Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Macranthoside B (MB) is a saponin compound extracted from honeysuckle that has been reported to exhibit significant medicinal values, particularly anti-tumor activities. This study aimed to evaluate the anticancer efficacy of MB in treating adenocarcinoma of the esophagogastric junction (AEG) and elucidate its underlying mechanisms.

Methods

Three AEG cell lines and normal gastric epithelial cells were used to assess the anticancer activity of MB . A series of experiments, including RNA sequencing (RNA-seq) analysis, transmission electron microscopy (TEM), immunofluorescence, and western blot assay, were conducted to validate the molecular mechanisms by which MB may mediate these physiological changes. Finally, we used shRNA assays to silence the key gene driving these changes and examined the expression of molecules involved in the affected pathways.

Results

MB exhibited significant anti-AEG cell activity with IC values ranging from 9.5 to 12.7 μM. RNA-seq results indicated that MB treatment in AEG cells significantly altered mRNA levels of autophagy- and ferroptosis-related genes. Further experiments revealed that MB treatment led to the up-regulation of lipid reactive oxygen species (Lip-ROS), oxidative stress-related pathway genes, and LC3B-labeled autophagic vesicles in AEG cells. Moreover, MB mediated NCOA4-dependent ferritinophagy, disrupting iron homeostasis and causing subsequent ferroptosis. We further confirmed that the intrinsic connection between autophagy and ferroptosis was due to the inhibition of NRF2 by MB. The inhibition of NRF2 by MB triggered transcriptional repression of its downstream effector molecules HERC2 and VAMP8, thus stabilizing NCOA4.

Conclusion

This study demonstrated MB to inhibit AEG cell growth by regulating iron homeostasis and inducing ferroptosis through the inhibition of NRF2, providing a basis for the development of novel drugs for AEG treatment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096370291250109103853
2025-01-22
2025-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/25/8/CCDT-25-8-10.html?itemId=/content/journals/ccdt/10.2174/0115680096370291250109103853&mimeType=html&fmt=ahah

References

  1. TakeuchiH. KitagawaY. Adenocarcinoma of the esophagogastric junction: Territory of the esophagus or stomach, or an independent region?Ann. Surg. Oncol.201320370570610.1245/s10434‑012‑2781‑923224904
    [Google Scholar]
  2. KusanoC. GotodaT. KhorC.J. KataiH. KatoH. TaniguchiH. ShimodaT. Changing trends in the proportion of adenocarcinoma of the esophagogastric junction in a large tertiary referral center in Japan.J. Gastroenterol. Hepatol.200823111662166510.1111/j.1440‑1746.2008.05572.x19120859
    [Google Scholar]
  3. LiuK. YangK. ZhangW. ChenX. ChenX. ZhangB. ChenZ. ChenJ. ZhaoY. ZhouZ. ChenL. HuJ. Changes of esophagogastric junctional adenocarcinoma and gastroesophageal reflux disease among surgical patients during 1988-2012: A single-institution, high-volume experience in china.Ann. Surg.20162631889510.1097/SLA.000000000000114825647058
    [Google Scholar]
  4. LiS. YuanL. XuZ.Y. XuJ.L. ChenG.P. GuanX. PanG.Z. HuC. DongJ. DuY.A. YangL.T. NiM.W. JiangR.B. ZhuX. LvH. XuH.D. ZhangS.J. QinJ.J. ChengX.D. Integrative proteomic characterization of adenocarcinoma of esophagogastric junction.Nat. Commun.202314177810.1038/s41467‑023‑36462‑836774361
    [Google Scholar]
