Skip to content
2000
image of Comparing Ovarian Clear Cell Carcinoma and High-Grade Serous Carcinoma Based on the SEER Database and Analyzing the Significantly Mutated Genes

Abstract

Introduction

Ovarian clear cell carcinoma (OCCC) accounts for about 5% of all epithelial ovarian cancers. Currently, its treatment mainly refers to high-grade serous carcinoma (HGSC). This study aimed to explore differences in clinical characteristics between OCCC and HGSC and studied the reasons for the differences.

Methods

The data of OCCC and HGSC cases were obtained from the SEER database. Univariate and multivariate Cox regression analyses were used to explore the prognostic factors. Next, whole exome sequencing (WES) was performed on 15 clinically selected OCCC cases and 16 HGSC cases to identify significantly mutated genes (SMGs). Further analysis included calculating tumor mutation burden (TMB) and predicting potential target drugs based on the identified mutations.

Results

3493 OCCC and 10266 HGSC patients from the SEER database were included in the study. Survival analysis showed that the overall survival (OS) of stage I-II OCCC was better than that of stage I-II HGSC, while the OS of stage III-IV OCCC was worse than that of stage III-IV HGSC. Further subgroup analysis showed that for the OCCC group, age ≥ 60 years, bilateral tumor distribution, tumor size ≥ 87mm, and stage III-IV were independent risk factors for OS. For HGSC patients, tumor size ≥ 87mm was an independent protective factor for OS. WES results suggested that among the top 20 SMGs of OCCC in stage III-IV patients, DNAH2, LAMA5, MUC19, NOTCH1, PCLO, SYNE2, TACC2, and ZNF469 were 8 specific SMGs that distinguish III-IV OCCC from III-IV HGSC. In addition, the stage I-II OCCC group had the highest TMB, and the lowest was the stage III-IV OCCC.

Discussion

Our findings challenge the conventional uniform therapeutic approach for ovarian carcinomas by revealing stage-dependent SMGs between OCCC and HGSC. However, limitations such as the retrospective SEER analysis, small WES cohort, and population-specific driver gene variations require cautious interpretation of the findings.

Conclusion

The independent prognostic factors identified in this study provide a theoretical basis for individualized prognosis judgment in OCCC and HGSC. The SMGs and TMB levels may serve as valuable indicators for prognosis and evaluating targeted therapy or immunotherapy efficacy. Druggable genes such as NOTCH1 and RYR3 offer promising therapeutic targets, while stage-specific pathway enrichments reveal potential intervention strategies. Further validation in larger cohorts is needed to confirm these findings. Our study advances the understanding of molecular heterogeneity in ovarian cancer and lays the groundwork for personalized treatment strategies, ultimately improving patient outcomes.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096370568250806153217
2025-08-28
2025-11-07
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096370568250806153217/BMS-CCDT-2024-509.html?itemId=/content/journals/ccdt/10.2174/0115680096370568250806153217&mimeType=html&fmt=ahah

