Skip to content
2000
image of Exosome-mediated Induction of Apoptosis in Cisplatin-treated Gastric Cancer Cells as a Strategy to Mitigate Side Effects

Abstract

Background

Gastric cancer is the third most lethal malignancy worldwide. While cisplatin has shown remarkable efficacy at a low cost, it is also associated with severe side effects. Exosomes play a key role in mediating the bystander effect of radiation and have the capacity to deliver apoptosis signals for targeted destruction of tumor cell. However, there remains a paucity of research on exosome-mediated bystander effects in the context of chemotherapeutic drugs.

Objective

This study aims to investigate the ability of cisplatin-induced exosomes to deliver apoptosis signals to gastric cancer cells, with the aim of mitigating the adverse effects associated with chemotherapy.

Methods

Differential ultracentrifugation was used to isolate apoptotic exosomes secreted by cisplatin-induced gastric cancer MKN-28 cells. Characterization and identification of these exosomes were performed by transmission electron microscopy, particle size analyzer, flow cytometry, and Western blotting. The transduction efficiency of the exosomes was confirmed through immunefluorescence. The effects of apoptotic exosomes on the proliferation, apoptosis, migration, cycle, senescence, and tumor formation of MKN-28 cells and were investigated by live cell workstation, flow cytometry, HE staining, and tumorigenicity assays.

Results

Cisplatin-induced apoptotic exosomes, termed DDP-EXO, exhibited a significantly enhanced inhibitory effect on the proliferation of MKN-28 cells compared to gastric epithelial GES-1 cells. Moreover, DDP-EXO was able to deliver apoptotic signals to MKN-28 cells, leading to an increase in the apoptotic population in recipient cells, possibly through the involvement of Caspase-9. Furthermore, DDP-EXO showed limited impacts on cell migration, cell cycle, or cell senescence. , DDP-EXO effectively suppressed tumorigenesis in a subcutaneous tumor model without causing detectable pathological changes in main organs and blood samples, suggesting a favorable safety profile.

Conclusion

In summary, this study provides new perspectives on the potential application of exosomes as an innovative therapeutic approach for gastric cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096369817250407164352
2025-05-12
2025-09-14
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Kroese T.E. van Laarhoven H.W.M. Nilsson M. Lordick F. Guckenberger M. Ruurda J.P. D’Ugo D. Haustermans K. van Cutsem E. van Hillegersberg R. van Rossum P.S.N. Definition of oligometastatic esophagogastric cancer and impact of local oligometastasis-directed treatment: A systematic review and meta-analysis. Eur. J. Cancer 2022 166 254 269 10.1016/j.ejca.2022.02.018 35339868
    [Google Scholar]
  3. Guckenberger M. Lievens Y. Bouma A.B. Collette L. Dekker A. deSouza N.M. Dingemans A.M.C. Fournier B. Hurkmans C. Lecouvet F.E. Meattini I. Méndez Romero A. Ricardi U. Russell N.S. Schanne D.H. Scorsetti M. Tombal B. Verellen D. Verfaillie C. Ost P. Characterisation and classification of oligometastatic disease: A European society for radiotherapy and oncology and European organisation for research and treatment of cancer consensus recommendation. Lancet Oncol. 2020 21 1 e18 e28 10.1016/S1470‑2045(19)30718‑1 31908301