  5. AjaniJ.A. D’AmicoT.A. BentremD.J. ChaoJ. CorveraC. DasP. DenlingerC.S. EnzingerP.C. FantaP. FarjahF. GerdesH. GibsonM. GlasgowR.E. HaymanJ.A. HochwaldS. HofstetterW.L. IlsonD.H. JaroszewskiD. JohungK.L. KeswaniR.N. KleinbergL.R. LeongS. LyQ.P. MatkowskyjK.A. McNamaraM. MulcahyM.F. PaluriR.K. ParkH. PerryK.A. PimientoJ. PoultsidesG.A. RosesR. StrongV.E. WiesnerG. WillettC.G. WrightC.D. McMillianN.R. PluchinoL.A. Esophageal and esophagogastric junction cancers, version 2.2019, nccn clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.201917785588310.6004/jnccn.2019.003331319389
    [Google Scholar]
  6. MoehlerM. HögnerA. WagnerA.D. ObermannovaR. AlsinaM. Thuss-PatienceP. van LaarhovenH. SmythE. Recent progress and current challenges of immunotherapy in advanced/metastatic esophagogastric adenocarcinoma.Eur. J. Cancer2022176132910.1016/j.ejca.2022.08.02336183651
    [Google Scholar]
  7. CaoF. HuC. XuZ.Y. ZhangY.Q. HuangL. ChenJ.H. QinJ.J. ChengX.D. Current treatments and outlook in adenocarcinoma of the esophagogastric junction: A narrative review.Ann. Transl. Med.202210637710.21037/atm‑22‑106435433931
    [Google Scholar]
  8. JanjigianY.Y. ShitaraK. MoehlerM. GarridoM. SalmanP. ShenL. WyrwiczL. YamaguchiK. SkoczylasT. Campos BragagnoliA. LiuT. SchenkerM. YanezP. TehfeM. KowalyszynR. KaramouzisM.V. BrugesR. ZanderT. Pazo-CidR. HitreE. FeeneyK. ClearyJ.M. PoulartV. CullenD. LeiM. XiaoH. KondoK. LiM. AjaniJ.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial.Lancet202139810294274010.1016/S0140‑6736(21)00797‑234102137
    [Google Scholar]
  9. TangX. LiuX. ZhongJ. FangR. Potential application of lonicera japonica extracts in animal production: From the perspective of intestinal health.Front. Microbiol.20211271987710.3389/fmicb.2021.71987734434181
    [Google Scholar]
  10. ShanY. GuanF. ZhaoX. WangM. ChenY. WangQ. FengX. Macranthoside b induces apoptosis and autophagy via reactive oxygen species accumulation in human ovarian cancer a2780 cells.Nutr. Cancer201668228028910.1080/01635581.2016.114258726943028
    [Google Scholar]
  11. FanX. RaoJ. ZhangZ. LiD. CuiW. ZhangJ. WangH. TouF. ZhengZ. ShenQ. Macranthoidin b modulates key metabolic pathways to enhance ros generation and induce cytotoxicity and apoptosis in colorectal cancer.Cell. Physiol. Biochem.20184641317133010.1159/00048914729689551
    [Google Scholar]
  12. TanS. LiuQ. YangJ. CaiJ. YuM. JiY. Macranthoidin b (mb) promotes oxidative stress-induced inhibiting of hepa1-6 cell proliferation via selenoprotein.Biol. Trace Elem. Res.2023201136837610.1007/s12011‑022‑03120‑x35080709
    [Google Scholar]
  13. GuanF. ShanY. ZhaoX. ZhangD. WangM. PengF. XiaB. FengX. Apoptosis and membrane permeabilisation induced by macranthoside B on HL-60 cells.Nat. Prod. Res.201125433234010.1080/1478641100375208621328130
    [Google Scholar]
  14. WangW. QinJ.J. VorugantiS. NijampatnamB. VeluS.E. RuanK.H. HuM. ZhouJ. ZhangR. Discovery and characterization of dual inhibitors of mdm2 and nfat1 for pancreatic cancer therapy.Cancer Res.201878195656566710.1158/0008‑5472.CAN‑17‑393930217928
    [Google Scholar]
  15. MaY. PengY. ChengS. JinL. Targeting mgst1 makes non-small cell lung cancer cells sensitive to radiotherapy by epigenetically enhancing alox15-mediated ferroptosis.Curr. Cancer Drug Targets20242510.2174/011568009631792524082005393439350424
    [Google Scholar]
  16. WangW. QinJ.J. VorugantiS. WangM.H. SharmaH. PatilS. ZhouJ. WangH. MukhopadhyayD. BuolamwiniJ.K. ZhangR. Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice.Gastroenterology20141474893902.e210.1053/j.gastro.2014.07.00125016295
    [Google Scholar]
