Skip to content
2000
image of Biological Functions and Therapeutic Potential of UBE2T in Human Cancer

Abstract

The ubiquitin-proteasome system is a fundamental regulatory mechanism that governs protein stability and intracellular signaling in eukaryotic cells. This system relies on a coordinated cascade of enzymatic activities involving activating enzymes, conjugating enzymes, and ligases to assemble distinct ubiquitin signals. These signals are subsequently edited, removed, or interpreted by deubiquitinases and ubiquitin-binding proteins. While E3 ligases have traditionally been recognized as the primary determinants of substrate specificity in the ubiquitination process, recent studies have revealed that the dysregulation of E2 enzymes can also lead to significant pathological outcomes, including chromatin instability, immune dysregulation, metabolic dysfunction, and an elevated risk of cancer. Consequently, E2 enzymes have emerged as promising therapeutic targets for the treatment of various diseases. This review provides a comprehensive examination of the roles and mechanisms of the ubiquitin-conjugating enzyme E2T (UBE2T) in cancer initiation, progression, and therapy resistance, highlighting its potential as a compelling target for cancer therapeutics.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096370867250211070948
2025-03-06
2025-09-12
Loading full text...

Full text loading...

References

  1. Grabbe C. Husnjak K. Dikic I. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 2011 12 5 295 307 10.1038/nrm3099 21448225
    [Google Scholar]
  2. Popovic D. Vucic D. Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 2014 20 11 1242 1253 10.1038/nm.3739 25375928
    [Google Scholar]
  3. Pan J.A. Sun Y. Jiang Y.P. Bott A.J. Jaber N. Dou Z. Yang B. Chen J.S. Catanzaro J.M. Du C. Ding W.X. Diaz-Meco M.T. Moscat J. Ozato K. Lin R.Z. Zong W.X. TRIM21 Ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol. Cell 2016 61 5 720 733 10.1016/j.molcel.2016.02.007 26942676
    [Google Scholar]
  4. Khaminets A. Behl C. Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 2016 26 1 6 16 10.1016/j.tcb.2015.08.010 26437584
    [Google Scholar]
  5. Pickart C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001 70 1 503 533 10.1146/annurev.biochem.70.1.503 11395416
    [Google Scholar]
  6. Yang J. Emerging roles of deubiquitinating enzymes in human cancer. Acta Pharmacol. Sin. 2007 28 9 1325 1330 10.1111/j.1745‑7254.2007.00687.x 17723166
    [Google Scholar]
  7. Schulman B.A. Wade Harper J. Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 2009 10 5 319 331 10.1038/nrm2673 19352404
    [Google Scholar]
  8. Ye Y. Rape M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 2009 10 11 755 764 10.1038/nrm2780 19851334
    [Google Scholar]
  9. Wijk S.J.L. Timmers H.T.M. The family of ubiquitin‐conjugating enzymes (E2s): Deciding between life and death of proteins. FASEB J. 2010 24 4 981 993 10.1096/fj.09‑136259 19940261
    [Google Scholar]
  10. Berndsen C.E. Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 2014 21 4 301 307 10.1038/nsmb.2780 24699078
    [Google Scholar]
  11. Zheng N. Shabek N. Ubiquitin ligases: Structure, function, and regulation. Annu. Rev. Biochem. 2017 86 1 129 157 10.1146/annurev‑biochem‑060815‑014922 28375744
    [Google Scholar]
  12. Liu W. Tang X. Qi X. Fu X. Ghimire S. Ma R. Li S. Zhang N. Si H. The ubiquitin conjugating enzyme: An important ubiquitin transfer platform in ubiquitin-proteasome system. Int. J. Mol. Sci. 2020 21 8 2894 10.3390/ijms21082894 32326224
    [Google Scholar]
  13. Stewart M.D. Ritterhoff T. Klevit R.E. Brzovic P.S. E2 enzymes: More than just middle men. Cell Res. 2016 26 4 423 440 10.1038/cr.2016.35 27002219
    [Google Scholar]
  14. Bui Q.T. Hong J.H. Kwak M. Lee J.Y. Lee P.C.W. Ubiquitin-Conjugating Enzymes in Cancer. Cells 2021 10 6 1383 10.3390/cells10061383 34199813
    [Google Scholar]
  15. Vila I.K. Yao Y. Kim G. Xia W. Kim H. Kim S.J. Park M.K. Hwang J.P. González-Billalabeitia E. Hung M.C. Song S.J. Song M.S. A UBE2O-AMPKα2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy. Cancer Cell 2017 31 2 208 224 10.1016/j.ccell.2017.01.003 28162974
    [Google Scholar]
  16. Iyer V.R. Eisen M.B. Ross D.T. Schuler G. Moore T. Lee J.C.F. Trent J.M. Staudt L.M. Hudson J. Jr Boguski M.S. Lashkari D. Shalon D. Botstein D. Brown P.O. The transcriptional program in the response of human fibroblasts to serum. Science 1999 283 5398 83 87 10.1126/science.283.5398.83 9872747
    [Google Scholar]
  17. Machida Y.J. Machida Y. Chen Y. Gurtan A.M. Kupfer G.M. D’Andrea A.D. Dutta A. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 2006 23 4 589 596 10.1016/j.molcel.2006.06.024 16916645
    [Google Scholar]
  18. Alpi A.F. Pace P.E. Babu M.M. Patel K.J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 2008 32 6 767 777 10.1016/j.molcel.2008.12.003 19111657