    [Google Scholar]
  4. Omari J. Drewes R. Othmer M. Hass P. Pech M. Powerski M. Treatment of metastatic gastric adenocarcinoma with image-guided high-dose rate, interstitial brachytherapy as second-line or salvage therapy. Diagn. Interv. Radiol. 2019 25 5 360 367 10.5152/dir.2019.18390 31348004
    [Google Scholar]
  5. Shah C. Bauer-Nilsen K. McNulty R.H. Vicini F. Novel radiation therapy approaches for breast cancer treatment. Semin. Oncol. 2020 47 4 209 216 10.1053/j.seminoncol.2020.05.003 32513420
    [Google Scholar]
  6. Al-Batran S.E. Homann N. Pauligk C. Illerhaus G. Martens U.M. Stoehlmacher J. Schmalenberg H. Luley K.B. Prasnikar N. Egger M. Probst S. Messmann H. Moehler M. Fischbach W. Hartmann J.T. Mayer F. Höffkes H.G. Koenigsmann M. Arnold D. Kraus T.W. Grimm K. Berkhoff S. Post S. Jäger E. Bechstein W. Ronellenfitsch U. Mönig S. Hofheinz R.D. Effect of neoadjuvant chemotherapy followed by surgical resection on survival in patients with limited metastatic gastric or gastroesophageal junction cancer. JAMA Oncol. 2017 3 9 1237 1244 10.1001/jamaoncol.2017.0515 28448662
    [Google Scholar]
  7. Cao M. Li H. Sun D. He S. Yan X. Yang F. Zhang S. Xia C. Lei L. Peng J. Chen W. Current cancer burden in China: Epidemiology, etiology, and prevention. Cancer Biol. Med. 2022 19 8 1121 1138 10.20892/j.issn.2095‑3941.2022.0231 36069534
    [Google Scholar]
  8. Wang X. Guo Z. Targeting and delivery of platinum-based anticancer drugs. Chem. Soc. Rev. 2013 42 1 202 224 10.1039/C2CS35259A 23042411
    [Google Scholar]
  9. Ciarimboli G. Anticancer platinum drugs update. Biomolecules 2021 11 11 1637 10.3390/biom11111637 34827636
    [Google Scholar]
  10. Zhang J. Ye Z. Tew K.D. Townsend D.M. Cisplatin chemotherapy and renal function. Adv. Cancer Res. 2021 152 305 327 10.1016/bs.acr.2021.03.008 34353441
    [Google Scholar]
  11. Wang Y. Liu Q. Qiu L. Wang T. Yuan H. Lin J. Luo S. Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 150 902 908 10.1016/j.saa.2015.06.027 26119356
    [Google Scholar]
  12. Tanase D.M. Gosav E.M. Radu S. Costea C.F. Ciocoiu M. Carauleanu A. Lacatusu C.M. Maranduca M.A. Floria M. Rezus C. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity. Int. J. Mol. Sci. 2019 20 20 5238 10.3390/ijms20205238 31652595
    [Google Scholar]
  13. Gao F. Huang G. Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure‐activity relationship. Med. Res. Rev. 2020 40 5 2049 2084 10.1002/med.21698 32525247
    [Google Scholar]
  14. Koepsell H. Lips K. Volk C. Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 2007 24 7 1227 1251 10.1007/s11095‑007‑9254‑z 17473959
    [Google Scholar]
  15. Qi L. Luo Q. Zhang Y. Jia F. Zhao Y. Wang F. Advances in toxicological research of the anticancer drug cisplatin. Chem. Res. Toxicol. 2019 32 8 1469 1486 10.1021/acs.chemrestox.9b00204 31353895
    [Google Scholar]
  16. Miller R.P. Tadagavadi R.K. Ramesh G. Reeves W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins 2010 2 11 2490 2518 10.3390/toxins2112490 22069563
    [Google Scholar]
  17. Gómez-Sierra T. Eugenio-Pérez D. Sánchez-Chinchillas A. Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem. Toxicol. 2018 120 230 242 10.1016/j.fct.2018.07.018 29990577