  17. PanG. ZhangK. GengS. LanC. HuX. LiC. JiH. LiC. HuX. WangY. LvM. CuiH. PHF14 knockdown causes apoptosis by inducing DNA damage and impairing the activity of the damage response complex in colorectal cancer.Cancer Lett.202253110912310.1016/j.canlet.2022.01.00235074497
    [Google Scholar]
  18. QiS. GuanX. ZhangJ. YuD. YuX. LiQ. YinW. ChengX.D. ZhangW. QinJ.J. Targeting E2 ubiquitin-conjugating enzyme UbcH5c by small molecule inhibitor suppresses pancreatic cancer growth and metastasis.Mol. Cancer20222117010.1186/s12943‑022‑01538‑435272681
    [Google Scholar]
  19. ZhangK. FuG. PanG. LiC. ShenL. HuR. ZhuS. ChenY. CuiH. Demethylzeylasteral inhibits glioma growth by regulating the miR-30e-5p/MYBL2 axis.Cell Death Dis.2018910103510.1038/s41419‑018‑1086‑830305611
    [Google Scholar]
  20. GuanX. WangY. YuW. WeiY. LuY. DaiE. DongX. ZhaoB. HuC. YuanL. LuanX. MiaoK. ChenB. ChengX.D. ZhangW. QinJ.J. Blocking ubiquitin-specific protease 7 induces ferroptosis in gastric cancer via targeting stearoyl-coa desaturase.Adv. Sci. (Weinh.)20241118230789910.1002/advs.20230789938460164
    [Google Scholar]
  21. LiuN. XuH. SunQ. YuX. ChenW. WeiH. JiangJ. XuY. LuW. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (xor) inhibitors.Oxid. Med. Cell. Longev.202120211147038010.1155/2021/147038033854690
    [Google Scholar]
  22. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer202222738139610.1038/s41568‑022‑00459‑035338310
    [Google Scholar]
  23. RochetteL. DogonG. RigalE. ZellerM. CottinY. VergelyC. Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis.Int. J. Mol. Sci.202224144910.3390/ijms2401044936613888
    [Google Scholar]
  24. WangY. LiaoS. PanZ. JiangS. FanJ. YuS. XueL. YangJ. MaS. LiuT. ZhangJ. ChenY. Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis.Free Radic. Biol. Med.202218611610.1016/j.freeradbiomed.2022.04.01435490984
    [Google Scholar]
  25. WangX. ShenT. LianJ. DengK. QuC. LiE. LiG. RenY. WangZ. JiangZ. SunX. LiX. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway.Mol. Med.202329113710.1186/s10020‑023‑00730‑637858064
    [Google Scholar]
  26. LiJ. JiaY. DingY. BaiJ. CaoF. LiF. The crosstalk between ferroptosis and mitochondrial dynamic regulatory networks.Int. J. Biol. Sci.20231992756277110.7150/ijbs.8334837324946
    [Google Scholar]
  27. ChenP. WuQ. FengJ. YanL. SunY. LiuS. XiangY. ZhangM. PanT. ChenX. DuanT. ZhaiL. ZhaiB. WangW. ZhangR. ChenB. HanX. LiY. ChenL. LiuY. HuangX. JinT. ZhangW. LuoH. ChenX. LiY. LiQ. LiG. ZhangQ. ZhuoL. YangZ. TangH. XieT. OuyangX. SuiX. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis.Signal Transduct. Target. Ther.2020515110.1038/s41392‑020‑0149‑332382060
    [Google Scholar]
  28. KlionskyD.J. AbdelmohsenK. AbeA. AbedinM.J. AbeliovichH. Acevedo ArozenaA. Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition). Autophagy,201612(1)122210.1080/15548627.2015.110035626799652
    [Google Scholar]
  29. ZhouJ. LiG. ZhengY. ShenH.M. HuX. MingQ.L. HuangC. LiP. GaoN. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission.Autophagy20151181259127910.1080/15548627.2015.105697026114658
    [Google Scholar]
  30. ChengX.T. XieY.X. ZhouB. HuangN. Farfel-BeckerT. ShengZ.H. Revisiting LAMP1 as a marker for degradative autophagy-lysosomal organelles in the nervous system.Autophagy20181481472147410.1080/15548627.2018.148214729940787
    [Google Scholar]
  31. YangY. WangQ. SongD. ZenR. ZhangL. WangY. YangH. ZhangD. JiaJ. ZhangJ. WangJ. Lysosomal dysfunction and autophagy blockade contribute to autophagy-related cancer suppressing peptide-induced cytotoxic death of cervical cancer cells through the AMPK/mTOR pathway.J. Exp. Clin. Cancer Res.202039119710.1186/s13046‑020‑01701‑z32962728