References

  1. Rosso R. Turinetto M. Borella F. Chopin N. Meeus P. Lainè A. Ray-Coquard I. Le Saux O. Ferraioli D. Ovarian clear cell carcinoma: open questions on the management and treatment algorithm. Oncologist 2025 30 1 325 10.1093/oncolo/oyae325 39846983
    [Google Scholar]
  2. Ceppi L. Grassi T. Galli F. Buda A. Aletti G. Lissoni A.A. Adorni M. Garbi A. Colombo N. Bonazzi C. Landoni F. Fruscio R. Early-stage clear cell ovarian cancer compared to high-grade histological subtypes: An outcome exploratory analysis in two oncology centers. Gynecol. Oncol. 2021 160 1 64 70 10.1016/j.ygyno.2020.10.014 33077259
    [Google Scholar]
  3. Zhu C. Xu Z. Zhang T. Qian L. Xiao W. Wei H. Jin T. Zhou Y. Updates of Pathogenesis, Diagnostic and Therapeutic Perspectives for Ovarian Clear Cell Carcinoma. J. Cancer 2021 12 8 2295 2316 10.7150/jca.53395 33758607
    [Google Scholar]
  4. Xia S. Chen L. Yu M. Li J. Chen J. Xu F. Ni M. Liu C. Wu X. Chen X. Li J. Genetic and therapeutic heterogeneity shape the baseline and longitudinal immune ecosystem of ovarian clear cell carcinoma. J. Immunother. Cancer 2024 12 11 e010069 10.1136/jitc‑2024‑010069 39608974
    [Google Scholar]
  5. Chen C. Ren W. Pei L. Sun J. Bai T. Status and development of research on clear cell carcinoma of the ovary—a visualization-based bibliometric analysis. Transl. Cancer Res. 2024 13 6 2950 2970 10.21037/tcr‑23‑2351 38988907
    [Google Scholar]
  6. Kajiyama H. Suzuki S. Yoshikawa N. Niimi K. Kawai M. Shibata K. Kikkawa F. Long-term oncologic outcome and its prognostic indicators in reproductive-age women with ovarian clear-cell carcinoma. Arch. Gynecol. Obstet. 2019 300 3 717 724 10.1007/s00404‑019‑05203‑y 31165243
    [Google Scholar]
  7. Ku F.C. Wu R.C. Yang L.Y. Tang Y.H. Chang W.Y. Yang J.E. Wang C.C. Jung S.M. Lin C.T. Chang T.C. Chao A. Lai C.H. Clear cell carcinomas of the ovary have poorer outcomes compared with serous carcinomas: Results from a single-center Taiwanese study. J. Formos. Med. Assoc. 2018 117 2 117 125 28389144
    [Google Scholar]
  8. Dong S. Yu F. Liu Y. Yu X. Sun X. Wang W. Wang Y. Comparison of the clinical characteristics and prognosis between clear cell carcinomas and high-grade serous ovarian carcinomas. Ginekol. Pol. 2023 94 10 792 798 10.5603/GP.a2022.0123 36477777
    [Google Scholar]
  9. Oliver K.E. Brady W.E. Birrer M. Gershenson D.M. Fleming G. Copeland L.J. Tewari K. Argenta P.A. Mannel R.S. Secord A.A. Stephan J.M. Mutch D.G. Stehman F.B. Muggia F.M. Rose P.G. Armstrong D.K. Bookman M.A. Burger R.A. Farley J.H. An evaluation of progression free survival and overall survival of ovarian cancer patients with clear cell carcinoma versus serous carcinoma treated with platinum therapy: An NRG Oncology/Gynecologic Oncology Group experience. Gynecol. Oncol. 2017 147 2 243 249 10.1016/j.ygyno.2017.08.004 28807367
    [Google Scholar]
  10. Lan A. Yang G. Clinicopathological parameters and survival of invasive epithelial ovarian cancer by histotype and disease stage. Future Oncol. 2019 15 17 2029 2039 10.2217/fon‑2018‑0886 31140868