    [Google Scholar]
  18. Tchounwou P.B. Dasari S. Noubissi F.K. Ray P. Kumar S. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J. Exp. Pharmacol. 2021 13 303 328 10.2147/JEP.S267383 33776489
    [Google Scholar]
  19. Makovec T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol. 2019 53 2 148 158 10.2478/raon‑2019‑0018 30956230
    [Google Scholar]
  20. Dasari S. Njiki S. Mbemi A. Yedjou C.G. Tchounwou P.B. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci. 2022 23 3 1532 10.3390/ijms23031532 35163459
    [Google Scholar]
  21. Théry C. Witwer K.W. Aikawa E. Alcaraz M.J. Anderson J.D. Andriantsitohaina R. Antoniou A. Arab T. Archer F. Atkin-Smith G.K. Ayre D.C. Bach J.M. Bachurski D. Baharvand H. Balaj L. Baldacchino S. Bauer N.N. Baxter A.A. Bebawy M. Beckham C. Bedina Zavec A. Benmoussa A. Berardi A.C. Bergese P. Bielska E. Blenkiron C. Bobis-Wozowicz S. Boilard E. Boireau W. Bongiovanni A. Borràs F.E. Bosch S. Boulanger C.M. Breakefield X. Breglio A.M. Brennan M.Á. Brigstock D.R. Brisson A. Broekman M.L.D. Bromberg J.F. Bryl-Górecka P. Buch S. Buck A.H. Burger D. Busatto S. Buschmann D. Bussolati B. Buzás E.I. Byrd J.B. Camussi G. Carter D.R.F. Caruso S. Chamley L.W. Chang Y.T. Chen C. Chen S. Cheng L. Chin A.R. Clayton A. Clerici S.P. Cocks A. Cocucci E. Coffey R.J. Cordeiro-da-Silva A. Couch Y. Coumans F.A.W. Coyle B. Crescitelli R. Criado M.F. D’Souza-Schorey C. Das S. Datta Chaudhuri A. de Candia P. De Santana E.F. De Wever O. del Portillo H.A. Demaret T. Deville S. Devitt A. Dhondt B. Di Vizio D. Dieterich L.C. Dolo V. Dominguez Rubio A.P. Dominici M. Dourado M.R. Driedonks T.A.P. Duarte F.V. Duncan H.M. Eichenberger R.M. Ekström K. EL Andaloussi S. Elie-Caille C. Erdbrügger U. Falcón-Pérez J.M. Fatima F. Fish J.E. Flores-Bellver M. Försönits A. Frelet-Barrand A. Fricke F. Fuhrmann G. Gabrielsson S. Gámez-Valero A. Gardiner C. Gärtner K. Gaudin R. Gho Y.S. Giebel B. Gilbert C. Gimona M. Giusti I. Goberdhan D.C.I. Görgens A. Gorski S.M. Greening D.W. Gross J.C. Gualerzi A. Gupta G.N. Gustafson D. Handberg A. Haraszti R.A. Harrison P. Hegyesi H. Hendrix A. Hill A.F. Hochberg F.H. Hoffmann K.F. Holder B. Holthofer H. Hosseinkhani B. Hu G. Huang Y. Huber V. Hunt S. Ibrahim A.G.E. Ikezu T. Inal J.M. Isin M. Ivanova A. Jackson H.K. Jacobsen S. Jay S.M. Jayachandran M. Jenster G. Jiang L. Johnson S.M. Jones J.C. Jong A. Jovanovic-Talisman T. Jung S. Kalluri R. Kano S. Kaur S. Kawamura Y. Keller E.T. Khamari D. Khomyakova E. Khvorova A. Kierulf P. Kim K.P. Kislinger T. Klingeborn M. Klinke D.J. II Kornek M. Kosanović M.M. Kovács Á.F. Krämer-Albers E.M. Krasemann S. Krause M. Kurochkin I.V. Kusuma G.D. Kuypers S. Laitinen S. Langevin S.M. Languino L.R. Lannigan J. Lässer C. Laurent L.C. Lavieu G. Lázaro-Ibáñez E. Le Lay S. Lee M.S. Lee Y.X.F. Lemos D.S. Lenassi M. Leszczynska A. Li I.T.S. Liao K. Libregts S.F. Ligeti E. Lim R. Lim S.K. Linē A. Linnemannstöns K. Llorente A. Lombard C.A. Lorenowicz M.J. Lörincz Á.M. Lötvall J. Lovett J. Lowry M.C. Loyer X. Lu Q. Lukomska B. Lunavat T.R. Maas S.L.N. Malhi H. Marcilla A. Mariani J. Mariscal J. Martens-Uzunova E.S. Martin-Jaular L. Martinez M.C. Martins V.R. Mathieu M. Mathivanan S. Maugeri M. McGinnis L.K. McVey M.J. Meckes D.G. Jr Meehan K.L. Mertens I. Minciacchi