Skip to content
2000
image of Genetic Distinctiveness in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma Cancer: Identifying Key Genomic Signatures through Differentially Expressed Gene Analysis

Abstract

Background

Lung cancer is the most commonly diagnosed cancer type and the leading cause of cancer death worldwide. Non-small cell lung cancer (NSCLC) accounts for more than 80% of all lung cancer cases and includes two main subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Understanding the differences in genes causing the proliferation of LUAD and LUSC is key to advancing the diagnosis and targeted treatment development.

Aims

The aim of this study was to identify candidate genes and potential tumorigenesis mechanisms distinguishing LUAD and LUSC.

Methods

Three pooled transcriptomic datasets (GSE10245, GSE37745, and GSE43580) were analyzed from the Gene Expression Omnibus (GEO) database, with each dataset statistically tested for differentially expressed genes (DEGs). DEGs between lung LUAD and LUSC of the three datasets were analyzed with Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A protein-protein interaction (PPI) network was constructed to screen candidate genes.

Results

This study identified 138 shared DEGs among three patient-level gene expression datasets, containing 39 upregulated genes and 99 downregulated genes. The GO and KEGG enrichment analysis results showed the functions of DEGs to be mainly associated with epidermis development, cornified envelope, structural constituent of epidermis, and estrogen signaling pathway. Finally, through the PPI network, eight core genes were identified, including and .

Conclusion

We have elucidated key genes and molecular mechanisms linked to NSCLC subtypes. These findings have the potential to facilitate improved diagnostic and therapeutic targets for LUAD and LUSC biomarkers.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096372957250322174718
2025-05-22
2025-09-13
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Sharma R. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int. J. Clin. Oncol. 2022 27 4 665 675 10.1007/s10147‑021‑02108‑2 35020103
    [Google Scholar]
  3. Arbour K.C. Riely G.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer. JAMA 2019 322 8 764 774 10.1001/jama.2019.11058 31454018
    [Google Scholar]
  4. Herbst R.S. Morgensztern D. Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018 553 7689 446 454 10.1038/nature25183 29364287
    [Google Scholar]
  5. Bradley S.H. Abraham S. Callister M.E.J. Grice A. Hamilton W.T. Lopez R.R. Shinkins B. Neal R.D. Sensitivity of chest X-ray for detecting lung cancer in people presenting with symptoms: A systematic review. Br. J. Gen. Pract. 2019 69 689 e827 e835 10.3399/bjgp19X706853 31636130
    [Google Scholar]
  6. Zhang Y. Simoff M.J. Ost D. Wagner O.J. Lavin J. Nauman B. Hsieh M.C. Wu X.C. Pettiford B. Shi L. Understanding the patient journey to diagnosis of lung cancer. BMC Cancer 2021 21 1 402 10.1186/s12885‑021‑08067‑1 33853552
    [Google Scholar]
