Skip to content
2000
image of Grafting of Resveratrol-Chitosan Nanoparticles as a Promising Radiosensitizer and Protector in DMBA-Induced Breast Cancer in Mice

Abstract

Introduction

Breast cancer is the most common malignancy among women and the second leading cause of cancer-related deaths worldwide. Resveratrol, a polyphenolic stilbene derivative found in grapes, red wine, and other plants, possesses anti-cancer properties. Various studies have reported the potential of different nanomaterials to act as radiosensitizers against tumor cells. This study aimed to evaluate the antitumor and radiosensitizing effects of Resveratrol-Chitosan Nanoparticles (Res-Ch-NPs) in a DMBA-induced breast cancer mouse model.

Methods

Res-Ch-NPs were developed using the chitosan emulsification cross-linking technique. The particle size, entrapment efficiency, zeta potential, UV and FT-IR spectra, and drug release profile of Res-Ch-NPs were evaluated. The IC of Res-Ch-NPs, both individually and in combination with γ-irradiation, was calculated against the MCF-7 cell line using the MTT assay. The LD of Res-Ch-NPs was estimated, and 1/20 LD was used to assess the antitumor and radiosensitizing effects on breast cancer cell-bearing mice. The efficacy was evaluated in DMBA-induced breast cancer mice, examining tumor weight, volume, blood parameters (Hb%, RBCs, and WBCs), oxidative stress markers (MDA, GSH, SOD, and CAT), immune markers (INF-γ, TGF-β1, CD4, and CD8), and gene expression levels (p53, survivin, and STAT3). Additionally, histopathological examination of breast tissues was also carried out.

Results

Res-Ch-NPs demonstrated high entrapment efficiency (82.46 ± 1.02), a polydispersity index (0.65 ± 0.03), and a particle size of 184.60 ± 17.36 nm with a zeta potential of -46.78 ± 0.57 mV. The UV spectra of resveratrol and Res-Ch-NPs showed strong absorption at 230 and 250 nm. FTIR analysis confirmed the chemical stability of resveratrol in Res-Ch-NPs. The maximum release of Res-Ch-NPs was recorded at 55.07% after 44 hours. The IC values of Res-Ch-NPs, both individually and combined with γ-irradiation, against MCF-7 cell viability were 38.26 and 24.8 ± 0.76 µg/mL, respectively. The LD of Res-Ch-NPs was found to be 2090 mg/kg body weight. Treatment of DMBA-injected mice with Res-Ch-NPs and γ-irradiation significantly reduced tumor weight and volume, improved blood Hb%, RBC, and WBC levels, as well as breast MDA, GSH, SOD, and CAT levels. Additionally, breast levels of INF-γ, TGF-β1, CD4, and CD8 were reduced in DMBA-injected mice treated with Res-Ch-NPs and γ-irradiation. Conversely, the combination treatment upregulated p53 in breast tissues and downregulated the expression of survivin and STAT3 genes.

Discussion

The findings confirmed that Res-Ch-NPs enhanced radiosensitivity, facilitating tumor regression and immune restoration. The modulation of pro-inflammatory and antioxidant pathways suggests a dual therapeutic role, acting as both a radiation enhancer and a tumor-suppressing agent. However, further research is needed to optimize nanoparticle dosing, assess long-term safety, and facilitate clinical translation into human studies.

Conclusion

Resveratrol-grafted chitosan shows promise as a radiosensitizer for cancer treatment by enhancing the responsiveness of tumor cells to γ-irradiation through the modulation of proinflammatory and antioxidant markers. Understanding the interactions between p53, survivin, and STAT3 is crucial for developing effective breast cancer treatments. Targeting survivin and modulating STAT3 activity may offer potential for future anticancer therapies.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096364549250828062651
2025-09-05
2025-12-22
Loading full text...

Full text loading...

