Skip to content
2000
image of Timosaponin AIII Inhibits Migration and Invasion Abilities in Colorectal Cancer Through Inactivation of PI3K-AKT-mTOR Pathway

Abstract

Introduction

Metastases frequently occur in patients with colorectal cancer, resulting in a higher death rate. The study aimed to evaluate the mechanism by which Timosaponin AIII affects colorectal cancer metastases.

Methods

Different concentrations of Timosaponin AIII were used to treat colorectal cancer cell lines. The CCK8 assay was used to evaluate how Timosaponin AIII affected cell viability. Transwell chamber assays were employed to evaluate the impact of the treatment on the migratory and invasive abilities of colorectal cancer cells. The influence of Timosaponin AIII on apoptosis was detected through flow cytometry, and western blot, PCR, and immunofluorescence staining were utilized to assess its effect on the expression of proteins. The effect of Timosaponin AIII on tumor growth was studied by using xenograft tumor models.

Results

In this study, we observed that, in comparison with the control group, Timosaponin AIII could inhibit the proliferation, migration, and invasive capabilities of colorectal cancer cell lines and promote the process of apoptosis. Timosaponin AIII is capable of enhancing the phosphorylation levels of PI3K, AKT, and mTOR, as well as increasing E-cadherin while decreasing N-cadherin, Vimentin, Snail, and Slug, thereby inhibiting the epithelial-mesenchymal transition process.

Discussion

The present study has limitations, as the mechanistic investigations were mainly conducted at the cellular level. Future studies should validate the molecular mechanisms through animal models.

Conclusion

Timosaponin AIII restrains the activation of the PI3K-AKT-mTOR signal pathway, thereby regulating the EMT process to suppress metastases of colorectal cancer cell lines. This research provides a critical foundation for the clinical application of Timosaponin AIII in colorectal cancer treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096383861251003074135
2025-10-27
2025-12-24
Loading full text...

Full text loading...