  7. Relli V. Trerotola M. Guerra E. Alberti S. Abandoning the notion of non-small cell lung cancer. Trends Mol. Med. 2019 25 7 585 594 10.1016/j.molmed.2019.04.012 31155338
    [Google Scholar]
  8. Chen Z. Fillmore C.M. Hammerman P.S. Kim C.F. Wong K.K. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer 2014 14 8 535 546 10.1038/nrc3775 25056707
    [Google Scholar]
  9. Wang X Zheng K Hao Z In-depth analysis of immune cell landscapes reveals differences between lung adenocarcinoma and lung squamous cell carcinoma. Front Oncol. 2024 14 1338634 10.3389/fonc.2024.1338634
    [Google Scholar]
  10. McDoniels-Silvers A.L. Stonert G.D. Lubett R.A. You M. Differential expression of critical cellular genes in human lung adenocarcinomas and squamous cell carcinomas in comparison to normal lung tissues. Neoplasia 2002 4 2 141 150 10.1038/sj.neo.7900217 11896569
    [Google Scholar]
  11. Wang J. Wang H. Xu J. Song Q. Zhou B. Shangguan J. Xue M. Wang Y. Identification of protein signatures for lung cancer subtypes based on BPSO method. PLoS One 2023 18 12 e0294243 10.1371/journal.pone.0294243 38060494
    [Google Scholar]
  12. Zhu L. Liu Y. Gao H. Liu J. Zhou Q. Luo F. Case report: Partial response following nivolumab plus docetaxel in a patient with EGFR Exon 20 Deletion/Insertion (p.N771delinsGF) mutant lung adenocarcinoma transdifferentiated from squamous cell carcinoma. Front. Cell Dev. Biol. 2022 9 755135 10.3389/fcell.2021.755135 35083213
    [Google Scholar]
  13. Lee W. Kim D.K. Synn C.B. Lee H.K. Park S. Jung D.S. Choi Y. Kim J.H. Byeon Y. Kim Y.S. Lee S. Lee S. Joo Y. Lee E.J. Yun M.R. Heo S.G. Yang W. Jung J.E. Kim E.K. Park J. Park J.D. Lee D.J. Kim H.W. Lim S.M. Hong M.H. Ahn B.C. Lee J.B. Pyo K.H. Incorporation of SKI-G-801, a novel AXL inhibitor, with Anti-PD-1 Plus chemotherapy improves anti-tumor activity and survival by enhancing T cell immunity. Front. Oncol. 2022 12 821391 10.3389/fonc.2022.821391 35356198
    [Google Scholar]
  14. Zhou X. Li C. Zhang Z. Li D.Y. Du J. Ding P. Meng H. Xu H. Li R. Ho E. Zhang A. Okunieff P. Lu J. Sha M.Y. Kinetics of plasma cfDNA predicts clinical response in non-small cell lung cancer patients. Sci. Rep. 2021 11 1 7633 10.1038/s41598‑021‑85797‑z 33828112
    [Google Scholar]
  15. Wang W. Liu H. Li G. What’s the difference between lung adenocarcinoma and lung squamous cell carcinoma? Evidence from a retrospective analysis in a cohort of Chinese patients. Front. Endocrinol. 2022 13 947443 10.3389/fendo.2022.947443 36105402
    [Google Scholar]
  16. Kuner R. Muley T. Meister M. Ruschhaupt M. Buness A. Xu E.C. Schnabel P. Warth A. Poustka A. Sültmann H. Hoffmann H. Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer 2009 63 1 32 38 10.1016/j.lungcan.2008.03.033 18486272
    [Google Scholar]
  17. Botling J. Edlund K. Lohr M. Hellwig B. Holmberg L. Lambe M. Berglund A. Ekman S. Bergqvist M. Pontén F. König A. Fernandes O. Karlsson M. Helenius G. Karlsson C. Rahnenführer J. Hengstler J.G. Micke P. Biomarker discovery in non-small cell lung cancer: Integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin. Cancer Res. 2013 19 1 194 204 10.1158/1078‑0432.CCR‑12‑1139 23032747
    [Google Scholar]