V.R. Möller A. Møller Jørgensen M. Morales-Kastresana A. Morhayim J. Mullier F. Muraca M. Musante L. Mussack V. Muth D.C. Myburgh K.H. Najrana T. Nawaz M. Nazarenko I. Nejsum P. Neri C. Neri T. Nieuwland R. Nimrichter L. Nolan J.P. Nolte-’t Hoen E.N.M. Noren Hooten N. O’Driscoll L. O’Grady T. O’Loghlen A. Ochiya T. Olivier M. Ortiz A. Ortiz L.A. Osteikoetxea X. Østergaard O. Ostrowski M. Park J. Pegtel D.M. Peinado H. Perut F. Pfaffl M.W. Phinney D.G. Pieters B.C.H. Pink R.C. Pisetsky D.S. Pogge von Strandmann E. Polakovicova I. Poon I.K.H. Powell B.H. Prada I. Pulliam L. Quesenberry P. Radeghieri A. Raffai R.L. Raimondo S. Rak J. Ramirez M.I. Raposo G. Rayyan M.S. Regev-Rudzki N. Ricklefs F.L. Robbins P.D. Roberts D.D. Rodrigues S.C. Rohde E. Rome S. Rouschop K.M.A. Rughetti A. Russell A.E. Saá P. Sahoo S. Salas-Huenuleo E. Sánchez C. Saugstad J.A. Saul M.J. Schiffelers R.M. Schneider R. Schøyen T.H. Scott A. Shahaj E. Sharma S. Shatnyeva O. Shekari F. Shelke G.V. Shetty A.K. Shiba K. Siljander P.R.M. Silva A.M. Skowronek A. Snyder O.L. II Soares R.P. Sódar B.W. Soekmadji C. Sotillo J. Stahl P.D. Stoorvogel W. Stott S.L. Strasser E.F. Swift S. Tahara H. Tewari M. Timms K. Tiwari S. Tixeira R. Tkach M. Toh W.S. Tomasini R. Torrecilhas A.C. Tosar J.P. Toxavidis V. Urbanelli L. Vader P. van Balkom B.W.M. van der Grein S.G. Van Deun J. van Herwijnen M.J.C. Van Keuren-Jensen K. van Niel G. van Royen M.E. van Wijnen A.J. Vasconcelos M.H. Vechetti I.J. Jr Veit T.D. Vella L.J. Velot É. Verweij F.J. Vestad B. Viñas J.L. Visnovitz T. Vukman K.V. Wahlgren J. Watson D.C. Wauben M.H.M. Weaver A. Webber J.P. Weber V. Wehman A.M. Weiss D.J. Welsh J.A. Wendt S. Wheelock A.M. Wiener Z. Witte L. Wolfram J. Xagorari A. Xander P. Xu J. Yan X. Yáñez-Mó M. Yin H. Yuana Y. Zappulli V. Zarubova J. Žėkas V. Zhang J. Zhao Z. Zheng L. Zheutlin A.R. Zickler A.M. Zimmermann P. Zivkovic A.M. Zocco D. Zuba-Surma E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018 7 1 1535750 10.1080/20013078.2018.1535750 30637094
    [Google Scholar]
  22. Raposo G. Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013 200 4 373 383 10.1083/jcb.201211138 23420871
    [Google Scholar]
  23. Al-Nedawi K. Meehan B. Rak J. Microvesicles: Messengers and mediators of tumor progression. Cell Cycle 2009 8 13 2014 2018 10.4161/cc.8.13.8988 19535896
    [Google Scholar]
  24. He C. Zheng S. Luo Y. Wang B. Exosome theranostics: Biology and translational medicine. theranostics 2018 8 1 237 255 10.7150/thno.21945 29290805
    [Google Scholar]
  25. Ludwig A-K Bernd G Exosomes: Small vesicles participating in intercellular communication. Int J Biochem Cell Biol 2012 44 1 11 15 10.1016/j.biocel.2011.10.005
    [Google Scholar]
  26. Simons M. Raposo G. Exosomes – Vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009 21 4 575 581 10.1016/j.ceb.2009.03.007 19442504
    [Google Scholar]
  27. Piper R.C. Katzmann D.J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 2007 23 1 519 547 10.1146/annurev.cellbio.23.090506.123319 17506697
    [Google Scholar]
  28. Gruenberg J. Maxfield F.R. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 1995 7 4 552 563 10.1016/0955‑0674(95)80013‑1 7495576
    [Google Scholar]
  29. Katzmann D.J. Odorizzi G. Emr S.D. Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 2002 3 12 893 905 10.1038/nrm973 12461556