    [Google Scholar]
  11. Liu Z. Jing C. Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J. Ovarian Res. 2024 17 1 39 10.1186/s13048‑024‑01359‑7 38347608
    [Google Scholar]
  12. Kim S.I. Lee J.W. Lee M. Kim H.S. Chung H.H. Kim J.W. Park N.H. Song Y.S. Seo J.S. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol. Oncol. 2018 148 2 375 382 10.1016/j.ygyno.2017.12.005 29233531
    [Google Scholar]
  13. Yang Q. Zhang C. Ren Y. Yi H. Luo T. Xing F. Bai X. Cui L. Zhu L. Ouyang J. Jiang P. Fan W. Qiu J. Wang F. Xing X. Zhang Z. Zhang X. Zhang R. Genomic characterization of Chinese ovarian clear cell carcinoma identifies driver genes by whole exome sequencing. Neoplasia 2020 22 9 399 430 10.1016/j.neo.2020.06.002 32650224
    [Google Scholar]
  14. Enomoto T. Aoki D. Hattori K. Jinushi M. Kigawa J. Takeshima N. Tsuda H. Watanabe Y. Yoshihara K. Sugiyama T. The first Japanese nationwide multicenter study of BRCA mutation testing in ovarian cancer: CHARacterizing the cross-sectionaL approach to Ovarian cancer geneTic TEsting of BRCA (CHARLOTTE). Int. J. Gynecol. Cancer 2019 29 6 1043 1049 10.1136/ijgc‑2019‑000384 31263023
    [Google Scholar]
  15. Parra-Herran C. Bassiouny D. Lerner-Ellis J. Olkhov-Mitsel E. Ismiil N. Hogen L. Vicus D. Nofech-Mozes S. p53, Mismatch Repair Protein, and POLE Abnormalities in Ovarian Clear Cell Carcinoma. Am. J. Surg. Pathol. 2019 43 12 1591 1599 10.1097/PAS.0000000000001328 31335355
    [Google Scholar]
  16. Batista M.P. Roffé M. Romero I. López-Guerrero J.A. Illueca C. Lopez R. Balieiro Anastácio da Costa A.A. De Brot L. Molina J.P. Barboza L. Peria F.M. Chaud F. Gouvêa Yamada A.S. Poveda A. Rego E.M. Genomic landscapes of ovarian clear cell carcinoma from latin countries reveal aberrations linked to survival and progression. BMC Cancer 2023 23 1 613 10.1186/s12885‑023‑11095‑8 37400764
    [Google Scholar]
  17. Stewart J. Krastev D.B. Brough R. Zatreanu D. Song F. Baxter J.S. Sridhar S. Frankum J. Konde A. Yang W. Haider S. Alexander J. Betteridge K. Gulati A. Attygalle A.D. Vroobel K. Natrajan R. Khalique S. Roumeliotis T.I. Choudhary J.S. Yeung J. Wicks A.J. Marlow R. Banerjee S. Pettitt S.J. Tutt A.N.J. Lord C.J. PPP2R1A mutations cause ATR inhibitor sensitivity in ovarian clear cell carcinoma. Oncogene 2025 44 9 618 629 10.1038/s41388‑024‑03265‑0 39939726
    [Google Scholar]
  18. Chao A. Huang C.Y. Yu W. Lin C.Y. Lin H. Chao A.S. Lin C.T. Chou H.H. Huang K.G. Huang H.J. Chang T.C. Rozen S.G. Wu R.C. Lai C.H. Molecular profiling reveals novel therapeutic targets and clonal evolution in ovarian clear cell carcinoma. BMC Cancer 2024 24 1 1403 10.1186/s12885‑024‑13125‑5 39543535
    [Google Scholar]
  19. Xing B. Zhang X. Gu X. Xiang L. Wang C. Jin Y. Explore the alterations of downstream molecular pathways caused by ARID1A mutation/knockout in human endometrial cancer cells. J. Cancer Res. Clin. Oncol. 2023 149 19 17529 17541 10.1007/s00432‑023‑05471‑x 37906351
    [Google Scholar]