    [Google Scholar]
  19. Zhu X. Li T. Niu X. Chen L. Ge C. Identification of UBE2T as an independent prognostic biomarker for gallbladder cancer. Oncol. Lett. 2020 20 4 44 10.3892/ol.2020.11903 32802166
    [Google Scholar]
  20. Wu Z.H. Zhang Y. Sun H.Y. High ubiquitin conjugating enzyme E2 T mRNA expression and its prognostic significance in lung adenocarcinoma. Medicine (Baltimore) 2020 99 4 e18543 10.1097/MD.0000000000018543 31977847
    [Google Scholar]
  21. Ho N.P.Y. Leung C.O.N. Wong T.L. Lau E.Y.T. Lei M.M.L. Mok E.H.K. Leung H.W. Tong M. Ng I.O.L. Yun J.P. Ma S. Lee T.K.W. The interplay of UBE2T and Mule in regulating Wnt/β-catenin activation to promote hepatocellular carcinoma progression. Cell Death Dis. 2021 12 2 148 10.1038/s41419‑021‑03403‑6 33542213
    [Google Scholar]
  22. Ueki T. Park J.H. Nishidate T. Kijima K. Hirata K. Nakamura Y. Katagiri T. Ubiquitination and downregulation of BRCA1 by ubiquitin-conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res. 2009 69 22 8752 8760 10.1158/0008‑5472.CAN‑09‑1809 19887602
    [Google Scholar]
  23. Yu Z. Jiang X. Qin L. Deng H. Wang J. Ren W. Li H. Zhao L. Liu H. Yan H. Shi W. Wang Q. Luo C. Long B. Zhou H. Sun H. Jiao Z. A novel UBE2T inhibitor suppresses Wnt/β-catenin signaling hyperactivation and gastric cancer progression by blocking RACK1 ubiquitination. Oncogene 2021 40 5 1027 1042 10.1038/s41388‑020‑01572‑w 33323973
    [Google Scholar]
  24. Derenzini E. Mondello P. Erazo T. Portelinha A. Liu Y. Scallion M. Asgari Z. Philip J. Hilden P. Valli D. Rossi A. Djaballah H. Ouerfelli O. de Stanchina E. Seshan V.E. Hendrickson R.C. Younes A. Inhibition-Induced B.E.T. BET Inhibition-Induced GSK3β Feedback Enhances Lymphoma Vulnerability to PI3K Inhibitors. Cell Rep. 2018 24 8 2155 2166 10.1016/j.celrep.2018.07.055 30134175
    [Google Scholar]
  25. Zhang W. Zhang Y. Yang Z. Liu X. Yang P. Wang J. Hu K. He X. Zhang X. Jing H. High expression of UBE2T predicts poor prognosis and survival in multiple myeloma. Cancer Gene Ther. 2019 26 11-12 347 355 10.1038/s41417‑018‑0070‑x 30622320
    [Google Scholar]
  26. Alagpulinsa D.A. Kumar S. Talluri S. Nanjappa P. Buon L. Chakraborty C. Samur M.K. Szalat R. Shammas M.A. Munshi N.C. Amplification and overexpression of E2 ubiquitin conjugase UBE2T promotes homologous recombination in multiple myeloma. Blood Adv. 2019 3 23 3968 3972 10.1182/bloodadvances.2019000181 31805191
    [Google Scholar]
  27. Wing S.S. Jain P. Molecular cloning, expression and characterization of a ubiquitin conjugation enzyme (E217kB) highly expressed in rat testis. Biochem. J. 1995 305 1 125 132 10.1042/bj3050125 7826319
    [Google Scholar]
  28. Wenzel D.M. Stoll K.E. Klevit R.E. E2s: Structurally economical and functionally replete. Biochem. J. 2011 433 1 31 42 10.1042/BJ20100985 21158740
    [Google Scholar]
  29. Schmidt T.M. Fonseca R. Usmani S.Z. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021 11 4 83 10.1038/s41408‑021‑00474‑8 33927196
    [Google Scholar]
  30. Xu X. Wang K. Vera O. Verma A. Jasani N. Bok I. Elemento O. Du D. Yu X. Karreth F.A. Gain of chromosome 1q perturbs a competitive endogenous RNA network to promote melanoma metastasis. Cancer Res. 2022 82 17 3016 3031 10.1158/0008‑5472.CAN‑22‑0283 36052492
    [Google Scholar]
  31. López V.G. Valencia-Sánchez M.I. Abini-Agbomson S. Thomas J.F. Lee R. De Ioannes P. Sosa B.A. Armache J.P. Armache K.J. Read–write mechanisms of H2A ubiquitination by Polycomb repressive complex 1. Nature 2024 636 8043 755 761 10.1038/s41586‑024‑08183‑5 39537923
    [Google Scholar]
  32. Palek M. Palkova N. Cerna M. Horackova K. Hovhannisyan M. Janatova M. Jelinkova S. Nehasil P. Soukupova J. Stastna B. Zemankova P. Foretova L. Machackova E. Krutilkova V. Tavandzis S. Cerna L. Chvojka S. Koudova M. Havranek O. Novotny J. Vesela K. Vocka M. Hruskova L. Michalovska R. Schwetzova D. Vlckova Z. Cerna M. Hejnalova M. Jedlickova N. Subrt I. Zavoral T. Kosarova M. Vacinova G. Janikova M. Kratochvilova R. Curtisova V. Vrtel R. Scheinost O. Duskova P. Stranecky V. Kleiblova P. Kleibl Z. Macurek L. consortium CZECANCA RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res. 2024 52 13 7687 7703 10.1093/nar/gkae499 38884202
    [Google Scholar]
  33. Hicke L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. 2001 2 3 195 201 10.1038/35056583 11265249
    [Google Scholar]
  34. Haglund K. Sigismund S. Polo S. Szymkiewicz I. Di Fiore P.P. Dikic I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 2003 5 5 461 466 10.1038/ncb983 12717448
    [Google Scholar]
  35. Mani A. Gelmann E.P. The ubiquitin-proteasome pathway and its role in cancer. J. Clin. Oncol. 2005 23 21 4776 4789 10.1200/JCO.2005.05.081 16034054
    [Google Scholar]