References

  1. Biller L.H. Schrag D. Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA 2021 325 7 669 685 10.1001/jama.2021.0106 33591350
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Dekker E. Tanis P.J. Vleugels J.L.A. Kasi P.M. Wallace M.B. Colorectal cancer. Lancet 2019 394 10207 1467 1480 10.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  4. Sahin T.K. Rizzo A. Aksoy S. Guven D.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis. Cancers 2024 16 10 1835 10.3390/cancers16101835 38791914
    [Google Scholar]
  5. Sahin T.K. Ayasun R. Rizzo A. Guven D.C. Prognostic value of neutrophil-to-eosinophil ratio (NER) in cancer: A systematic review and meta-analysis. Cancers 2024 16 21 3689 10.3390/cancers16213689 39518127
    [Google Scholar]
  6. Vitale E. Rizzo A. Santa K. Jirillo E. Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A scoping review. Biology 2024 13 5 352 10.3390/biology13050352 38785834
    [Google Scholar]
  7. Brandi G. Ricci A.D. Rizzo A. Zanfi C. Tavolari S. Palloni A. De Lorenzo S. Ravaioli M. Cescon M. Is post‐transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases? Cancer Commun. 2020 40 9 461 464 10.1002/cac2.12072 32762027
    [Google Scholar]
  8. Jung G. Hernández-Illán E. Moreira L. Balaguer F. Goel A. Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 2020 17 2 111 130 10.1038/s41575‑019‑0230‑y 31900466
    [Google Scholar]
  9. Macharia J.M. Mwangi R.W. Rozmann N. Zsolt K. Varjas T. Uchechukwu P.O. Wagara I.N. Raposa B.L. Medicinal plants with anti-colorectal cancer bioactive compounds: Potential game-changers in colorectal cancer management. Biomed. Pharmacother. 2022 153 113383 10.1016/j.biopha.2022.113383 35820316
    [Google Scholar]
  10. Aouad P. Quinn H.M. Berger A. Brisken C. Tumor dormancy: EMT beyond invasion and metastasis. Genesis 2024 62 1 e23552 10.1002/dvg.23552 37776086
    [Google Scholar]
  11. Ang H.L. Mohan C.D. Shanmugam M.K. Leong H.C. Makvandi P. Rangappa K.S. Bishayee A. Kumar A.P. Sethi G. Mechanism of epithelial‐mesenchymal transition in cancer and its regulation by natural compounds. Med. Res. Rev. 2023 43 4 1141 1200 10.1002/med.21948 36929669
    [Google Scholar]
  12. Mittal V. Epithelial mesenchymal transition in tumor metastases. Annu. Rev. Pathol. 2018 13 1 395 412 10.1146/annurev‑pathol‑020117‑043854 29414248
    [Google Scholar]
  13. Babaei G. Aziz S.G.G. Jaghi N.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed. Pharmacother. 2021 133 110909 10.1016/j.biopha.2020.110909 33227701
    [Google Scholar]
  14. Liu Z. Cao Y. Guo X. Chen Z. The potential role of Timosaponin-AIII in cancer prevention and treatment. Molecules 2023 28 14 5500 10.3390/molecules28145500 37513375
    [Google Scholar]
  15. Tu H. Zhou X. Zhou H. Luo Z. Yan Y. Luo Z. Qi Q. Anti-tumor effect and mechanisms of Timosaponin AIII across diverse cancer progression. Biochem. Pharmacol. 2024 228 116080 10.1016/j.bcp.2024.116080 38402911
    [Google Scholar]
  16. Jiang T. Xu X. Protective effect of Timosaponin AIII on Escherichia coli-induced endometritis in mice through inhibiting inflammatory response and regulating uterine microbiota structure. Int. Immunopharmacol. 2024 130 111649 10.1016/j.intimp.2024.111649 38367462
    [Google Scholar]
  17. Park J.H. Jee W. Park S.M. Park Y.R. Kim S.W. Bae H. Chung W.S. Cho J.H. Kim H. Song M.Y. Jang H.J. Timosaponin A3 induces anti-obesity and anti-diabetic effects in vitro and in vivo. Int. J. Mol. Sci. 2024 25 5 2914 10.3390/ijms25052914 38474161
    [Google Scholar]
  18. Cong Y. Wang L. Peng R. Zhao Y. Bai F. Yang C. Liu X. Wang D. Ma B. Cong Y. Timosaponin AIII induces antiplatelet and antithrombotic activity via Gq-mediated signaling by the thromboxane A2 receptor. Sci. Rep. 2016 6 1 38757 10.1038/srep38757 27934923
    [Google Scholar]
  19. Zhou C. Yu T. Zhu R. Lu J. Ouyang X. Zhang Z. Chen Q. Li J. Cui J. Jiang F. Jin K.Y. Sarapultsev A. Li F. Zhang G. Luo S. Hu D. Timosaponin AIII promotes non-small-cell lung cancer ferroptosis through targeting and facilitating HSP90 mediated GPX4 ubiquitination and degradation. Int. J. Biol. Sci. 2023 19 5 1471 1489 10.7150/ijbs.77979 37056925
    [Google Scholar]
  20. Chien H.J. Liu C.J. Ying T.H. Wu P.J. Wang J.W. Ting Y.H. Hsieh Y.H. Wang S.C. Timosaponin AIII inhibits migration and invasion abilities in human cervical cancer cells through inactivation of p38 MAPK-mediated uPA expression in vitro and in vivo. Cancers 2022 15 1 37 10.3390/cancers15010037 36612038
    [Google Scholar]
  21. Zhang M. Qu J. Gao Z. Qi Q. Yin H. Zhu L. Wu Y. Liu W. Yang J. Huang X. Timosaponin AIII induces G2/M arrest and apoptosis in breast cancer by activating the ATM/Chk2 and p38 MAPK signaling pathways. Front. Pharmacol. 2021 11 601468 10.3389/fphar.2020.601468 33628174