    [Google Scholar]
  32. LiuJ. KuangF. KroemerG. KlionskyD.J. KangR. TangD. Autophagy-dependent ferroptosis: Machinery and regulation.Cell Chem. Biol.202027442043510.1016/j.chembiol.2020.02.00532160513
    [Google Scholar]
  33. AnandhanA. DodsonM. ShakyaA. ChenJ. LiuP. WeiY. TanH. WangQ. JiangZ. YangK. GarciaJ.G.N. ChambersS.K. ChapmanE. OoiA. Yang-HartwichY. StockwellB.R. ZhangD.D. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8.Sci. Adv.202395eade958510.1126/sciadv.ade958536724221
    [Google Scholar]
  34. MiY. WeiC. SunL. LiuH. ZhangJ. LuoJ. YuX. HeJ. GeH. LiuP. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways.Biomed. Pharmacother.202315711404810.1016/j.biopha.2022.11404836463827
    [Google Scholar]
  35. ZhouB. LiuJ. KangR. KlionskyD.J. KroemerG. TangD. Ferroptosis is a type of autophagy-dependent cell death.Semin. Cancer Biol.2020668910010.1016/j.semcancer.2019.03.00230880243
    [Google Scholar]
  36. HayesJ.D. Dinkova-KostovaA.T. TewK.D. Oxidative stress in cancer.Cancer Cell202038216719710.1016/j.ccell.2020.06.00132649885
    [Google Scholar]
  37. Rojo de la VegaM. ChapmanE. ZhangD.D. Nrf2 and the hallmarks of cancer.Cancer Cell2018341214310.1016/j.ccell.2018.03.02229731393
    [Google Scholar]
  38. TaoS. LiuP. LuoG. Rojo de la VegaM. ChenH. WuT. TillotsonJ. ChapmanE. ZhangD.D. P97 negatively regulates nrf2 by extracting ubiquitylated nrf2 from the keap1-cul3 e3 complex.Mol. Cell. Biol.2017378e00660e1610.1128/MCB.00660‑1628115426
    [Google Scholar]
  39. MoroishiT. YamauchiT. NishiyamaM. NakayamaK.I. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism.J. Biol. Chem.201428923164301644110.1074/jbc.M113.54149024778179
    [Google Scholar]
  40. VashishtA.A. ZumbrennenK.B. HuangX. PowersD.N. DurazoA. SunD. BhaskaranN. PerssonA. UhlenM. SangfeltO. SpruckC. LeiboldE.A. WohlschlegelJ.A. Control of iron homeostasis by an iron-regulated ubiquitin ligase.Science2009326595371872110.1126/science.117633319762596
    [Google Scholar]
  41. WangL. DiaoJ. VAMP8 phosphorylation regulates lysosome dynamics during autophagy.Autophagy Rep.202211798210.1080/27694127.2022.203137835498374
    [Google Scholar]
  42. TonelliC. ChioI.I.C. TuvesonD.A. Transcriptional regulation by nrf2.Antioxid. Redox Signal.201829171727174510.1089/ars.2017.734228899199
    [Google Scholar]
  43. NishizawaH. YamanakaM. IgarashiK. Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal.FEBS J.202329071688170410.1111/febs.1638235107212
    [Google Scholar]
  44. ModiR. McKeeN. ZhangN. AlwaliA. NelsonS. LoharA. OstafeR. ZhangD.D. ParkinsonE.I. Stapled peptides as direct inhibitors of nrf2-smaf transcription factors.J. Med. Chem.20236696184619210.1021/acs.jmedchem.2c0203737097833
    [Google Scholar]
  45. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  46. DengL. HeS. GuoN. TianW. ZhangW. LuoL. Molecular mechanisms of ferroptosis and relevance to inflammation.Inflamm. Res.202372228129910.1007/s00011‑022‑01672‑136536250
    [Google Scholar]
  47. YaoT. LiL. The influence of microbiota on ferroptosis in intestinal diseases.Gut Microbes2023152226321010.1080/19490976.2023.226321037795964
    [Google Scholar]
  48. ZhouR.P. ChenY. WeiX. YuB. XiongZ.G. LuC. HuW. Novel insights into ferroptosis: Implications for age-related diseases.Theranostics20201026119761199710.7150/thno.5066333204324
    [Google Scholar]