  36. Matsumoto M.L. Wickliffe K.E. Dong K.C. Yu C. Bosanac I. Bustos D. Phu L. Kirkpatrick D.S. Hymowitz S.G. Rape M. Kelley R.F. Dixit V.M. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell 2010 39 3 477 484 10.1016/j.molcel.2010.07.001 20655260
    [Google Scholar]
  37. Wickliffe K.E. Williamson A. Meyer H.J. Kelly A. Rape M. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol. 2011 21 11 656 663 10.1016/j.tcb.2011.08.008 21978762
    [Google Scholar]
  38. Wang X. Zhang H. Shao Z. Zhuang W. Sui C. Liu F. Chen X. Hou J. Kong L. Liu H. Zheng Y. Liu B. Chen T. Zhang L. Jia X. Gao C. TRIM31 facilitates K27-linked polyubiquitination of SYK to regulate antifungal immunity. Signal Transduct. Target. Ther. 2021 6 1 298 10.1038/s41392‑021‑00711‑3 34362877
    [Google Scholar]
  39. Liu J. Han C. Xie B. Wu Y. Liu S. Chen K. Xia M. Zhang Y. Song L. Li Z. Zhang T. Ma F. Wang Q. Wang J. Deng K. Zhuang Y. Wu X. Yu Y. Xu T. Cao X. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nat. Immunol. 2014 15 7 612 622 10.1038/ni.2898 24859449
    [Google Scholar]
  40. Farooq A.U. Gembus K. Sandow J.J. Webb A. Mathivanan S. Manning J.A. Shah S.S. Foot N.J. Kumar S. K‐29 linked ubiquitination of Arrdc4 regulates its function in extracellular vesicle biogenesis. J. Extracell. Vesicles 2022 11 2 e12188 10.1002/jev2.12188 35106941
    [Google Scholar]
  41. Shi H. Yin J. Zhao Z. Yu H. Yi H. Xu L. Tong H. He M. Zhu X. Lu X. Xiong Q. Li W. Tang Y. Hou Q. Song L. Wang L. Chen X. Sun C. Li T. Fan J. Li Y. Qin P. Wang W.M. Li S. Chen X. Li J. Wang J. Fine-tuning of IPA1 transactivation activity by E3 ligase IPI7-mediated non-proteolytic K29-ubiquitination during Magnaporthe oryzae infection. Nat. Commun. 2024 15 1 7608 10.1038/s41467‑024‑51962‑x 39218986
    [Google Scholar]
  42. Liu S. Jiang M. Wang W. Liu W. Song X. Ma Z. Zhang S. Liu L. Liu Y. Cao X. Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA. Nat. Immunol. 2018 19 1 41 52 10.1038/s41590‑017‑0003‑0 29242538
    [Google Scholar]
  43. Yang M. Chen T. Li X. Yu Z. Tang S. Wang C. Gu Y. Liu Y. Xu S. Li W. Zhang X. Wang J. Cao X. K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8+ T cell activation. Nat. Immunol. 2015 16 12 1253 1262 10.1038/ni.3258 26390156
    [Google Scholar]
  44. Rahman S. Wolberger C. Breaking the K48-chain: Linking ubiquitin beyond protein degradation. Nat. Struct. Mol. Biol. 2024 31 2 216 218 10.1038/s41594‑024‑01221‑w 38366227
    [Google Scholar]
  45. Zhang L. Wang H-L. Zhang Y-F. Mao X-T. Wu T-T. Huang Z-H. Jiang W-J. Fan K-Q. Liu D-D. Yang B. Zhuang M-H. Huang G-M. Liang Y. Zhu S.J. Zhong J-Y. Xu G-Y. Li X-M. Cao Q. Li Y-Y. Jin J. Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. Cell Metab. 2024 39366386
    [Google Scholar]
  46. Miścicka A. Bulakhov A.G. Kuroha K. Zinoviev A. Hellen C.U.T. Pestova T.V. Ribosomal collision is not a prerequisite for ZNF598-mediated ribosome ubiquitination and disassembly of ribosomal complexes by ASCC. Nucleic Acids Res. 2024 52 8 4627 4643 10.1093/nar/gkae087 38366554
    [Google Scholar]
  47. Martinez-Forero I. Rouzaut A. Palazon A. Dubrot J. Melero I. Lysine 63 polyubiquitination in immunotherapy and in cancer-promoting inflammation. Clin. Cancer Res. 2009 15 22 6751 6757 10.1158/1078‑0432.CCR‑09‑1225 19887490
    [Google Scholar]
  48. Hira A. Yoshida K. Sato K. Okuno Y. Shiraishi Y. Chiba K. Tanaka H. Miyano S. Shimamoto A. Tahara H. Ito E. Kojima S. Kurumizaka H. Ogawa S. Takata M. Yabe H. Yabe M. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am. J. Hum. Genet. 2015 96 6 1001 1007 10.1016/j.ajhg.2015.04.022 26046368
    [Google Scholar]
  49. Longerich S. San Filippo J. Liu D. Sung P. FANCI binds branched DNA and is monoubiquitinated by UBE2T-FANCL. J. Biol. Chem. 2009 284 35 23182 23186 10.1074/jbc.C109.038075 19589784
    [Google Scholar]
  50. Alpi A. Langevin F. Mosedale G. Machida Y.J. Dutta A. Patel K.J. UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: A basis for the regulation of FANCD2 monoubiquitination. Mol. Cell. Biol. 2007 27 24 8421 8430 10.1128/MCB.00504‑07 17938197
    [Google Scholar]
  51. Sun J. Zhu Z. Li W. Shen M. Cao C. Sun Q. Guo Z. Liu L. Wu D. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. J. Exp. Clin. Cancer Res. 2020 39 1 222 10.1186/s13046‑020‑01734‑4 33087136
    [Google Scholar]
  52. Edmonds M.J. Carter R.J. Nickson C.M. Williams S.C. Parsons J.L. Ubiquitylation-dependent regulation of NEIL1 by Mule and TRIM26 is required for the cellular DNA damage response. Nucleic Acids Res. 2017 45 2 726 738 10.1093/nar/gkw959 27924031
    [Google Scholar]
  53. Khoronenkova S.V. Dianov G.L. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res. 2013 41 3 1750 1756 10.1093/nar/gks1359 23275561
    [Google Scholar]