  18. Jabs V. Edlund K. König H. Grinberg M. Madjar K. Rahnenführer J. Ekman S. Bergkvist M. Holmberg L. Ickstadt K. Botling J. Hengstler J.G. Micke P. Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer. PLoS One 2017 12 11 e0187246 10.1371/journal.pone.0187246 29112949
    [Google Scholar]
  19. Lohr M. Hellwig B. Edlund K. Mattsson J.S.M. Botling J. Schmidt M. Hengstler J.G. Micke P. Rahnenführer J. Identification of sample annotation errors in gene expression datasets. Arch. Toxicol. 2015 89 12 2265 2272 10.1007/s00204‑015‑1632‑4 26608184
    [Google Scholar]
  20. Goldmann T. Marwitz S. Nitschkowski D. Krupar R. Backman M. Elfving H. Thurfjell V. Lindberg A. Brunnström H. La Fleur L. Mezheyeuski A. Mattsson J.S.M. Botling J. Micke P. Strell C. PD-L1 amplification is associated with an immune cell rich phenotype in squamous cell cancer of the lung. Cancer Immunol. Immunother. 2021 70 9 2577 2587 10.1007/s00262‑020‑02825‑z 33576873
    [Google Scholar]
  21. Khadse A. Haakensen V.D. Silwal-Pandit L. Hamfjord J. Micke P. Botling J. Brustugun O.T. Lingjærde O.C. Helland Å. Kure E.H. Prognostic significance of the loss of heterozygosity of KRAS in early-stage lung Adenocarcinoma. Front. Oncol. 2022 12 873532 10.3389/fonc.2022.873532 35574381
    [Google Scholar]
  22. Tarca A.L. Lauria M. Unger M. Bilal E. Boue S. Kumar Dey K. Hoeng J. Koeppl H. Martin F. Meyer P. Nandy P. Norel R. Peitsch M. Rice J.J. Romero R. Stolovitzky G. Talikka M. Xiang Y. Zechner C. Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the IMPROVER diagnostic signature challenge. Bioinformatics 2013 29 22 2892 2899 10.1093/bioinformatics/btt492 23966112
    [Google Scholar]
  23. Benjamini Y. Hochberg Y. Controlling the false discovery Rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 1995 57 1 289 300 10.1111/j.2517‑6161.1995.tb02031.x
    [Google Scholar]
  24. Wang T. Zhang L. Tian P. Tian S. Identification of differentially-expressed genes between early-stage adenocarcinoma and squamous cell carcinoma lung cancer using meta-analysis methods. Oncol. Lett. 2017 13 5 3314 3322 10.3892/ol.2017.5838 28521438
    [Google Scholar]
  25. Lagani V. Karozou A.D. Gomez-Cabrero D. Silberberg G. Tsamardinos I. A comparative evaluation of data-merging and meta-analysis methods for reconstructing gene-gene interactions. BMC Bioinformatics 2016 17 S5 Suppl. 5 S194 10.1186/s12859‑016‑1038‑1 27294826
    [Google Scholar]
  26. Fisher R.A. On the interpretation of χ2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 1922 85 1 87 94 10.2307/2340521
    [Google Scholar]
  27. Cheung W.K.C. Nguyen D.X. Lineage factors and differentiation states in lung cancer progression. Oncogene 2015 34 47 5771 5780 10.1038/onc.2015.85 25823023
    [Google Scholar]
  28. Bragulla H.H. Homberger D.G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 2009 214 4 516 559 10.1111/j.1469‑7580.2009.01066.x 19422428
    [Google Scholar]
  29. Jacob J.T. Coulombe P.A. Kwan R. Omary M.B. Types I and II Keratin intermediate filaments. Cold Spring Harb. Perspect. Biol. 2018 10 4 a018275 10.1101/cshperspect.a018275 29610398
    [Google Scholar]