    [Google Scholar]
  22. Zhang L. Zhang S. Jiang M. Lu L. Ding Y. Ma N. Zhao Y. Xuchen S. Zhang N. Novel timosaponin AIII-based multifunctional liposomal delivery system for synergistic therapy against hepatocellular carcinoma cancer. Int. J. Nanomedicine 2021 16 5531 5550 10.2147/IJN.S313759 34429598
    [Google Scholar]
  23. Shen C. Liu J. Liu H. Li G. Wang H. Tian H. Mao Y. Hua D. Timosaponin AIII induces lipid peroxidation and ferroptosis by enhancing Rab7-mediated lipophagy in colorectal cancer cells. Phytomedicine 2024 122 155079 10.1016/j.phymed.2023.155079 37863004
    [Google Scholar]
  24. Chang L. Graham P.H. Hao J. Ni J. Bucci J. Cozzi P.J. Kearsley J.H. Li Y. Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013 4 10 e875 10.1038/cddis.2013.407 24157869
    [Google Scholar]
  25. Yin T. Wang G. He S. Shen G. Su C. Zhang Y. Wei X. Ye T. Li L. Yang S. Li D. Guo F. Mo Z. Wan Y. Ai P. Zhou X. Liu Y. Wang Y. Wei Y. Malignant pleural effusion and ascites induce epithelial‐mesenchymal transition and cancer stem‐like cell properties via the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3‐kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway. J. Biol. Chem. 2016 291 52 26750 26761 10.1074/jbc.M116.753236 27756837
    [Google Scholar]
  26. Shen B. A new golden age of natural products drug discovery. Cell 2015 163 6 1297 1300 10.1016/j.cell.2015.11.031 26638061
    [Google Scholar]
  27. Anwar D.M. El-Sayed M. Reda A. Fang J.Y. Khattab S.N. Elzoghby A.O. Recent advances in herbal combination nanomedicine for cancer: Delivery technology and therapeutic outcomes. Expert Opin. Drug Deliv. 2021 18 11 1609 1625 10.1080/17425247.2021.1955853 34254868
    [Google Scholar]
  28. Ko H.M. Jee W. Park D. Kim K.I. Jung J.H. Jang H.J. The antitumor effect of Timosaponin A3 through c-Myc inhibition in colorectal cancer cells and combined treatment effect with 5-FU or doxorubicin. Int. J. Mol. Sci. 2022 23 19 11900 10.3390/ijms231911900 36233202
    [Google Scholar]
  29. Gu Y. Zhou Z. Berberine inhibits the proliferation, invasion and migration of endometrial stromal cells by downregulating miR 429. Mol. Med. Rep. 2021 23 6 416 10.3892/mmr.2021.12055 33846796
    [Google Scholar]
  30. Talmadge J.E. Fidler I.J. AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res. 2010 70 14 5649 5669 10.1158/0008‑5472.CAN‑10‑1040 20610625
    [Google Scholar]
  31. Guarino M. Epithelial–mesenchymal transition and tumour invasion. Int. J. Biochem. Cell Biol. 2007 39 12 2153 2160 10.1016/j.biocel.2007.07.011 17825600
    [Google Scholar]
  32. Lamouille S. Xu J. Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014 15 3 178 196 10.1038/nrm3758 24556840
    [Google Scholar]
  33. Ying Q. Wu G. Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: An update. Ren. Fail. 2017 39 1 474 483 10.1080/0886022X.2017.1313164 28413908
    [Google Scholar]
  34. Chen X.F. Liu P.G. Sheng N. Li X.S. Hu R.K. Zhu L.X. Feng P. Arctigenin inhibits the progression of colorectal cancer through epithelial-mesenchymal transition via PI3K/Akt/mTOR signaling pathway. PLoS One 2024 19 9 e0308947 10.1371/journal.pone.0308947 39331595
    [Google Scholar]
  35. Aoki M. Fujishita T. Oncogenic roles of the PI3K/AKT/mTOR axis. Curr. Top. Microbiol. Immunol. 2017 407 153 189 10.1007/82_2017_6 28550454
    [Google Scholar]
  36. Rafael D. Doktorovová S. Florindo H.F. Gener P. Abasolo I. Schwartz S.J. Videira M.A. EMT blockage strategies: Targeting Akt dependent mechanisms for breast cancer metastatic behaviour modulation. Curr. Gene Ther. 2015 15 3 300 312 10.2174/1566523215666150126123642 25619882
    [Google Scholar]
  37. Li W. Mao Y. Hua B. Gu X. Lu C. Xu B. Pan W. Sasanquasaponin inhibited epithelial to mesenchymal transition in prostate cancer by regulating the PI3K/Akt/mTOR and Smad pathways. Pharm. Biol. 2022 60 1 1865 1875 10.1080/13880209.2022.2123931 36205544
    [Google Scholar]
  38. Li C.Y. Wang Q. Wang X. Li G. Shen S. Wei X. Scutellarin inhibits the invasive potential of malignant melanoma cells through the suppression epithelial-mesenchymal transition and angiogenesis via the PI3K/Akt/mTOR signaling pathway. Eur. J. Pharmacol. 2019 858 172463 10.1016/j.ejphar.2019.172463 31211986
    [Google Scholar]
  39. Jiang M. Zhou L.Y. Xu N. An Q. Hydroxysafflor yellow A inhibited lipopolysaccharide‐induced non‐small cell lung cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Thorac. Cancer 2019 10 6 1319 1333 10.1111/1759‑7714.13019 31055884
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096383861251003074135
Loading
/content/journals/ccdt/10.2174/0115680096383861251003074135
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test