  54. Liu L. Yang M. Peng Q. Li M. Zhang Y. Guo Y. Chen Y. Bao S. UBE2T promotes hepatocellular carcinoma cell growth via ubiquitination of p53. Biochem. Biophys. Res. Commun. 2017 493 1 20 27 10.1016/j.bbrc.2017.09.091 28935368
    [Google Scholar]
  55. Yin H. Wang X. Zhang X. Zeng Y. Xu Q. Wang W. Zhou F. Zhou Y. UBE2T promotes radiation resistance in non-small cell lung cancer via inducing epithelial-mesenchymal transition and the ubiquitination-mediated FOXO1 degradation. Cancer Lett. 2020 494 121 131 10.1016/j.canlet.2020.06.005 32590022
    [Google Scholar]
  56. Lin X. Han T. Xia Q. Cui J. Zhuo M. Liang Y. Su W. Wang L. Wang L. Liu Z. Xiao X. CHPF promotes gastric cancer tumorigenesis through the activation of E2F1. Cell Death Dis. 2021 12 10 876 10.1038/s41419‑021‑04148‑y 34564711
    [Google Scholar]
  57. Wang L. Tang L. Xu R. Ma J. Tian K. Liu Y. Lu Y. Wu Z. Zhu X. DEPDC1B regulates the progression of human chordoma through UBE2T-mediated ubiquitination of BIRC5. Cell Death Dis. 2021 12 8 753 10.1038/s41419‑021‑04026‑7 34330893
    [Google Scholar]
  58. Zhu Z. Cao C. Zhang D. Zhang Z. Liu L. Wu D. Sun J. UBE2T-mediated Akt ubiquitination and Akt/β-catenin activation promotes hepatocellular carcinoma development by increasing pyrimidine metabolism. Cell Death Dis. 2022 13 2 154 10.1038/s41419‑022‑04596‑0 35169125
    [Google Scholar]
  59. Wang K. He Q. Jiang X. Wang T. Li Z. Qing H. Dong Y. Ma Y. Zhao B. Zhang J. Sun H. Xing Z. Wu Y. Liu W. Guan J. Song A. Wang Y. Zhao P. Qin L. Shi W. Yu Z. Zhou H. Jiao Z. Targeting UBE2T suppresses breast cancer stemness through CBX6-mediated transcriptional repression of SOX2 and NANOG. Cancer Lett. 2025 611 217409 10.1016/j.canlet.2024.217409 39716485
    [Google Scholar]
  60. Alzahrani A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol. 2019 59 125 132 10.1016/j.semcancer.2019.07.009 31323288
    [Google Scholar]
  61. Revathidevi S. Munirajan A.K. Akt in cancer: Mediator and more. Semin. Cancer Biol. 2019 59 80 91 10.1016/j.semcancer.2019.06.002 31173856
    [Google Scholar]
  62. Song M. Bode A.M. Dong Z. Lee M.H. AKT as a Therapeutic Target for Cancer. Cancer Res. 2019 79 6 1019 1031 10.1158/0008‑5472.CAN‑18‑2738 30808672
    [Google Scholar]
  63. Chan C.H. Li C.F. Yang W.L. Gao Y. Lee S.W. Feng Z. Huang H.Y. Tsai K.K.C. Flores L.G. Shao Y. Hazle J.D. Yu D. Wei W. Sarbassov D. Hung M.C. Nakayama K.I. Lin H.K. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 2012 149 5 1098 1111 10.1016/j.cell.2012.02.065 22632973
    [Google Scholar]
  64. Yang W.L. Wang J. Chan C.H. Lee S.W. Campos A.D. Lamothe B. Hur L. Grabiner B.C. Lin X. Darnay B.G. Lin H.K. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 2009 325 5944 1134 1138 10.1126/science.1175065 19713527
    [Google Scholar]
  65. Wang G. Long J. Gao Y. Zhang W. Han F. Xu C. Sun L. Yang S.C. Lan J. Hou Z. Cai Z. Jin G. Hsu C.C. Wang Y.H. Hu J. Chen T.Y. Li H. Lee M.G. Lin H.K. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat. Cell Biol. 2019 21 2 214 225 10.1038/s41556‑018‑0266‑1 30692626
    [Google Scholar]
  66. Chan C.H. Jo U. Kohrman A. Rezaeian A.H. Chou P.C. Logothetis C. Lin H.K. Posttranslational regulation of Akt in human cancer. Cell Biosci. 2014 4 1 59 10.1186/2045‑3701‑4‑59 25309720
    [Google Scholar]
  67. David Y. Ziv T. Admon A. Navon A. The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem. 2010 285 12 8595 8604 10.1074/jbc.M109.089003 20061386
    [Google Scholar]
  68. Fuentes-Antrás J. Alcaraz-Sanabria A.L. Morafraile E.C. Noblejas-López M.M. Galán-Moya E.M. Baliu-Pique M. López-Cade I. García-Barberán V. Pérez-Segura P. Manzano A. Pandiella A. Győrffy B. Ocaña A. Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer. Cancers 2021 13 4 833 10.3390/cancers13040833 33671201
    [Google Scholar]
  69. Alpi A.F. Chaugule V. Walden H. Mechanism and disease association of E2-conjugating enzymes: Lessons from UBE2T and UBE2L3. Biochem. J. 2016 473 20 3401 3419 10.1042/BCJ20160028 27729585
    [Google Scholar]
  70. Hodson C. Purkiss A. Miles J.A. Walden H. Structure of the human FANCL RING-Ube2T complex reveals determinants of cognate E3-E2 selection. Structure 2014 22 2 337 344 10.1016/j.str.2013.12.004 24389026
    [Google Scholar]
  71. Kelsall I.R. Langenick J. MacKay C. Patel K.J. Alpi A.F. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair. PLoS One 2012 7 5 e36970 10.1371/journal.pone.0036970 22615860
    [Google Scholar]
  72. Huang J. Yuan L. Huang W. Liao L. Zhu X. Wang X. Li J. Liang W. Wu Y. Liu X. Yu D. Zheng Y. Guan J. Zhan Y. Liu L. LATPS, a novel prognostic signature based on tumor microenvironment of lung adenocarcinoma to better predict survival and immunotherapy response. Front. Immunol. 2022 13 1064874 10.3389/fimmu.2022.1064874 36505456
    [Google Scholar]
  73. Lemonidis K. Arkinson C. Rennie M.L. Walden H. Mechanism, specificity, and function of FANCD2‐FANCI ubiquitination and deubiquitination. FEBS J. 2022 289 16 4811 4829 10.1111/febs.16077 34137174