  30. Park H.J. Cha Y.J. Kim S.H. Kim A. Kim E.Y. Chang Y.S. Keratinization of lung squamous cell carcinoma is associated with poor clinical outcome. Tuberc. Respir. Dis. 2017 80 2 179 186 10.4046/trd.2017.80.2.179 28416958
    [Google Scholar]
  31. Marcoux N. Gettinger S.N. O’Kane G. Arbour K.C. Neal J.W. Husain H. Evans T.L. Brahmer J.R. Muzikansky A. Bonomi P.D. del Prete S. Wurtz A. Farago A.F. Dias-Santagata D. Mino-Kenudson M. Reckamp K.L. Yu H.A. Wakelee H.A. Shepherd F.A. Piotrowska Z. Sequist L.V. EGFR-Mutant adenocarcinomas that transform to Small-Cell lung cancer and other neuroendocrine carcinomas: Clinical outcomes. J. Clin. Oncol. 2019 37 4 278 285 10.1200/JCO.18.01585 30550363
    [Google Scholar]
  32. Quintanal-Villalonga A. Taniguchi H. Zhan Y.A. Hasan M.M. Chavan S.S. Meng F. Uddin F. Manoj P. Donoghue M.T.A. Won H.H. Chan J.M. Ciampricotti M. Chow A. Offin M. Chang J.C. Ray-Kirton J. Tischfield S.E. Egger J. Bhanot U.K. Linkov I. Asher M. Sinha S. Silber J. Iacobuzio-Donahue C.A. Roehrl M.H. Hollmann T.J. Yu H.A. Qiu J. de Stanchina E. Baine M.K. Rekhtman N. Poirier J.T. Loomis B. Koche R.P. Rudin C.M. Sen T. Multiomic analysis of lung tumors defines pathways activated in neuroendocrine transformation. Cancer Discov. 2021 11 12 3028 3047 10.1158/2159‑8290.CD‑20‑1863 34155000
    [Google Scholar]
  33. Hsu L.H. Chu N.M. Kao S.H. Estrogen, estrogen receptor, and lung cancer. Int. J. Mol. Sci. 2017 18 8 1713 10.3390/ijms18081713 28783064
    [Google Scholar]
  34. Jia S. Li L. Xie L. Zhang W. Zhu T. Qian B. Transcriptome based estrogen related genes biomarkers for diagnosis and prognosis in non-small cell lung cancer. Front. Genet. 2021 12 666396 10.3389/fgene.2021.666396 33936178
    [Google Scholar]
  35. Tai Y.L. Chen K.C. Hsieh J.T. Shen T.L. Exosomes in cancer development and clinical applications. Cancer Sci. 2018 109 8 2364 2374 10.1111/cas.13697 29908100
    [Google Scholar]
  36. Vlachakis D. Mitsis Τ. Nicolaides N. Efthimiadou A. Giannakakis A. Bacopoulou F. Chrousos G. Functions, pathophysiology and current insights of exosomal endocrinology (Review). Mol. Med. Rep. 2020 23 1 1 10.3892/mmr.2020.11664 33179094
    [Google Scholar]
  37. Zhao X. Zhao R. Wen J. Zhang X. Wu S. Fang J. Ma J. Gao L. Hu Y. Bioinformatics-based screening and analysis of the key genes involved in the influence of antiangiogenesis on myeloid-derived suppressor cells and their effects on the immune microenvironment. Med. Oncol. 2024 41 5 96 10.1007/s12032‑024‑02357‑x 38526604
    [Google Scholar]
  38. Zhang Y.Q. Yuan Y. Zhang J. Lin C.Y. Guo J.L. Liu H.S. Guo Q. Evaluation of the roles and regulatory mechanisms of PD-1 target molecules in NSCLC progression. Ann. Transl. Med. 2021 9 14 1168 10.21037/atm‑21‑2963 34430609
    [Google Scholar]
  39. Wang M. Liu C. Wang Y. Jamil M. Alhomrani M. Alamri A.S. Alsanie W.F. Alsharif A. Ali M. Jabeen N. Bone morphogenetic protein 1: A prognostic indicator and potential biomarker in three cancer types. Am. J. Transl. Res. 2024 16 2 400 414 10.62347/PWZA6242 38463598
    [Google Scholar]