  20. Ye S. Zhou S. Wu Y. Pei X. Jiang W. Shi W. Yang W. Zhou X. Shan B. Yang H. Genomic profiling of ovarian clear cell carcinoma in Chinese patients reveals potential prognostic biomarkers for survival. Ann. Med. 2023 55 1 2218104 10.1080/07853890.2023.2218104 37272300
    [Google Scholar]
  21. Stany M.P. Vathipadiekal V. Ozbun L. Stone R.L. Mok S.C. Xue H. Kagami T. Wang Y. McAlpine J.N. Bowtell D. Gout P.W. Miller D.M. Gilks C.B. Huntsman D.G. Ellard S.L. Wang Y.Z. Vivas-Mejia P. Lopez-Berestein G. Sood A.K. Birrer M.J. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers. PLoS One 2011 6 7 e21121 10.1371/journal.pone.0021121 21754983
    [Google Scholar]
  22. Willis B.C. Sloan E.A. Atkins K.A. Stoler M.H. Mills A.M. Mismatch repair status and PD-L1 expression in clear cell carcinomas of the ovary and endometrium. Mod. Pathol. 2017 30 11 1622 1632 10.1038/modpathol.2017.67 28752845
    [Google Scholar]
  23. Tse B.W.C. Collins A. Oehler M.K. Zippelius A. Heinzelmann-Schwarz V.A. Antibody-based immunotherapy for ovarian cancer: where are we at? Ann. Oncol. 2014 25 2 322 331 10.1093/annonc/mdt405 24285017
    [Google Scholar]
  24. Suszynska M. Kozlowski P. Summary of BARD1 Mutations and Precise Estimation of Breast and Ovarian Cancer Risks Associated with the Mutations. Genes (Basel) 2020 11 7 798 10.3390/genes11070798 32679805
    [Google Scholar]
  25. Suszynska M. Ratajska M. Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J. Ovarian Res. 2020 13 1 50 10.1186/s13048‑020‑00654‑3 32359370
    [Google Scholar]
  26. Del Valle J. Rofes P. Moreno-Cabrera J.M. López-Dóriga A. Belhadj S. Vargas-Parra G. Teulé À. Cuesta R. Muñoz X. Campos O. Salinas M. de Cid R. Brunet J. González S. Capellá G. Pineda M. Feliubadaló L. Lázaro C. Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers (Basel) 2020 12 4 829 32235514
    [Google Scholar]
  27. McLaren W. Gil L. Hunt S.E. Riat H.S. Ritchie G.R. Thormann A. Flicek P. Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016 17 1 122 27268795
    [Google Scholar]
  28. Fan J. Lyu Y. Zhang Q. Wang X. Li M. Xiao R. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Brief. Bioinform. 2022 23 6 bbac430 36208175
    [Google Scholar]
  29. Cannon M. Stevenson J. Stahl K. Basu R. Coffman A. Kiwala S. McMichael J.F. Kuzma K. Morrissey D. Cotto K. Mardis E.R. Griffith O.L. Griffith M. Wagner A.H. DGIdb 5.0: rebuilding the drug-gene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res. 2024 52 D1 D1227 D1235 37953380
    [Google Scholar]
  30. Xu G. Jiang L. Ye C. Qin G. Luo Z. Mo Y. Chen J. The Ratio of CD86+/CD163+ Macrophages Predicts Postoperative Recurrence in Stage II-III Colorectal Cancer. Front. Immunol. 2021 12 724429 34512652
    [Google Scholar]
  31. Menderes G. Bonazzoli E. Bellone S. Black J.D. Lopez S. Pettinella F. Masserdotti A. Zammataro L. Litkouhi B. Ratner E. Silasi D.A. Azodi M. Schwartz P.E. Santin A.D. Efficacy of neratinib in the treatment of HER2/neu-amplified epithelial ovarian carcinoma in vitro and in vivo. Med. Oncol. 2017 34 5 91 10.1007/s12032‑017‑0956‑8 28397106
    [Google Scholar]