    [Google Scholar]
  74. Ma N. Li Z. Yan J. Liu X. He L. Xie R. Lu X. Diverse roles of UBE2T in cancer (Review). Oncol. Rep. 2023 49 4 69 10.3892/or.2023.8506 36825587
    [Google Scholar]
  75. Zheng Y.W. Gao P.F. Ma M.Z. Chen Y. Li C.Y. Role of ubiquitin‑conjugating enzyme E2T in the carcinogenesis and progression of pancreatic cancer. Oncol. Lett. 2020 20 2 1462 1468 10.3892/ol.2020.11644 32724389
    [Google Scholar]
  76. Luo C. Yao Y. Yu Z. Zhou H. Guo L. Zhang J. Cao H. Zhang G. Li Y. Jiao Z. UBE2T knockdown inhibits gastric cancer progression. Oncotarget 2017 8 20 32639 32654 10.18632/oncotarget.15947 28427240
    [Google Scholar]
  77. Wang X. Liu Y. Leng X. Cao K. Sun W. Zhu J. Ma J. UBE2T Contributes to the Prognosis of Esophageal Squamous Cell Carcinoma. Pathol. Oncol. Res. 2021 27 632531 10.3389/pore.2021.632531 34257599
    [Google Scholar]
  78. Hao P. Kang B. Li Y. Hao W. Ma F. UBE2T promotes proliferation and regulates PI3K/Akt signaling in renal cell carcinoma. Mol. Med. Rep. 2019 20 2 1212 1220 10.3892/mmr.2019.10322 31173226
    [Google Scholar]
  79. Wen M. Kwon Y. Wang Y. Mao J.H. Wei G. Elevated expression of UBE2T exhibits oncogenic properties in human prostate cancer. Oncotarget 2015 6 28 25226 25239 10.18632/oncotarget.4712 26308072
    [Google Scholar]
  80. Zou R. Xu H. Li F. Wang S. Zhu L. Increased expression of UBE2T predicting poor survival of epithelial ovarian cancer: Based on comprehensive analysis of UBE2s, clinical samples, and the GEO database. DNA Cell Biol. 2021 40 1 36 60 10.1089/dna.2020.5823 33180631
    [Google Scholar]
  81. Wu M. Li X. Huang W. Chen Y. Wang B. Liu X. Ubiquitin-conjugating enzyme E2T(UBE2T) promotes colorectal cancer progression by facilitating ubiquitination and degradation of p53. Clin. Res. Hepatol. Gastroenterol. 2021 45 2 101493 10.1016/j.clinre.2020.06.018 32736946
    [Google Scholar]
  82. Huang P. Guo Y. Zhao Z. Ning W. Wang H. Gu C. Zhang M. Qu Y. Zhang H. Song Y. UBE2T promotes glioblastoma invasion and migration via stabilizing GRP78 and regulating EMT. Aging (Albany NY) 2020 12 11 10275 10289 10.18632/aging.103239 32491994
    [Google Scholar]
  83. Liu Y. Ji W. Yue N. Zhou W. Ubiquitin-conjugating enzyme E2T promotes tumor stem cell characteristics and migration of cervical cancer cells by regulating the GRP78/FAK pathway. Open Life Sci. 2021 16 1 1082 1090 10.1515/biol‑2021‑0108 34703898
    [Google Scholar]
  84. Wu X. Liu G. Liu R. He J. Wang G. Zhang H. Liu T. Bai J. Cheng N. Qiu J. Expression of ubiquitin‑conjugating enzyme E2T in colorectal cancers and clinical implications. Oncol. Lett. 2020 20 5 1 10.3892/ol.2020.12138 33014154
    [Google Scholar]
  85. Mullan P.B. Quinn J.E. Harkin D.P. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 2006 25 43 5854 5863 10.1038/sj.onc.1209872 16998500
    [Google Scholar]
  86. Liu L. Matsunaga Y. Tsurutani J. Akashi-Tanaka S. Masuda H. Ide Y. Hashimoto R. Inuzuka M. Watanabe C. Taruno K. Sawada T. Okuyama H. Ata A. Kuwayama T. Nakayama S. Tonouchi Y. Nakamura S. BRCAness as a prognostic indicator in patients with early breast cancer. Sci. Rep. 2020 10 1 21173 10.1038/s41598‑020‑78016‑8 33273622
    [Google Scholar]
  87. Turner N. Tutt A. Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat. Rev. Cancer 2004 4 10 814 819 10.1038/nrc1457 15510162
    [Google Scholar]
  88. Feitelson M.A. Arzumanyan A. Kulathinal R.J. Blain S.W. Holcombe R.F. Mahajna J. Marino M. Martinez-Chantar M.L. Nawroth R. Sanchez-Garcia I. Sharma D. Saxena N.K. Singh N. Vlachostergios P.J. Guo S. Honoki K. Fujii H. Georgakilas A.G. Bilsland A. Amedei A. Niccolai E. Amin A. Ashraf S.S. Boosani C.S. Guha G. Ciriolo M.R. Aquilano K. Chen S. Mohammed S.I. Azmi A.S. Bhakta D. Halicka D. Keith W.N. Nowsheen S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 2015 35 Suppl Suppl. S25 S54 10.1016/j.semcancer.2015.02.006 25892662
    [Google Scholar]
  89. Vigneron S. Sundermann L. Labbé J.C. Pintard L. Radulescu O. Castro A. Lorca T. Cyclin A-cdk1-Dependent Phosphorylation of Bora Is the Triggering Factor Promoting Mitotic Entry. Dev. Cell 2018 45 5 637 650.e7 10.1016/j.devcel.2018.05.005 29870721
    [Google Scholar]
  90. De Boer L. Oakes V. Beamish H. Giles N. Stevens F. Somodevilla-Torres M. DeSouza C. Gabrielli B. Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene 2008 27 31 4261 4268 10.1038/onc.2008.74 18372919
    [Google Scholar]
  91. Lindqvist A. van Zon W. Karlsson Rosenthal C. Wolthuis R.M.F. Cyclin B1-Cdk1 activation continues after centrosome separation to control mitotic progression. PLoS Biol. 2007 5 5 e123 10.1371/journal.pbio.0050123 17472438
    [Google Scholar]
  92. Guo L. Mohd K.S. Ren H. Xin G. Jiang Q. Clarke P.R. Zhang C. Phosphorylation of importin-α1 by CDK1–cyclin B1 controls mitotic spindle assembly. J. Cell Sci. 2019 132 18 jcs232314 10.1242/jcs.232314 31434716