    [Google Scholar]
  30. Lin S. Yu Z. Chen D. Wang Z. Miao J. Li Q. Zhang D. Song J. Cui D. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020 16 9 1903916 10.1002/smll.201903916 31663295
    [Google Scholar]
  31. Shao H. Im H. Castro C.M. Breakefield X. Weissleder R. Lee H. New technologies for analysis of extracellular vesicles. Chem. Rev. 2018 118 4 1917 1950 10.1021/acs.chemrev.7b00534 29384376
    [Google Scholar]
  32. Colombo M. Raposo G. Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014 30 1 255 289 10.1146/annurev‑cellbio‑101512‑122326 25288114
    [Google Scholar]
  33. Sampey G.C. Meyering S.S. Asad Zadeh M. Saifuddin M. Hakami R.M. Kashanchi F. Exosomes and their role in CNS viral infections. J. Neurovirol. 2014 20 3 199 208 10.1007/s13365‑014‑0238‑6 24578033
    [Google Scholar]
  34. Raposo G Nijman H W Stoorvogel W B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996 183 3 1161 1172
    [Google Scholar]
  35. Théry C. Amigorena S. Raposo G. Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006 30 1 22 10.1002/0471143030.cb0322s30 18228490
    [Google Scholar]
  36. Pegtel D.M. Gould S.J. Exosomes. Annu. Rev. Biochem. 2019 88 1 487 514 10.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  37. Boriachek K. Islam M.N. Möller A. Salomon C. Nguyen N.T. Hossain M.S.A. Yamauchi Y. Shiddiky M.J.A. Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small 2018 14 6 1702153 10.1002/smll.201702153 29282861
    [Google Scholar]
  38. Wang Y. Liu J. Ma J. Sun T. Zhou Q. Wang W. Wang G. Wu P. Wang H. Jiang L. Yuan W. Sun Z. Ming L. Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol. Cancer 2019 18 1 116 10.1186/s12943‑019‑1041‑z 31277663
    [Google Scholar]
  39. EL Andaloussi S. Mäger I. Breakefield X.O. Wood M.J.A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013 12 5 347 357 10.1038/nrd3978 23584393
    [Google Scholar]
  40. Colombo M. Moita C. van Niel G. Kowal J. Vigneron J. Benaroch P. Manel N. Moita L.F. Théry C. Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 2013 126 Pt 24 jcs.128868 10.1242/jcs.128868 24105262
    [Google Scholar]
  41. André F. Schartz N.E.C. Chaput N. Flament C. Raposo G. Amigorena S. Angevin E. Zitvogel L. Tumor-derived exosomes: A new source of tumor rejection antigens. Vaccine 2002 20 Suppl. 4 A28 A31 10.1016/S0264‑410X(02)00384‑5 12477425
    [Google Scholar]
  42. Théry C. Ostrowski M. Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009 9 8 581 593 10.1038/nri2567 19498381
    [Google Scholar]
  43. Simpson Richard J. Proteomic profiling of exosomes: Current perspectives. Proteomics 2008 8 19 4083 4099
    [Google Scholar]
  44. Wortzel I. Dror S. Kenific C.M. Lyden D. Exosome-mediated metastasis: Communication from a distance. Dev. Cell 2019 49 3 347 360 10.1016/j.devcel.2019.04.011 31063754
    [Google Scholar]
  45. Mathieu M. Martin-Jaular L. Lavieu G. Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019 21 1 9 17 10.1038/s41556‑018‑0250‑9 30602770
    [Google Scholar]