  32. Langdon S.P. Herrington C.S. Hollis R.L. Gourley C. Estrogen Signaling and Its Potential as a Target for Therapy in Ovarian Cancer. Cancers (Basel) 2020 12 6 1647 10.3390/cancers12061647 32580290
    [Google Scholar]
  33. Das S. Batra S.K. Understanding the Unique Attributes of MUC16 (CA125): Potential Implications in Targeted Therapy. Cancer Res. 2015 75 22 4669 4674 10.1158/0008‑5472.CAN‑15‑1050 26527287
    [Google Scholar]
  34. Garg V. Kumar L. Metronomic chemotherapy in ovarian cancer. Cancer Lett. 2023 579 216469 10.1016/j.canlet.2023.216469 37923056
    [Google Scholar]
  35. Obrador E. Salvador R. Villaescusa J.I. Soriano J.M. Estrela J.M. Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020 8 11 461 10.3390/biomedicines8110461 33142986
    [Google Scholar]
  36. Ye S. Yang J. You Y. Cao D. Huang H. Wu M. Chen J. Lang J. Shen K. Comparison of Clinical Characteristic and Prognosis between Ovarian Clear Cell Carcinoma and Serous Carcinoma: A 10-Year Cohort Study of Chinese Patients. PLoS One 2015 10 7 e0133498 26186453
    [Google Scholar]
  37. Kim S.I. Ha H.I. Eoh K.J. Lim J. Won Y.J. Lim M.C. Trends in the Incidence and Survival Rates of Primary Ovarian Clear Cell Carcinoma Compared to Ovarian Serous Carcinoma in Korea. Front. Oncol. 2022 12 874037 35463304
    [Google Scholar]
  38. Lee Y.Y. Kim T.J. Kim M.J. Kim H.J. Song T. Kim M.K. Choi C.H. Lee J.W. Bae D.S. Kim B.G. Prognosis of ovarian clear cell carcinoma compared to other histological subtypes: A meta-analysis. Gynecol. Oncol. 2011 122 3 541 547 10.1016/j.ygyno.2011.05.009 21640372
    [Google Scholar]
  39. Wu L. Shi S. Sun H. Zhang H. Tumor Size Is an Independent Prognostic Factor for Stage I Ovarian Clear Cell Carcinoma: A Large Retrospective Cohort Study of 1,000 Patients. Front. Oncol. 2022 12 862944 35651798
    [Google Scholar]
  40. Paik E.S. Kim J.H. Kim T.J. Lee J.W. Kim B.G. Bae D.S. Choi C.H. Prognostic significance of normal-sized ovary in advanced serous epithelial ovarian cancer. J. Gynecol. Oncol. 2018 29 1 e13 29185271
    [Google Scholar]
  41. Horvath L.E. Werner T. Boucher K. Jones K. The relationship between tumor size and stage in early versus advanced ovarian cancer. Med. Hypotheses 2013 80 5 684 687 23474070
    [Google Scholar]
  42. Petru E. Huber C. Sampl E. Haas J. Comparison of Primary Tumor Size in Stage I and III Epithelial Ovarian Cancer. Anticancer Res. 2018 38 11 6507 6511 30396979
    [Google Scholar]
  43. Wang Z. Chen M. Qiu Y. Yang Y. Huang Y. Li X. Zhang W. Identification of potential biomarkers associated with immune infiltration in the esophageal carcinoma tumor microenvironment. Biosci. Rep. 2021 41 2 BSR20202439 10.1042/BSR20202439 33543230
    [Google Scholar]
  44. Xu Y. Sun Q. Wang S. Zhu H. Dong G. Meng F. Xia Z. You J. Kong X. Wu J. Chen P. Yuan F. Yu X. Ji J. Li Z. Zhu P. Sun Y. Liu T. Yin R. Xu L. [Mutational Signatures Analysis of Micropapillary Components and Exploration of ZNF469 Gene in Early-stage Lung Adenocarcinoma with Ground-glass Opacities]. Zhongguo Fei Ai Za Zhi 2024 26 12 889 900 [Mutational Signatures Analysis of Micropapillary Components and Exploration of ZNF469 Gene in Early-stage Lung Adenocarcinoma with Ground-glass Opacities]. 38151328