  40. Yalimaimaiti S. Liang X. Zhao H. Dou H. Liu W. Yang Y. Ning L. Establishment of a prognostic signature for lung adenocarcinoma using cuproptosis-related lncRNAs. BMC Bioinformatics 2023 24 1 81 10.1186/s12859‑023‑05192‑5 36879187
    [Google Scholar]
  41. Lu D. Ma Z. Huang D. Zhang J. Li J. Zhi P. Zhang L. Feng Y. Ge X. Zhai J. Jiang M. Zhou X. Ii C.B.S. Neal J.W. Patel S.R. Yan X. Hu Y. Wang J. Clinicopathological characteristics and prognostic significance of HDAC11 protein expression in non-small cell lung cancer: A retrospective study. Transl. Lung Cancer Res. 2022 11 6 1119 1131 10.21037/tlcr‑22‑403 35832445
    [Google Scholar]
  42. Qian L. Wang F. Lu S. Miao H. He X. Feng J. Huang H. Shi R. Zhang J. A comprehensive prognostic and immune analysis of ferroptosis-related genes identifies SLC7A11 as a novel prognostic biomarker in lung Adenocarcinoma. J. Immunol. Res. 2022 2022 1 13 10.1155/2022/1951620 35509981
    [Google Scholar]
  43. Wang X. Yan G. Zhang X. Li D. Li G. LNX1-AS2 as a key prognostic and immunotherapy response biomarker for lung adenocarcinoma. Curr. Med. Chem. 2024 32 10.2174/0109298673321029241015153958 39484773
    [Google Scholar]
  44. Guo Z. Zhang X. Yang D. Hu Z. Wu J. Zhou W. Wu S. Zhang W. Gefitinib metabolism-related lncRNAs for the prediction of prognosis, tumor microenvironment and drug sensitivity in lung adenocarcinoma. Sci. Rep. 2024 14 1 10348 10.1038/s41598‑024‑61175‑3 38710798
    [Google Scholar]
  45. Zhang J. Liu X. Huang Z. Wu C. Zhang F. Han A. Stalin A. Lu S. Guo S. Huang J. Liu P. Shi R. Zhai Y. Chen M. Zhou W. Bai M. Wu J. T cell-related prognostic risk model and tumor immune environment modulation in lung adenocarcinoma based on single-cell and bulk RNA sequencing. Comput. Biol. Med. 2023 152 106460 10.1016/j.compbiomed.2022.106460 36565482
    [Google Scholar]
  46. Zhu H. Yue H. Xie Y. Chen B. Zhou Y. Liu W. Bioinformatics and integrated analyses of prognosis-associated key genes in lung adenocarcinoma. J. Thorac. Dis. 2021 13 2 1172 1186 10.21037/jtd‑21‑49 33717590
    [Google Scholar]
  47. Maqsood Q. Sumrin A. Saleem Y. Wajid A. Mahnoor M. Exosomes in cancer: Diagnostic and therapeutic applications. Clin. Med. Insights Oncol. 2024 18 11795549231215966 10.1177/11795549231215966 38249520
    [Google Scholar]
  48. Banks-Schlegel S.P. McDowell E.M. Wilson T.S. Trump B.F. Harris C.C. Keratin proteins in human lung carcinomas. Combined use of morphology, keratin immunocytochemistry, and keratin immunoprecipitation. Am. J. Pathol. 1984 114 2 273 286 6198920
    [Google Scholar]
  49. Chen J.W. Dhahbi J. Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods. Sci. Rep. 2021 11 1 13323 10.1038/s41598‑021‑92725‑8 34172784
    [Google Scholar]
  50. Mizuguchi Y. Specht S. Lunz J.G. III Isse K. Corbitt N. Takizawa T. Demetris A.J. Cooperation of p300 and PCAF in the control of microRNA 200c/141 transcription and epithelial characteristics. PLoS One 2012 7 2 e32449 10.1371/journal.pone.0032449 22384255
    [Google Scholar]
  51. Miura H. Kusakabe Y. Hashido K. Hino A. Ooki M. Harada S. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla. Neurosci. Lett. 2014 580 147 152 10.1016/j.neulet.2014.08.012 25123441