  46. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  47. Peinado H. Alečković M. Lavotshkin S. Matei I. Costa-Silva B. Moreno-Bueno G. Hergueta-Redondo M. Williams C. García-Santos G. Ghajar C.M. Nitadori-Hoshino A. Hoffman C. Badal K. Garcia B.A. Callahan M.K. Yuan J. Martins V.R. Skog J. Kaplan R.N. Brady M.S. Wolchok J.D. Chapman P.B. Kang Y. Bromberg J. Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 2012 18 6 883 891 10.1038/nm.2753 22635005
    [Google Scholar]
  48. Kalluri R. The biology and function of exosomes in cancer. J. Clin. Invest. 2016 126 4 1208 1215 10.1172/JCI81135 27035812
    [Google Scholar]
  49. Kahlert C. Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J. Mol. Med. 2013 91 4 431 437 10.1007/s00109‑013‑1020‑6 23519402
    [Google Scholar]
  50. McAndrews K.M. Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol. Cancer 2019 18 1 52 10.1186/s12943‑019‑0963‑9 30925917
    [Google Scholar]
  51. Qu J.L. Qu X.J. Zhao M.F. Teng Y.E. Zhang Y. Hou K.Z. Jiang Y.H. Yang X.H. Liu Y.P. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig. Liver Dis. 2009 41 12 875 880 10.1016/j.dld.2009.04.006 19473897
    [Google Scholar]
  52. Stec M. Szatanek R. Baj-Krzyworzeka M. Baran J. Zembala M. Barbasz J. Waligórska A. Dobrucki J.W. Mytar B. Szczepanik A. Siedlar M. Drabik G. Urbanowicz B. Zembala M. Interactions of tumour-derived micro(nano)vesicles with human gastric cancer cells. J. Transl. Med. 2015 13 1 376 10.1186/s12967‑015‑0737‑0 26626416
    [Google Scholar]
  53. Wu L. Zhang X. Zhang B. Shi H. Yuan X. Sun Y. Pan Z. Qian H. Xu W. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumour Biol. 2016 37 9 12169 12180 10.1007/s13277‑016‑5071‑5 27220495
    [Google Scholar]
  54. Banaz-Yaşar F. Lennartz K. Winterhager E. Gellhaus A. Radiation‐induced bystander effects in malignant trophoblast cells are independent from gap junctional communication. J. Cell. Biochem. 2008 103 1 149 161 10.1002/jcb.21395 17516549
    [Google Scholar]
  55. Ryan L.A. Smith R.W. Seymour C.B. Mothersill C.E. Dilution of irradiated cell conditioned medium and the bystander effect. Radiat. Res. 2008 169 2 188 196 10.1667/RR1141.1 18220470
    [Google Scholar]
  56. Belyakov O.V. Mitchell S.A. Parikh D. Randers-Pehrson G. Marino S.A. Amundson S.A. Geard C.R. Brenner D.J. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc. Natl. Acad. Sci. USA 2005 102 40 14203 14208 10.1073/pnas.0505020102 16162670
    [Google Scholar]
  57. Mancuso M. Pasquali E. Leonardi S. Tanori M. Rebessi S. Di Majo V. Pazzaglia S. Toni M.P. Pimpinella M. Covelli V. Saran A. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc. Natl. Acad. Sci. USA 2008 105 34 12445 12450 10.1073/pnas.0804186105 18711141
    [Google Scholar]
  58. Wang H. Yu K.N. Hou J. Liu Q. Han W. Radiation-induced bystander effect: Early process and rapid assessment. Cancer Lett. 2015 356 1 137 144 10.1016/j.canlet.2013.09.031 24139967
    [Google Scholar]
  59. Azzam E.I. Little J.B. The radiation-induced bystander effect: Evidence and significance. Hum. Exp. Toxicol. 2004 23 2 61 65 10.1191/0960327104ht418oa 15070061
    [Google Scholar]
  60. Ariyoshi K. Miura T. Kasai K. Fujishima Y. Nakata A. Yoshida M. Radiation-induced bystander effect is mediated by mitochondrial dna in exosome-like vesicles. Sci. Rep. 2019 9 1 9103 10.1038/s41598‑019‑45669‑z 31235776
    [Google Scholar]
  61. Xu S. Wang J. Ding N. Hu W. Zhang X. Wang B. Hua J. Wei W. Zhu Q. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 2015 12 12 1355 1363 10.1080/15476286.2015.1100795 26488306