    [Google Scholar]
  45. Wallis S.S. Ventimiglia L.N. Otigbah E. Infante E. Cuesta-Geijo M.A. Kidiyoor G.R. Carbajal M.A. Fleck R.A. Foiani M. Garcia-Manyes S. Martin-Serrano J. Agromayor M. The ESCRT machinery counteracts Nesprin-2G-mediated mechanical forces during nuclear envelope repair. Dev. Cell 2021 56 23 3192 3202.e8 10.1016/j.devcel.2021.10.022 34818527
    [Google Scholar]
  46. Kelkar P. Walter A. Papadopoulos S. Mroß C. Munck M. Peche V.S. Noegel A.A. Nesprin-2 mediated nuclear trafficking and its clinical implications. Nucleus 2015 6 6 479 489 10.1080/19491034.2015.1128608 26645154
    [Google Scholar]
  47. Rajgor D. Shanahan C.M. Nesprins: from the nuclear envelope and beyond. Expert Rev. Mol. Med. 2013 15 e5 10.1017/erm.2013.6 23830188
    [Google Scholar]
  48. Still I.H. Vettaikkorumakankauv A.K. DiMatteo A. Liang P. Structure-function evolution of the Transforming acidic coiled coil genes revealed by analysis of phylogenetically diverse organisms. BMC Evol. Biol. 2004 4 1 16 10.1186/1471‑2148‑4‑16 15207008
    [Google Scholar]
  49. Article R. Lauffart B. Gangisetty O. Still I. Evolutionary conserved interaction of TACC2/TACC3 with BARD1 and BRCA1: potential implications for DNA damage response in breast and ovarian cancer. Cancer Ther. 2007 5 409 409
    [Google Scholar]
  50. Lauffart B. Gangisetty O. Still I.H. Molecular cloning, genomic structure and interactions of the putative breast tumor suppressor TACC2. Genomics 2003 81 2 192 201 10.1016/S0888‑7543(02)00039‑3 12620397
    [Google Scholar]
  51. Lengyel E. Li Y. Weigert M. Zhu L. Eckart H. Javellana M. Ackroyd S. Xiao J. Olalekan S. Glass D. Iyer S. Krishnan R. Bilecz A.J. Lastra R. Chen M. Basu A. A molecular atlas of the human postmenopausal fallopian tube and ovary from single-cell RNA and ATAC sequencing. Cell Rep. 2022 41 12 111838 10.1016/j.celrep.2022.111838 36543131
    [Google Scholar]
  52. Kato N. Sasou S. Teshima S. Motoyama T. Overexpression of laminin-5 γ2 chain in clear cell carcinoma of the ovary. Virchows Arch. 2007 450 3 273 278 10.1007/s00428‑006‑0354‑7 17235566
    [Google Scholar]
  53. Bekos C. Muqaku B. Dekan S. Horvat R. Polterauer S. Gerner C. Aust S. Pils D. NECTIN4 (PVRL4) as Putative Therapeutic Target for a Specific Subtype of High Grade Serous Ovarian Cancer—An Integrative Multi-Omics Approach. Cancers (Basel) 2019 11 5 698 10.3390/cancers11050698 31137558
    [Google Scholar]
  54. Kobayashi H. Sugimoto H. Onishi S. Nakano K. Novel biomarker candidates for the diagnosis of ovarian clear cell carcinoma. Oncol. Lett. 2015 10 2 612 618 10.3892/ol.2015.3367 26622542
    [Google Scholar]
  55. Diao B. Sun C. Yu P. Zhao Z. Yang P. LAMA5 promotes cell proliferation and migration in ovarian cancer by activating Notch signaling pathway. FASEB J. 2023 37 9 e23109 10.1096/fj.202300306R 37527216
    [Google Scholar]
  56. Zheng Y. Wang Z. Xiong X. Zhong Y. Zhang W. Dong Y. Li J. Zhu Z. Zhang W. Wu H. Gu W. Wu Y. Wang X. Song X. Membrane‐tethered Notch1 exhibits oncogenic property via activation of EGFR–PI3K–AKT pathway in oral squamous cell carcinoma. J. Cell. Physiol. 2019 234 5 5940 5952 10.1002/jcp.27022 30515785