  49. JomovaK. ValkoM. Advances in metal-induced oxidative stress and human disease.Toxicology20112832-3658710.1016/j.tox.2011.03.00121414382
    [Google Scholar]
  50. LiuJ. KangR. TangD. Signaling pathways and defense mechanisms of ferroptosis.FEBS J.2022289227038705010.1111/febs.1605934092035
    [Google Scholar]
  51. JiangX. YanQ. XieL. XuS. JiangK. HuangJ. WenY. YanY. ZhengJ. TangS. NieK. ZhengZ. PanJ. LiuP. HuangY. YanX. ZouY. ChenX. LiuF. LiP. ZhuangK. Construction and validation of a ferroptosis-related prognostic model for gastric cancer.J. Oncol.2021202111410.1155/2021/663552633727924
    [Google Scholar]
  52. LiuG. MaJ. HuG. JinH. Identification and validation of a novel ferroptosis-related gene model for predicting the prognosis of gastric cancer patients.PLoS One2021167e025436810.1371/journal.pone.025436834252149
    [Google Scholar]
  53. PalzerJ. EcksteinL. SlabuI. ReisenO. NeumannU.P. RoethA.A. Iron oxide nanoparticle-based hyperthermia as a treatment option in various gastrointestinal malignancies.Nanomaterials (Basel)20211111301310.3390/nano1111301334835777
    [Google Scholar]
  54. LeJ. PanG. ZhangC. ChenY. TiwariA.K. QinJ.J. Targeting ferroptosis in gastric cancer: Strategies and opportunities.Immunol. Rev.2024321122824510.1111/imr.1328037903748
    [Google Scholar]
  55. HassanniaB. VandenabeeleP. Vanden BergheT. Targeting ferroptosis to iron out cancer.Cancer Cell201935683084910.1016/j.ccell.2019.04.00231105042
    [Google Scholar]
  56. BayırH. DixonS.J. TyurinaY.Y. KellumJ.A. KaganV.E. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney.Nat. Rev. Nephrol.202319531533610.1038/s41581‑023‑00689‑x36922653
    [Google Scholar]
  57. QinX. ZhangJ. WangB. XuG. YangX. ZouZ. YuC. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells.Autophagy202117124266428510.1080/15548627.2021.191101633843441
    [Google Scholar]
  58. Friedmann AngeliJ.P. SchneiderM. PronethB. TyurinaY.Y. TyurinV.A. HammondV.J. HerbachN. AichlerM. WalchA. EggenhoferE. BasavarajappaD. RådmarkO. KobayashiS. SeibtT. BeckH. NeffF. EspositoI. WankeR. FörsterH. YefremovaO. HeinrichmeyerM. BornkammG.W. GeisslerE.K. ThomasS.B. StockwellB.R. O’DonnellV.B. KaganV.E. SchickJ.A. ConradM. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.Nat. Cell Biol.201416121180119110.1038/ncb306425402683
    [Google Scholar]
  59. HouW. XieY. SongX. SunX. LotzeM.T. ZehH.J.III KangR. TangD. Autophagy promotes ferroptosis by degradation of ferritin.Autophagy20161281425142810.1080/15548627.2016.118736627245739
    [Google Scholar]
  60. ManciasJ.D. WangX. GygiS.P. HarperJ.W. KimmelmanA.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy.Nature2014509749810510910.1038/nature1314824695223
    [Google Scholar]
  61. ZhaoH. LuY. ZhangJ. SunZ. ChengC. LiuY. WuL. ZhangM. HeW. HaoS. LiK. NCOA4 requires a [3Fe-4S] to sense and maintain the iron homeostasis.J. Biol. Chem.2024300210561210.1016/j.jbc.2023.10561238159858
    [Google Scholar]
  62. JiangJ. ZhouX. ChenH. WangX. RuanY. LiuX. MaJ. 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control.J. Hazard. Mater.202447113431910.1016/j.jhazmat.2024.13431938657511
    [Google Scholar]
  63. GuggisbergC.A. KimJ. LeeJ. ChenX. RyuM.S. Ncoa4 regulates iron recycling and responds to hepcidin activity and lipopolysaccharide in macrophages.Antioxidants (Basel)20221110192610.3390/antiox1110192636290647
    [Google Scholar]
  64. GryzikM. AspertiM. DenardoA. ArosioP. PoliM. NCOA4-mediated ferritinophagy promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells.Biochim. Biophys. Acta Mol. Cell Res.20211868211891310.1016/j.bbamcr.2020.11891333245979