    [Google Scholar]
  52. Heryanto Y.D. Imoto S. Identifying key regulators of keratinization in lung squamous cell cancer using integrated TCGA analysis. Cancers 2023 15 7 2066 10.3390/cancers15072066 37046726
    [Google Scholar]
  53. Chen F. Yao L. Zhang X. Gu Y. Yu H. Yao Z. Zhang J. Li M. Damaged keratin filament network caused by KRT5 mutations in localized recessive epidermolysis bullosa simplex. Front. Genet. 2021 12 736610 10.3389/fgene.2021.736610 34912369
    [Google Scholar]
  54. Pan B. Wei Z.X. Zhang J.X. Li X. Meng Q.W. Cao Y.Y. Qi L.S. Yu Y. The value of AGR2 and KRT5 as an immunomarker combination in distinguishing lung squamous cell carcinoma from adenocarcinoma. Am. J. Transl. Res. 2021 13 5 4464 4476 34150027
    [Google Scholar]
  55. Cao B. Wang P. Gu L. Liu J. Use of four genes in exosomes as biomarkers for the identification of lung adenocarcinoma and lung squamous cell carcinoma. Oncol. Lett. 2021 21 4 249 10.3892/ol.2021.12510 33664813
    [Google Scholar]
  56. Wang X.N. Wang S.J. Pandey V. Chen P. Li Q. Wu Z.S. Wu Q. Lobie P.E. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma. Medicine 2015 94 20 e860 10.1097/MD.0000000000000860 25997063
    [Google Scholar]
  57. Xiao J. Kuang X. Dai L. Zhang L. He B. Anti‐tumour effects of Keratin 6A in lung adenocarcinoma. Clin. Respir. J. 2020 14 7 667 674 10.1111/crj.13182 32162441
    [Google Scholar]
  58. Zhang H. Huo M. Jia Y. Xu A. KRT6B, a key mediator of notch signaling in honokiol-induced human hepatoma cell apoptosis. Int. J. Clin. Exp. Med. 2015 8 9 16880 16889 26629239
    [Google Scholar]
  59. Tu H. Li J. Xu W. Wang Z. Wang L. Target and mechanism of the Xihuang pill based on network pharmacology for lung squamous cell carcinoma. Altern. Ther. Health Med. 2023 29 7 148 154 37442189
    [Google Scholar]
  60. Ding Y. Bian T.T. Li Q.Y. He J.R. Guo Q. Wu C.Y. Chen S.S. A new risk model for CSTA, FAM83A, and MYCT1 predicts poor prognosis and is related to immune infiltration in lung squamous cell carcinoma. Am. J. Transl. Res. 2022 14 11 7705 7725 36505278
    [Google Scholar]
  61. Chen Q. Wan W. Zhao Q. Li J. Xiong Y. Yuan Y. Tang L. Wu X. Xing W. Guo W. Lu D. Ao L. Xu X. Ao X. Decoding the prognostic landscape of LUAD: The interplay between N6-methyladenosine modification and immune microenvironment. Front. Immunol. 2024 15 1514497 10.3389/fimmu.2024.1514497 39720723
    [Google Scholar]
  62. Wang Q. Sun N. Li J. Huang F. Zhang Z. Liquid-liquid phase separation in the prognosis of lung adenocarcinoma: An integrated analysis. Curr. Cancer Drug Targets 2024 25 10.2174/0115680096345676241001081051 39506421
    [Google Scholar]
  63. Sui P. Liu X. Zhong C. Sha Z. Integrated single-cell and bulk RNA-Seq analysis enhances prognostic accuracy of PD-1/PD-L1 immunotherapy response in lung adenocarcinoma through necroptotic anoikis gene signatures. Sci. Rep. 2024 14 1 10873 10.1038/s41598‑024‑61629‑8 38740918
    [Google Scholar]
  64. Zhou Y. Hu Z. Anoikis-related genes combined with single cell sequencing: Insights into model specification of lung adenocarcinoma and applicability for prognosis and therapy. Front. Cell Dev. Biol. 2023 11 1125782 10.3389/fcell.2023.1125782 37169018