    [Google Scholar]
  93. Ferrero M. Ferragud J. Orlando L. Valero L. Sánchez del Pino M. Farràs R. Font de Mora J. Phosphorylation of AIB1 at mitosis is regulated by CDK1/CYCLIN B. PLoS One 2011 6 12 e28602 10.1371/journal.pone.0028602 22163316
    [Google Scholar]
  94. Luo M. Zhou Y. Comprehensive analysis of differentially expressed genes reveals the promotive effects of UBE2T on colorectal cancer cell proliferation. Oncol. Lett. 2021 22 4 714 10.3892/ol.2021.12975 34457069
    [Google Scholar]
  95. Liu F. Zhu C. Gao P. Zheng S. Li C. Ubiquitin-conjugating enzyme E2T regulates cell proliferation and migration in cholangiocarcinoma. Anticancer Drugs 2020 31 8 836 846 10.1097/CAD.0000000000000955 32796405
    [Google Scholar]
  96. Liu L.L. Zhu J.M. Yu X.N. Zhu H.R. Shi X. Bilegsaikhan E. Guo H.Y. Wu J. Shen X.Z. UBE2T promotes proliferation via G2/M checkpoint in hepatocellular carcinoma. Cancer Manag. Res. 2019 11 8359 8370 10.2147/CMAR.S202631 31571992
    [Google Scholar]
  97. Guo J. Wang M. Wang J.P. Wu C.X. Ubiquitin-conjugating enzyme E2T knockdown suppresses hepatocellular tumorigenesis via inducing cell cycle arrest and apoptosis. World J. Gastroenterol. 2019 25 43 6386 6403 10.3748/wjg.v25.i43.6386 31798276
    [Google Scholar]
  98. Xiao Z. Chen Z. Gunasekera A.H. Sowin T.J. Rosenberg S.H. Fesik S. Zhang H. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J. Biol. Chem. 2003 278 24 21767 21773 10.1074/jbc.M300229200 12676925
    [Google Scholar]
  99. Carroll E.C. Greene E.R. Martin A. Marqusee S. Site-specific ubiquitination affects protein energetics and proteasomal degradation. Nat. Chem. Biol. 2020 16 8 866 875 10.1038/s41589‑020‑0556‑3 32483380
    [Google Scholar]
  100. Suhail Y. Cain M.P. Vanaja K. Kurywchak P.A. Levchenko A. Kalluri R. Kshitiz Systems Biology of Cancer Metastasis. Cell Syst. 2019 9 2 109 127 10.1016/j.cels.2019.07.003 31465728
    [Google Scholar]
  101. Gallo L.H. Ko J. Donoghue D.J. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 2017 16 7 634 648 10.1080/15384101.2017.1288326 28166483
    [Google Scholar]
  102. Dongre A. Weinberg R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019 20 2 69 84 10.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  103. Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. 2018 13 1 395 412 10.1146/annurev‑pathol‑020117‑043854 29414248
    [Google Scholar]
  104. Cheung K.J. Ewald A.J. A collective route to metastasis: Seeding by tumor cell clusters. Science 2016 352 6282 167 169 10.1126/science.aaf6546 27124449
    [Google Scholar]
  105. Huang W. Huang H. Xiao Y. Wang L. Zhang T. Fang X. Xia X. UBE2T is upregulated, predicts poor prognosis, and promotes cell proliferation and invasion by promoting epithelial-mesenchymal transition via inhibiting autophagy in an AKT/mTOR dependent manner in ovarian cancer. Cell Cycle 2022 21 8 780 791 10.1080/15384101.2022.2031426 35130130
    [Google Scholar]
  106. Qiao L. Dong C. Ma B. UBE2T promotes proliferation, invasion and glycolysis of breast cancer cells by regualting the PI3K/AKT signaling pathway. J. Recept. Signal Transduct. Res. 2021 ••• 1 9 33435787
    [Google Scholar]
  107. Wang Y. Leng H. Chen H. Wang L. Jiang N. Huo X. Yu B. Knockdown of UBE2T Inhibits Osteosarcoma Cell Proliferation, Migration, and Invasion by Suppressing the PI3K/Akt Signaling Pathway. Oncol. Res. 2016 24 5 361 369 10.3727/096504016X14685034103310 27712593
    [Google Scholar]
  108. Huang T. Song X. Yang Y. Wan X. Alvarez A.A. Sastry N. Feng H. Hu B. Cheng S.Y. Autophagy and Hallmarks of Cancer. Crit. Rev. Oncog. 2018 23 5-6 247 267 10.1615/CritRevOncog.2018027913 30311559
    [Google Scholar]
  109. Miller D.R. Thorburn A. Autophagy and organelle homeostasis in cancer. Dev. Cell 2021 56 7 906 918 10.1016/j.devcel.2021.02.010 33689692
    [Google Scholar]
  110. He C. Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009 43 1 67 93 10.1146/annurev‑genet‑102808‑114910 19653858
    [Google Scholar]
  111. Levy J.M.M. Towers C.G. Thorburn A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017 17 9 528 542 10.1038/nrc.2017.53 28751651
    [Google Scholar]
  112. Geisler S. Vollmer S. Golombek S. Kahle P.J. The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy. J. Cell Sci. 2014 127 Pt 15 3280 3293 10.1242/jcs.146035 24906799
    [Google Scholar]
  113. Ikeda F. Ubiquitin conjugating enzymes in the regulation of the autophagy-dependent degradation pathway. Matrix Biol. 2021 100-101 23 29 10.1016/j.matbio.2020.11.004 33276077
    [Google Scholar]
  114. Kravic B. Behrends C. Meyer H. Regulation of lysosome integrity and lysophagy by the ubiquitin-conjugating enzyme UBE2QL1. Autophagy 2020 16 1 179 180 10.1080/15548627.2019.1687217 31679434
