 16978 16990 10.1074/jbc.M109.096552 20360007
    [Google Scholar]
  61. Zhou Q. Wu F. Chen Y. Fu J. Zhou L. Xu Y. He F. Gong Z. Yuan F. Reynoutria multiflora (Thunb.) Moldenke and its ingredient suppress lethal prostate cancer growth by inducing CDC25B-CDK1 mediated cell cycle arrest. Bioorg. Chem. 2024 152 107731 10.1016/j.bioorg.2024.107731 39180863
    [Google Scholar]
  62. Pommier Y. Nussenzweig A. Takeda S. Austin C. Human topoisomerases and their roles in genome stability and organization. Nat. Rev. Mol. Cell Biol. 2022 23 6 407 427 10.1038/s41580‑022‑00452‑3 35228717
    [Google Scholar]
  63. Uusküla-Reimand L. Wilson M.D. Untangling the roles of TOP2A and TOP2B in transcription and cancer. Sci. Adv. 2022 8 44 eadd4920 10.1126/sciadv.add4920 36322662
    [Google Scholar]
  64. Zhang B. Li J. Wang Y. Liu X. Yang X. Liao Z. Deng S. Deng Y. Zhou Z. Tian Y. Wei W. Meng J. Hu Y. Wan C. Zhang Z. Huang F. Wen L. Wu B. Sun Y. Li Y. Yang K. Deubiquitinase USP7 stabilizes KDM5B and promotes tumor progression and cisplatin resistance in nasopharyngeal carcinoma through the ZBTB16/TOP2A axis. Cell Death Differ. 2024 31 3 309 321 10.1038/s41418‑024‑01257‑x 38287116
    [Google Scholar]
  65. Ye J.H. Yu J. Huang M.Y. Mo Y.M. The correlation study between TOP2A gene expression in circulating tumor cells and chemotherapeutic drug resistance of patients with breast cancer. Breast Cancer (tokyo Jpn) 2024 31 417 425 10.1007/s12282‑024‑01553‑x
    [Google Scholar]
  66. Ejlertsen B. Tuxen M.K. Jakobsen E.H. Jensen M.B. Knoop A.S. Højris I. Ewertz M. Balslev E. Danø H. Vestlev P.M. Kenholm J. Nielsen D.L. Bechmann T. Andersson M. Cold S. Nielsen H.M. Maae E. Carlsen D. Mouridsen H.T. Adjuvant cyclophosphamide and docetaxel with or without epirubicin for early TOP2A-normal breast cancer: DBCG 07-READ, an open-label, phase III, randomized trial. J. Clin. Oncol. 2017 35 23 2639 2646 10.1200/JCO.2017.72.3494 28661759
    [Google Scholar]
  67. Khera N. Rajkumar A.S. Abdulkader M. Alkurdi K. Liu Z. Ma H. Waseem A. Teh M.T. Identification of multidrug chemoresistant genes in head and neck squamous cell carcinoma cells. Mol. Cancer 2023 22 1 146 10.1186/s12943‑023‑01846‑3 37667354
    [Google Scholar]
  68. Yuan Y. Wang C. Zhuang X. Lin S. Luo M. Deng W. Zhou J. Liu L. Mao L. Peng W. Chen J. Wang Q. Shu Y. Xue Y. Huang P. PIM1 promotes hepatic conversion by suppressing reprogramming-induced ferroptosis and cell cycle arrest. Nat. Commun. 2022 13 1 5237 10.1038/s41467‑022‑32976‑9 36068222
    [Google Scholar]
  69. Altea-Manzano P. Doglioni G. Liu Y. Cuadros A.M. Nolan E. Fernández-García J. Wu Q. Planque M. Laue K.J. Cidre-Aranaz F. Liu X.Z. Marin-Bejar O. Van Elsen J. Vermeire I. Broekaert D. Demeyer S. Spotbeen X. Idkowiak J. Montagne A. Demicco M. Alkan H.F. Rabas N. Riera-Domingo C. Richard F. Geukens T. De Schepper M. Leduc S. Hatse S. Lambrechts Y. Kay E.J. Lilla S. Alekseenko A. Geldhof V. Boeckx B. de la Calle Arregui C. Floris G. Swinnen J.V. Marine J.C. Lambrechts D. Pelechano V. Mazzone M. Zanivan S. Cools J. Wildiers H. Baud V. Grünewald T.G.P. Ben-David U. Desmedt C. Malanchi I. Fendt S.M. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. Nat. Can. 2023 4 3 344 364 10.1038/s43018‑023‑00513‑2 36732635
    [Google Scholar]
  70. Zhang X. Peng L. Luo Y. Zhang S. Pu Y. Chen Y. Guo W. Yao J. Shao M. Fan W. Cui Q. Xi Y. Sun Y. Niu X. Zhao X. Chen L. Wang Y. Liu Y. Yang X. Wang C. Zhong C. Tan W. Wang J. Wu C. Lin D. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat. Commun. 2021 12 1 5291 10.1038/s41467‑021‑25539‑x 34489433
    [Google Scholar]
  71. Jiang Y Zhao H Kong S Zhou D Dong J Cheng Y Establishing mouse and human oral esophageal organoids to investigate the tumor immune response. Dis. Models Mech. 2024 17 dmm050319 10.1242/dmm.050319
    [Google Scholar]
  72. Xu W.W. Liao L. Dai W. Zheng C.C. Tan X.P. He Y. Zhang Q.H. Huang Z.H. Chen W.Y. Qin Y.R. Chen K.S. He M.L. Law S. Lung M.L. He Q.Y. Li B. Genome-wide CRISPR/Cas9 screening identifies a targetable MEST-PURA interaction in cancer metastasis. EBioMedicine 2023 92 104587 10.1016/j.ebiom.2023.104587 37149929
    [Google Scholar]
  73. Liu H. Wang Y. Lv M. Luo Y. Liu B.M. Huang Y. Wang M. Wang J. Flavonoid analogues as urease inhibitors: Synthesis, biological evaluation, molecular docking studies and in-silico ADME evaluation. Bioorg. Chem. 2020 105 104370 10.1016/j.bioorg.2020.104370 33096309
    [Google Scholar]
  74. Ohbuchi K. Hirokawa T. Protein druggability assessment for natural products using in silico simulation: A case study with estrogen receptor and the flavonoid genistein. Gene 2021 791 145726 10.1016/j.gene.2021.145726 34010704
    [Google Scholar]
  75. Deng S.P. Yang Y.L. Cheng X.X. Li W.R. Cai J.Y. Synthesis, spectroscopic study and radical scavenging activity of kaempferol derivatives: enhanced water solubility and antioxidant activity. Int. J. Mol. Sci. 2019 20 4 975 10.3390/ijms20040975 30813425
    [Google Scholar]
  76. Andres S. Pevny S. Ziegenhagen R. Bakhiya N. Schäfer B. Hirsch-Ernst K.I. Lampen A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res. 2018 62 1 1700447 10.1002/mnfr.201700447 29127724
    [Google Scholar]
  77. Razdar S. Panahi Y. Mohammadi R. Khedmat L. Khedmat H. Evaluation of the efficacy and safety of an innovative flavonoid lotion in patients with haemorrhoid: A randomised clinical trial. BMJ Open Gastroenterol. 2023 10 1 e001158 10.1136/bmjgast‑2023‑001158 37597875
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096387327250906212020
Loading
/content/journals/ccdt/10.2174/0115680096387327250906212020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test