    [Google Scholar]
  65. LinP.L. TangH.H. WuS.Y. ShawN.S. SuC.L. Saponin formosanin c-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells.Antioxidants (Basel)20209868210.3390/antiox908068232751249
    [Google Scholar]
  66. SunK. LiC. LiaoS. YaoX. OuyangY. LiuY. WangZ. LiZ. YaoF. Ferritinophagy, a form of autophagic ferroptosis: New insights into cancer treatment.Front. Pharmacol.202213104334410.3389/fphar.2022.104334436339539
    [Google Scholar]
  67. SuY. ZhaoB. ZhouL. ZhangZ. ShenY. LvH. AlQudsyL.H.H. ShangP. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs.Cancer Lett.202048312713610.1016/j.canlet.2020.02.01532067993
    [Google Scholar]
  68. ChenX. LiJ. KangR. KlionskyD.J. TangD. Ferroptosis: Machinery and regulation.Autophagy20211792054208110.1080/15548627.2020.181091832804006
    [Google Scholar]
  69. WangJ. WuN. PengM. OyangL. JiangX. PengQ. ZhouY. HeZ. LiaoQ. Ferritinophagy: Research advance and clinical significance in cancers.Cell Death Discov.20239146310.1038/s41420‑023‑01753‑y38110359
    [Google Scholar]
  70. JinX. JiangC. ZouZ. HuangH. LiX. XuS. TanR. Ferritinophagy in the etiopathogenic mechanism of related diseases.J. Nutr. Biochem.202311710933910.1016/j.jnutbio.2023.10933937061010
    [Google Scholar]
  71. YinJ. LinY. FangW. ZhangX. WeiJ. HuG. LiuP. NiuJ. GuoJ. ZhenY. LiJ. Tetrandrine citrate suppresses breast cancer via depletion of glutathione peroxidase 4 and activation of nuclear receptor coactivator 4-mediated ferritinophagy.Front. Pharmacol.20221382059310.3389/fphar.2022.82059335614944
    [Google Scholar]
  72. GrignanoE. BirsenR. ChapuisN. BouscaryD. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in leukemic cells.Front. Oncol.20201058653010.3389/fonc.2020.58653033042852
    [Google Scholar]
  73. GonciarzR.L. CollissonE.A. RensloA.R. Ferrous iron-dependent pharmacology.Trends Pharmacol. Sci.202142171810.1016/j.tips.2020.11.00333261861
    [Google Scholar]
  74. BairdL. YamamotoM. The molecular mechanisms regulating the keap1-nrf2 pathway.Mol. Cell. Biol.20204013e00099e2010.1128/MCB.00099‑2032284348
    [Google Scholar]
  75. YueC.F. LiL.S. AiL. DengJ.K. GuoY.M. sMicroRNA-28-5p acts as a metastasis suppressor in gastric cancer by targeting Nrf2.Exp. Cell Res.2021402211255310.1016/j.yexcr.2021.11255333737068
    [Google Scholar]
  76. LvH. LiuQ. WenZ. FengH. DengX. CiX. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis.Redox Biol.20171231132410.1016/j.redox.2017.03.00128285192
    [Google Scholar]
  77. DuanJ. CuiJ. YangZ. GuoC. CaoJ. XiM. WengY. YinY. WangY. WeiG. QiaoB. WenA. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling.J. Neuroinflammation20191612410.1186/s12974‑019‑1406‑730709405
    [Google Scholar]
  78. DuanJ. GuanY. MuF. GuoC. ZhangE. YinY. WeiG. ZhuY. CuiJ. CaoJ. WengY. WangY. XiM. WenA. Protective effect of butin against ischemia/reperfusion-induced myocardial injury in diabetic mice: Involvement of the AMPK/GSK-3β/Nrf2 signaling pathway.Sci. Rep.2017714149110.1038/srep4149128128361
    [Google Scholar]
  79. WangL. OuyangS. LiB. WuH. WangF. GSK-3β manipulates ferroptosis sensitivity by dominating iron homeostasis.Cell Death Discov.20217133410.1038/s41420‑021‑00726‑334732689
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096370291250109103853
Loading
/content/journals/ccdt/10.2174/0115680096370291250109103853
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AEG; ferritinophagy; iron homeostasis; Macranthoside B; NCOA4; NRF2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test