    [Google Scholar]
  115. Falvey C.M. O’Donovan T.R. El-Mashed S. Nyhan M.J. O’Reilly S. McKenna S.L. UBE2L6/UBCH8 and ISG15 attenuate autophagy in esophageal cancer cells. Oncotarget 2017 8 14 23479 23491 10.18632/oncotarget.15182 28186990
    [Google Scholar]
  116. Shen T. Cai L.D. Liu Y.H. Li S. Gan W.J. Li X.M. Wang J.R. Guo P.D. Zhou Q. Lu X.X. Sun L.N. Li J.M. Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy. J. Hematol. Oncol. 2018 11 1 95 10.1186/s13045‑018‑0638‑9 30016968
    [Google Scholar]
  117. Zhu J. Ao H. Liu M. Cao K. Ma J. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. J. Transl. Med. 2021 19 1 374 10.1186/s12967‑021‑03056‑1 34461934
    [Google Scholar]
  118. Wen C. Ge Q. Dai B. Li J. Yang F. Meng J. Gao S. Fan S. Zhang L. Signature for Prostate Cancer Based on Autophagy-Related Genes and a Nomogram for Quantitative Risk Stratification. Dis. Markers 2022 2022 1 22 10.1155/2022/7598942 35860692
    [Google Scholar]
  119. Tasdemir E. Maiuri M.C. Morselli E. Criollo A. D’Amelio M. Djavaheri-Mergny M. Cecconi F. Tavernarakis N. Kroemer G. A dual role of p53 in the control of autophagy. Autophagy 2008 4 6 810 814 10.4161/auto.6486 18604159
    [Google Scholar]
  120. Tang J. Di J. Cao H. Bai J. Zheng J. p53-mediated autophagic regulation: A prospective strategy for cancer therapy. Cancer Lett. 2015 363 2 101 107 10.1016/j.canlet.2015.04.014 25896632
    [Google Scholar]
  121. Tasdemir E. Maiuri M.C. Galluzzi L. Vitale I. Djavaheri-Mergny M. D’Amelio M. Criollo A. Morselli E. Zhu C. Harper F. Nannmark U. Samara C. Pinton P. Vicencio J.M. Carnuccio R. Moll U.M. Madeo F. Paterlini-Brechot P. Rizzuto R. Szabadkai G. Pierron G. Blomgren K. Tavernarakis N. Codogno P. Cecconi F. Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 2008 10 6 676 687 10.1038/ncb1730 18454141
    [Google Scholar]
  122. Batlle E. Clevers H. Cancer stem cells revisited. Nat. Med. 2017 23 10 1124 1134 10.1038/nm.4409 28985214
    [Google Scholar]
  123. Lambert A.W. Pattabiraman D.R. Weinberg R.A. Emerging Biological Principles of Metastasis. Cell 2017 168 4 670 691 10.1016/j.cell.2016.11.037 28187288
    [Google Scholar]
  124. Celià-Terrassa T. Kang Y. Distinctive properties of metastasis-initiating cells. Genes Dev. 2016 30 8 892 908 10.1101/gad.277681.116 27083997
    [Google Scholar]
  125. Najafi M. Mortezaee K. Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019 234 116781 10.1016/j.lfs.2019.116781 31430455
    [Google Scholar]
  126. Hu W. Xiao L. Cao C. Hua S. Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget 2016 7 12 15161 15172 10.18632/oncotarget.7805 26943030
    [Google Scholar]
  127. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. UBE2T: A new molecular regulator of cancer stemness in hepatocellular carcinoma. CA Cancer J. Clin. 2018 68 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  128. Wei X. You X. Zhang J. Zhou C. MicroRNA-1305 Inhibits the Stemness of LCSCs and Tumorigenesis by Repressing the UBE2T-Dependent Akt-Signaling Pathway. Mol. Ther. Nucleic Acids 2019 16 721 732 10.1016/j.omtn.2019.04.013 31128423
    [Google Scholar]
  129. Herzog B. Devarakonda S. Govindan R. Overcoming chemotherapy resistance in SCLC. J Thorac Oncol 2021 16 12 2002 2015
    [Google Scholar]
  130. Li G. Qu Q. Qi T. Teng X. Zhu H. Wang J. Lu Q. Qu J. Super-enhancers: A new frontier for epigenetic modifiers in cancer chemoresistance, Journal of experimental & clinical cancer research. CR 2021 40 174
    [Google Scholar]
  131. Olivares-Urbano M.A. Griñán-Lisón C. Marchal J.A. Núñez M.I. Radioresistance C.S.C. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells 2020 9 7 1651 10.3390/cells9071651 32660072
    [Google Scholar]
  132. Mat Lazim N. Che Lah C. Wan Juhari W. Sulong S. Zilfalil B. Abdullah B. The role of genetic pathways in the development of chemoradiation resistance in nasopharyngeal carcinoma (NPC) patients. Genes 2021 12 11 1835 1835
    [Google Scholar]
  133. Goldstein M. Kastan M.B. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 2015 66 1 129 143 10.1146/annurev‑med‑081313‑121208 25423595
    [Google Scholar]
  134. Shen L. Zhao K. Li H. Ning B. Wang W. Liu R. Zhang Y. Zhang A. Downregulation of UBE2T can enhance the radiosensitivity of osteosarcoma in vitro and in vivo. Epigenomics 2019 11 11 1283 1305 10.2217/epi‑2019‑0125 31355678
    [Google Scholar]
  135. Xiao Y. Yu T.J. Xu Y. Ding R. Wang Y.P. Jiang Y.Z. Shao Z.M. Emerging therapies in cancer metabolism. Cell Metab. 2023 35 8 1283 1303 10.1016/j.cmet.2023.07.006 37557070
    [Google Scholar]
  136. De Martino M. Rathmell J.C. Galluzzi L. Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat. Rev. Immunol. 2024 24 9 654 669 10.1038/s41577‑024‑01026‑4 38649722
    [Google Scholar]