    [Google Scholar]
  57. Sambandam V. Frederick M.J. Shen L. Tong P. Rao X. Peng S. Singh R. Mazumdar T. Huang C. Li Q. Pickering C.R. Myers J.N. Wang J. Johnson F.M. PDK1 Mediates NOTCH1-Mutated Head and Neck Squamous Carcinoma Vulnerability to Therapeutic PI3K/mTOR Inhibition. Clin. Cancer Res. 2019 25 11 3329 3340 30770351
    [Google Scholar]
  58. Jiang W. Ouyang X. Jiang C. Yin L. Yao Q. Pei X. Ji Z. Li M. Song S. Yang W. Huang S. Yang H. Shan B. A NOTCH1 Mutation Found in a Newly Established Ovarian Cancer Cell Line (FDOVL) Promotes Lymph Node Metastasis in Ovarian Cancer. Int. J. Mol. Sci. 2023 24 6 5091 36982170
    [Google Scholar]
  59. Crobach S. Ruano D. van Eijk R. Fleuren G.J. Minderhout I. Snowdowne R. Tops C. van Wezel T. Morreau H. Target-enriched next-generation sequencing reveals differences between primary and secondary ovarian tumors in formalin-fixed, paraffin-embedded tissue. J. Mol. Diagn. 2015 17 2 193 200 25545608
    [Google Scholar]
  60. Lan T. Li Y. Wang Y. Wang Z.C. Mu C.Y. Tao A.B. Gong J.L. Zhou Y. Xu H. Li S.B. Gu B. Ma P. Luo L. Increased endogenous PKG I activity attenuates EGF-induced proliferation and migration of epithelial ovarian cancer via the MAPK/ERK pathway. Cell Death Dis. 2023 14 1 39 10.1038/s41419‑023‑05580‑y 36653376
    [Google Scholar]
  61. Leung E.L. Wong J.C. Johlfs M.G. Tsang B.K. Fiscus R.R. Protein kinase G type Ialpha activity in human ovarian cancer cells significantly contributes to enhanced Src activation and DNA synthesis/cell proliferation. Mol. Cancer Res. 2010 8 4 578 591 20371672
    [Google Scholar]
  62. Galluzzi L. Senovilla L. Vitale I. Michels J. Martins I. Kepp O. Castedo M. Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012 31 15 1869 1883 21892204
    [Google Scholar]
  63. Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol. 2019 53 2 148 158 30956230
    [Google Scholar]
  64. Kang H. Jeong J.Y. Song J.Y. Kim T.H. Kim G. Huh J.H. Kwon A.Y. Jung S.G. An H.J. Notch3-specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells. Mol. Carcinog. 2016 55 7 1196 1209 26207830
    [Google Scholar]
  65. Silva F. Félix A. Serpa J. Functional redundancy of the Notch pathway in ovarian cancer cell lines. Oncol. Lett. 2016 12 4 2686 2691 27698843
    [Google Scholar]
  66. Er T.K. Su Y.F. Wu C.C. Chen C.C. Wang J. Hsieh T.H. Herreros-Villanueva M. Chen W.T. Chen Y.T. Liu T.C. Chen H.S. Tsai E.M. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. J. Mol. Med. 2016 94 7 835 847 26920370
    [Google Scholar]
  67. Fan S Gao X Qin Q Li H Yuan Z Zhao S Association between tumor mutation burden and immune infiltration in ovarian cancer. Int Immunopharmacol 2020 89 Pt A 107126 10.1016/j.intimp.2020.107126 33189611
    [Google Scholar]
  68. Chalmers Z.R. Connelly C.F. Fabrizio D. Gay L. Ali S.M. Ennis R. Schrock A. Campbell B. Shlien A. Chmielecki J. Huang F. He Y. Sun J. Tabori U. Kennedy M. Lieber D.S. Roels S. White J. Otto G.A. Ross J.S. Garraway L. Miller V.A. Stephens P.J. Frampton G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017 9 1 34 28420421