    [Google Scholar]
  62. Le M. Fernandez-Palomo C. McNeill F.E. Seymour C.B. Rainbow A.J. Mothersill C.E. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect. PLoS One 2017 12 3 e0173685 10.1371/journal.pone.0173685 28278290
    [Google Scholar]
  63. Escola J.M. Kleijmeer M.J. Stoorvogel W. Griffith J.M. Yoshie O. Geuze H.J. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 1998 273 32 20121 20127 10.1074/jbc.273.32.20121 9685355
    [Google Scholar]
  64. van Niel G. Charrin S. Simoes S. Romao M. Rochin L. Saftig P. Marks M.S. Rubinstein E. Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 2011 21 4 708 721 10.1016/j.devcel.2011.08.019 21962903
    [Google Scholar]
  65. Andreu Z. Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 2014 5 442 10.3389/fimmu.2014.00442 25278937
    [Google Scholar]
  66. Nolte-'t Hoen Esther N M. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 2009 113 9 1977 1981
    [Google Scholar]
  67. Janowska-Wieczorek A. Wysoczynski M. Kijowski J. Marquez-Curtis L. Machalinski B. Ratajczak J. Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 2005 113 5 752 760 10.1002/ijc.20657 15499615
    [Google Scholar]
  68. de Araujo Farias V. O’Valle F. Serrano-Saenz S. Anderson P. Andrés E. López-Peñalver J. Tovar I. Nieto A. Santos A. Martín F. Expósito J. Oliver F.J. de Almodóvar J.M.R. Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol. Cancer 2018 17 1 122 10.1186/s12943‑018‑0867‑0 30111323
    [Google Scholar]
  69. Fais S. NK cell-released exosomes. OncoImmunology 2013 2 1 e22337 10.4161/onci.22337 23482694
    [Google Scholar]
  70. Di Pace A. Tumino N. Besi F. Alicata C. Conti L. Munari E. Maggi E. Vacca P. Moretta L. Characterization of human nk cell-derived exosomes: role of dnam1 receptor in exosome-mediated cytotoxicity against tumor. Cancers 2020 12 3 661 10.3390/cancers12030661 32178479
    [Google Scholar]
  71. Federici C. Shahaj E. Cecchetti S. Camerini S. Casella M. Iessi E. Camisaschi C. Paolino G. Calvieri S. Ferro S. Cova A. Squarcina P. Bertuccini L. Iosi F. Huber V. Lugini L. Natural-killer-derived extracellular vesicles: Immune sensors and interactors. Front. Immunol. 2020 11 262 10.3389/fimmu.2020.00262 32231660
    [Google Scholar]
  72. Zhu L. Kalimuthu S. Gangadaran P. Oh J.M. Lee H.W. Baek S.H. Jeong S.Y. Lee S.W. Lee J. Ahn B.C. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 2017 7 10 2732 2745 10.7150/thno.18752 28819459
    [Google Scholar]
  73. Li Z. Li Y. Ouyang Q. Li X. Huang J. Exosome-derived GTF2H2 from Huh7 cells can inhibit endothelial cell viability, migration, tube formation, and permeability. Tissue Cell 2022 79 101922 10.1016/j.tice.2022.101922 36116407
    [Google Scholar]
  74. Shi L. Wang Z. Geng X. Zhang Y. Xue Z. Exosomal miRNA-34 from cancer-associated fibroblasts inhibits growth and invasion of gastric cancer cells in vitro and in vivo. Aging 2020 12 9 8549 8564 10.18632/aging.103157 32391804
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096369817250407164352
Loading
/content/journals/ccdt/10.2174/0115680096369817250407164352
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Gastric cancer ; cisplatin ; bystander effects ; exosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test