  137. Jiang X. Peng Q. Peng M. Oyang L. Wang H. Liu Q. Xu X. Wu N. Tan S. Yang W. Han Y. Lin J. Xia L. Tang Y. Luo X. Dai J. Zhou Y. Liao Q. Cellular metabolism: A key player in cancer ferroptosis. Cancer Commun. 2024 44 2 185 204 10.1002/cac2.12519 38217522
    [Google Scholar]
  138. Jiang X. Ma Y. Wang T. Zhou H. Wang K. Shi W. Qin L. Guan J. Li L. Long B. Wang J. Guan X. Ye H. Yang J. Yu Z. Jiao Z. Targeting UBE2T Potentiates Gemcitabine Efficacy in Pancreatic Cancer by Regulating Pyrimidine Metabolism and Replication Stress. Gastroenterology 2023 164 7 1232 1247 10.1053/j.gastro.2023.02.025 36842710
    [Google Scholar]
  139. Agarwal N. Azad A.A. Carles J. Fay A.P. Matsubara N. Heinrich D. Szczylik C. De Giorgi U. Young Joung J. Fong P.C.C. Voog E. Jones R.J. Shore N.D. Dunshee C. Zschäbitz S. Oldenburg J. Lin X. Healy C.G. Di Santo N. Zohren F. Fizazi K. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): A randomised, placebo-controlled, phase 3 trial. Lancet 2023 402 10398 291 303 10.1016/S0140‑6736(23)01055‑3 37285865
    [Google Scholar]
  140. Lord C.J. Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017 355 6330 1152 1158 10.1126/science.aam7344 28302823
    [Google Scholar]
  141. Yang Z. Wu X.S. Wei Y. Polyanskaya S.A. Iyer S.V. Jung M. Lach F.P. Adelman E.R. Klingbeil O. Milazzo J.P. Kramer M. Demerdash O.E. Chang K. Goodwin S. Hodges E. McCombie W.R. Figueroa M.E. Smogorzewska A. Vakoc C.R. Transcriptional Silencing of ALDH2 Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. Cancer Discov. 2021 11 9 2300 2315 10.1158/2159‑8290.CD‑20‑1542 33893150
    [Google Scholar]
  142. Maguire A. Chen X. Wisner L. Malasi S. Ramsower C. Kendrick S. Barrett M.T. Glinsmann-Gibson B. McGrath M. Rimsza L.M. Enhanced DNA repair and genomic stability identify a novel HIV‐related diffuse large B‐cell lymphoma signature. Int. J. Cancer 2019 145 11 3078 3088 10.1002/ijc.32381 31044434
    [Google Scholar]
  143. Webster A.L.H. Sanders M.A. Patel K. Dietrich R. Noonan R.J. Lach F.P. White R.R. Goldfarb A. Hadi K. Edwards M.M. Donovan F.X. Hoogenboezem R.M. Jung M. Sridhar S. Wiley T.F. Fedrigo O. Tian H. Rosiene J. Heineman T. Kennedy J.A. Bean L. Rosti R.O. Tryon R. Gonzalez A.M. Rosenberg A. Luo J.D. Carroll T.S. Shroff S. Beaumont M. Velleuer E. Rastatter J.C. Wells S.I. Surrallés J. Bagby G. MacMillan M.L. Wagner J.E. Cancio M. Boulad F. Scognamiglio T. Vaughan R. Beaumont K.G. Koren A. Imielinski M. Chandrasekharappa S.C. Auerbach A.D. Singh B. Kutler D.I. Campbell P.J. Smogorzewska A. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer. Nature 2022 612 7940 495 502 10.1038/s41586‑022‑05253‑4 36450981
    [Google Scholar]
  144. Badra Fajardo N. Taraviras S. Lygerou Z. Fanconi anemia proteins and genome fragility: Unraveling replication defects for cancer therapy. Trends Cancer 2022 8 6 467 481 10.1016/j.trecan.2022.01.015 35232683
    [Google Scholar]
  145. Huang Q. Ng H.Q. Loh Y.Y. Ke Z. Lim W.H. Kang C. Backbone 1H, 15N and 13C resonance assignments for an E2 ubiquitin conjugating enzyme-UBE2T. Biomol. NMR Assign. 2023 17 2 269 274 10.1007/s12104‑023‑10154‑2 37773242
    [Google Scholar]
  146. Morreale F.E. Bortoluzzi A. Chaugule V.K. Arkinson C. Walden H. Ciulli A. Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. J. Med. Chem. 2017 60 9 4093 4098 10.1021/acs.jmedchem.7b00147 28437106
    [Google Scholar]
  147. Morreale F.E. Testa A. Chaugule V.K. Bortoluzzi A. Ciulli A. Walden H. Mind the metal: A fragment library-derived zinc impurity binds the E2 ubiquitin-conjugating enzyme Ube2T and induces structural rearrangements. J. Med. Chem. 2017 60 19 8183 8191 10.1021/acs.jmedchem.7b01071 28933844
    [Google Scholar]
  148. Wang Y. Gao G. Wei X. Zhang Y. Yu J. UBE2T Promotes Temozolomide Resistance of Glioblastoma Through Regulating the Wnt/β-Catenin Signaling Pathway. Drug Des. Devel. Ther. 2023 17 1357 1369 10.2147/DDDT.S405450 37181827
    [Google Scholar]
  149. Anantharajan J. Tan Q.W. Fulwood J. Sifang W. Huang Q. Ng H.Q. Koh X. Xu W. Cherian J. Baburajendran N. Kang C. Ke Z. Identification and characterization of inhibitors covalently modifying catalytic cysteine of UBE2T and blocking ubiquitin transfer. Biochem. Biophys. Res. Commun. 2023 689 149238 10.1016/j.bbrc.2023.149238 37979329
    [Google Scholar]
  150. Cornwell M.J. Thomson G.J. Coates J. Belotserkovskaya R. Waddell I.D. Jackson S.P. Galanty Y. Small-Molecule Inhibition of UBE2T/FANCL-Mediated Ubiquitylation in the Fanconi Anemia Pathway. ACS Chem. Biol. 2019 14 10 acschembio.9b00570 10.1021/acschembio.9b00570 31525021
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096370867250211070948
Loading
/content/journals/ccdt/10.2174/0115680096370867250211070948
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer treatment ; targeted therapy ; UBE2T ; cancer ; ubiquitination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test