References

  1. Alamilla-Presuel J.C. Burgos-Molina A.M. Gonzلlez-Vidal, A.; Sendra-Portero, F.; Ruiz-Gَmez, M.J. Factors and molecular mechanisms of radiation resistance in cancer cells. Int. J. Radiat. Biol. 2022 98 8 1301 1315 10.1080/09553002.2022.2047825 35225732
    [Google Scholar]
  2. Marampon F. Gravina G. Ju X. Vetuschi A. Sferra R. Casimiro M.C. Pompili S. Festuccia C. Colapietro A. Gaudio E. Di Cesare E. Tombolini V. Pestell R.G. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget 2016 7 5 5383 5400 10.18632/oncotarget.6579 26689991
    [Google Scholar]
  3. Hussein M.A. Boshra S. Antitumor and structure antioxidant activity relationship of colchicine on Ehrlich ascites carcinoma (EAC) in female mice. Int. J. Drug Deliv. 2013 5 4 430 437
    [Google Scholar]
  4. Hussein M.A. Ismail N.E.M. Mohamed A.H. Borik R.M. Ali A.A. Mosaad Y.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity. Bioinform. Biol. Insights 2021 15 11779322211055891 10.1177/11779322211055891 34840499
    [Google Scholar]
  5. Elharrif M.G. Abdel Maksoud H.A. Abdullah M.H. Abd Elmohsen A.S. Biochemical evaluation of possible protective effect of purslane extract in experimentally induced arthritis associated with obesity. Prostaglandins Other Lipid Mediat. 2024 172 106823 10.1016/j.prostaglandins.2024.106823 38408536
    [Google Scholar]
  6. Mohammed Abdalla H. Soad Mohamed A.G. In vivo hepato-protective properties of purslane extracts on paracetamol-induced liver damage. Malays. J. Nutr. 2010 16 1 161 170 [PMID: 22691863
    [Google Scholar]
  7. Mohamad E.A. Mohamed Z.N. Hussein M.A. Elneklawi M.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation. ACS Omega 2022 7 3 3109 3120 10.1021/acsomega.1c06591 35097306
    [Google Scholar]
  8. Hussein M.A. Shahidul Islam M. Ali A.A. Mansour M.S. Bondok M. Salem M.A. Amein A.S. ElGizawy H.A. Malva parviflora seed oil; Isolation, gas chromatographic profiling and its cardioprotective activity against myocardial infraction in animal model. J. King Saud Univ. Sci. 2024 36 2 103060 10.1016/j.jksus.2023.103060
    [Google Scholar]
  9. Gobba N.A.E.K. Hussein Ali A. El Sharawy D.E. Hussein M.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch. Environ. Occup. Health 2018 73 3 189 202 10.1080/19338244.2017.1314930 28375782
    [Google Scholar]
  10. Jin K. Zhou F. Zhang L. Cancer environment immunotherapy: Targeting TGF-β finds its way towards tissue healing and vasculature remodeling. Signal Transduct. Target. Ther. 2021 6 1 41 10.1038/s41392‑021‑00472‑z 33514687
    [Google Scholar]
  11. Balasubramani A. Shibata Y. Crawford G.E. Baldwin A.S. Hatton R.D. Weaver C.T. Modular utilization of distal cis-regulatory elements controls Ifng gene expression in T cells activated by distinct stimuli. Immunity 2010 33 1 35 47 10.1016/j.immuni.2010.07.004 20643337
    [Google Scholar]
  12. Liu M. Kuo F. Capistrano K.J. Kang D. Nixon B.G. Shi W. Chou C. Do M.H. Stamatiades E.G. Gao S. Li S. Chen Y. Hsieh J.J. Hakimi A.A. Taniuchi I. Chan T.A. Li M.O. TGF-β suppresses type 2 immunity to cancer. Nature 2020 587 7832 115 120 10.1038/s41586‑020‑2836‑1 33087928
    [Google Scholar]
  13. Yang Z. Zhang Q. Yu L. Zhu J. Cao Y. Gao X. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol. 2021 264 113249 10.1016/j.jep.2020.113249 32810619
    [Google Scholar]
  14. Borik R.M. Hussein M.A. Synthesis, molecular docking, biological potentials and structure-activity relationship of new quinazoline and quinazoline-4-one derivatives. Asian J. Chem. 2021 33 2 423 438 10.14233/ajchem.2021.23036
    [Google Scholar]
  15. Boshra S.A. Hussein M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed. 2016 8 217 227
    [Google Scholar]
  16. Mosaad Y.O. Hussein M.A. Ateyya H. Mohamed A.H. Ali A.A. Ramadan Youssuf A. Wink M. El-Kholy A.A. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients. J. Inflamm. Res. 2022 15 6745 6759 10.2147/JIR.S386506 36540060
    [Google Scholar]
  17. Al-nami S.Y. Alorabi A.Q. Al-Ahmed Z.A. Mogharbel A.T. Abumelha H.M. Hussein M.A. El-Metwaly N.M. Superficial and inkjet scalable printed sensors integrated with iron oxide and reduced graphene oxide for sensitive voltammetric determination of lurasidone. ACS Omega 2023 8 11 10449 10458 10.1021/acsomega.3c00040 36969426