    [Google Scholar]
  65. Zhang Y. Cheng R. Gao X. Li M. Yang Y. Wang P. Keratin 6A promotes radioresistance, invasion, and metastasis in lung cancer via the p53 signaling pathway. Aging-US. 2021 13 8 11145 11158 10.18632/aging.203189
    [Google Scholar]
  66. Yao S. Huang H.Y. Han X. Ye Y. Qin Z. Zhao G. Li F. Hu G. Hu L. Ji H. Keratin 14-high subpopulation mediates lung cancer metastasis potentially through Gkn1 upregulation. Oncogene 2019 38 36 6354 6369 10.1038/s41388‑019‑0889‑0 31320708
    [Google Scholar]
  67. Yuanhua L. Pudong Q. Wei Z. Yuan W. Delin L. Yan Z. Geyu L. Bo S. TFAP2A induced KRT16 as an oncogene in lung adenocarcinoma via EMT. Int. J. Biol. Sci. 2019 15 7 1419 1428 10.7150/ijbs.34076 31337972
    [Google Scholar]
  68. Huang W.C. Jang T.H. Tung S.L. Yen T.C. Chan S.H. Wang L.H. A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway. J. Exp. Clin. Cancer Res. 2019 38 1 89 10.1186/s13046‑019‑1091‑5 30782177
    [Google Scholar]
  69. Carregaro F. Stefanini A.C.B. Henrique T. Tajara E.H. Study of small proline-rich proteins (SPRRs) in health and disease: A review of the literature. Arch. Dermatol. Res. 2013 305 10 857 866 10.1007/s00403‑013‑1415‑9 24085571
    [Google Scholar]
  70. Xiong Y. Li M. Zhang P. Zhang L. Yang Y. Study on genotype in lung squamous carcinoma by high-throughput of transcriptome sequence. Zhongguo Fei Ai Za Zhi 2017 20 11 727 731 29167000
    [Google Scholar]
  71. Yamakawa K. Koyanagi-Aoi M. Uehara K. Masuda A. Yanagimoto H. Toyama H. Fukumoto T. Kodama Y. Aoi T. Increased expression of SPRR1A is associated with a poor prognosis in pancreatic ductal adenocarcinoma. PLoS One 2022 17 5 e0266620 10.1371/journal.pone.0266620 35617311
    [Google Scholar]
  72. Jiang M. Sun J. Hu C. Wu L. Fan Y. Wang Z. Liu L. Wu C. Wu F. Gao G. Li F. Wang L. Li X. Cheng L. Peng B. Zhou H. Zhou C. A tumor cornification and immune-infiltration-based scheme for anti-PD-1 plus chemotherapy response in advanced squamous cell lung carcinoma. Med 2024 100516 100516 10.1016/j.medj.2024.09.005 39395411
    [Google Scholar]
  73. Zhang Z. Shi R. Xu S. Li Y. Zhang H. Liu M. Zhu G. Chen C. Pan Z. Liu H. Chen J. Identification of small proline‐rich protein 1B ( SPRR1B ) as a prognostically predictive biomarker for lung adenocarcinoma by integrative bioinformatic analysis. Thorac. Cancer 2021 12 6 796 806 10.1111/1759‑7714.13836 33501784
    [Google Scholar]
  74. Li Q. Wang Y. Hu R. Yang G. Dysregulation of SPRR3/miR-876-3p axis contributes to tumorigenesis in non-small-cell lung cancer. OncoTargets Ther. 2020 13 2411 2419 10.2147/OTT.S245422 32273714
    [Google Scholar]
  75. Yang Y. Wang Y. Zeng X. Li J. Luo L. Cheng X. Xie X. SPRR3 as a diagnostic and prognostic molecular marker for lung adenocarcinoma based on pan-cancer analysis. Research Square 2023 10.21203/rs.3.rs‑2902008/v1
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096372957250322174718
Loading
/content/journals/ccdt/10.2174/0115680096372957250322174718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test