    [Google Scholar]
  69. Hellmann M.D. Callahan M.K. Awad M.M. Calvo E. Ascierto P.A. Atmaca A. Rizvi N.A. Hirsch F.R. Selvaggi G. Szustakowski J.D. Sasson A. Golhar R. Vitazka P. Chang H. Geese W.J. Antonia S.J. Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer Cell 2018 33 5 853 861.e4 10.1016/j.ccell.2018.04.001 29731394
    [Google Scholar]
  70. Bi F. Chen Y. Yang Q. Significance of tumor mutation burden combined with immune infiltrates in the progression and prognosis of ovarian cancer. Cancer Cell Int. 2020 20 1 373 10.1186/s12935‑020‑01472‑9 32774167
    [Google Scholar]
  71. Zhang Y. Qazi S. Raza K. Differential expression analysis in ovarian cancer: A functional genomics and systems biology approach. Saudi J. Biol. Sci. 2021 28 7 4069 4081 10.1016/j.sjbs.2021.04.022 34220265
    [Google Scholar]
  72. Gounder M.M. Rosenbaum E. Wu N. Dickson M.A. Sheikh T.N. D’Angelo S.P. Chi P. Keohan M.L. Erinjeri J.P. Antonescu C.R. Agaram N. Hameed M.R. Martindale M. Lefkowitz R.A. Crago A.M. Singer S. Tap W.D. Takebe N. Qin L.X. Schwartz G.K. A Phase Ib/II Randomized Study of RO4929097, a Gamma-Secretase or Notch Inhibitor with or without Vismodegib, a Hedgehog Inhibitor, in Advanced Sarcoma. Clin. Cancer Res. 2022 28 8 1586 1594 10.1158/1078‑0432.CCR‑21‑3874 35110418
    [Google Scholar]
  73. Even C. Lassen U. Merchan J. Le Tourneau C. Soria J-C. Ferte C. Ricci F. Diener J.T. Yuen E. Smith C. Oakley G.J. III Benhadji K.A. Massard C. Safety and clinical activity of the Notch inhibitor, crenigacestat (LY3039478), in an open-label phase I trial expansion cohort of advanced or metastatic adenoid cystic carcinoma. Invest. New Drugs 2020 38 2 402 409 10.1007/s10637‑019‑00739‑x 30953269
    [Google Scholar]
  74. Chen X. Gong L. Ou R. Zheng Z. Chen J. Xie F. Huang X. Qiu J. Zhang W. Jiang Q. Yang Y. Zhu H. Shi Z. Yan X. Sequential combination therapy of ovarian cancer with cisplatin and γ-secretase inhibitor MK-0752. Gynecol. Oncol. 2016 140 3 537 544 10.1016/j.ygyno.2015.12.011 26704638
    [Google Scholar]
  75. Diaz-Padilla I. Wilson M.K. Clarke B.A. Hirte H.W. Welch S.A. Mackay H.J. Biagi J.J. Reedijk M. Weberpals J.I. Fleming G.F. Wang L. Liu G. Zhou C. Blattler C. Ivy S.P. Oza A.M. A phase II study of single-agent RO4929097, a gamma-secretase inhibitor of Notch signaling, in patients with recurrent platinum-resistant epithelial ovarian cancer: A study of the Princess Margaret, Chicago and California phase II consortia. Gynecol. Oncol. 2015 137 2 216 222 10.1016/j.ygyno.2015.03.005 25769658
    [Google Scholar]
  76. Abedin Y. Gabrilovich S. Alpert E. Rego E. Begum S. Zhao Q. Heller D. Einstein M.H. Douglas N.C. Gamma Secretase Inhibitors as Potential Therapeutic Targets for Notch Signaling in Uterine Leiomyosarcoma. Int. J. Mol. Sci. 2022 23 11 5980 10.3390/ijms23115980 35682660
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096370568250806153217
Loading
/content/journals/ccdt/10.2174/0115680096370568250806153217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test