    [Google Scholar]
  18. Hussein M.A. Prophylactic effect of resveratrol against ethinylestradiol-induced liver cholestasis. J. Med. Food 2013 16 3 246 254 10.1089/jmf.2012.0183 23305807
    [Google Scholar]
  19. Hussein M.A. Borik R.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol. 2022 23 9 1179 1203 10.2174/1389201022666210601170650 34077343
    [Google Scholar]
  20. El-Gizawy H.A. Hussein M.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malvaparviflora growing in Egypt. Int. J. Phytomed. 2015 7 219 230
    [Google Scholar]
  21. Hussein M.A. Borik R.M. Nafie M.S. Abo-Salem H.M. Boshra S.A. Mohamed Z.N. Structure activity relationship and molecular docking of some quinazolines bearing sulfamerazine moiety as new 3CLpro, cPLA2, sPLA2 inhibitors. Molecules 2023 28 16 6052 10.3390/molecules28166052 37630304
    [Google Scholar]
  22. Eldourghamy A. Hossam T. Hussein M.A. Abdel-Aziz A. Samir A.E. Naringenin suppresses NLRP3 inflammasome activation via the mRNA-208a signaling pathway in isoproterenol-induced myocardial infarction. Asian Pac. J. Trop. Biomed. 2023 13 10 443 450 10.4103/2221‑1691.387750
    [Google Scholar]
  23. Hussein M.A. Administration of exogenous surfactant and cytosolic phospholipase A2α Inhibitors may help COVID-19-infected patients with chronic diseases. Coronaviruses 2021 2 12 e080921192222 10.2174/2666796702666210311123323
    [Google Scholar]
  24. Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006 31 7 603 632 10.1016/j.progpolymsci.2006.06.001
    [Google Scholar]
  25. Fatima Qizilbash F. Sartaj A. Qamar Z. Kumar S. Imran M. Mohammed Y. Ali J. Baboota S. Ali A. Nanotechnology revolutionises breast cancer treatment: Harnessing lipid-based nanocarriers to combat cancer cells. J. Drug Target. 2023 31 8 794 816 10.1080/1061186X.2023.2243403 37525966
    [Google Scholar]
  26. Ataollahi M.R. Sharifi J. Paknahad M.R. Paknahad A. A. Breast cancer and associated factors: A review J. Med. Life 2015 8 (Spec Iss 4) 6 11 28316699
    [Google Scholar]
  27. Mosaad Y.O. Baraka M.A. Warda A.E.A. Ateyya H. Hussein M.A. Gaber S. Plasma lipid profile: A predictive marker of disease severity among COVID-19 patients - An opportunity for low-income countries. Drugs Ther. Perspect. 2022 38 6 286 291 10.1007/s40267‑022‑00916‑8 35789563
    [Google Scholar]
  28. Elmoghazy H.M. Hussein M.A. Abdel-Aziz A. Elmasry S.A. Metwal A.M. CAPE improves vanin-1/AKT/miRNA-203 signaling pathways in DSS-induced ulcerative colitis. Biomed. Res. Ther. 2022 9 9 5313 5325 10.15419/bmrat.v9i9.769
    [Google Scholar]
  29. Elneklawi M.S. Mohamed Z.N. Hussein M.A. Mohamad E.A. STEN ameliorates VEGF gene expression by improving XBP1/mRNA-21/mRNA-330 signalling pathways in cisplatin-induced uterus injury in rats. J. Drug Deliv. Sci. Technol. 2023 87 104760 10.1016/j.jddst.2023.104760
    [Google Scholar]
  30. Mansour M.S. Mahmoud A.A. Sayah M.A. Mohamed Z.N. Hussein M.A. ALsherif, D.A. RES-CMCNPs enhance antioxidant, proinflammatory, and sensitivity of tumor solids to γ-irradiation in EAC-bearing mice. Pharm. Nanotechnol. 2025 13 1 254 269 10.2174/0122117385290497240324190453 38676484
    [Google Scholar]
  31. van de Loosdrecht A.A. Beelen R.H. Ossenkoppele G.J. Broekhoven M.G. Langenhuijsen M.M. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 1994 174 1-2 311 320 10.1016/0022‑1759(94)90034‑5 8083535
    [Google Scholar]
  32. Abal P. Louzao M. Antelo A. Alvarez M. Cagide E. Vilariٌo, N.; Vieytes, M.; Botana, L. Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins (Basel) 2017 9 3 75 10.3390/toxins9030075 28245573
    [Google Scholar]
  33. Sabaa M. Sharawy M.H. El-Sherbiny M. Said E. Salem H.A. Ibrahim T.M. Canagliflozin interrupts mTOR-mediated inflammatory signaling and attenuates DMBA-induced mammary cell carcinoma in rats. Biomed. Pharmacother. 2022 155 113675 10.1016/j.biopha.2022.113675 36115110
    [Google Scholar]
  34. Grindem C.B. Schalm’s Veterinary Hematology; Wiley-Blackwell: Ames. USA Lowa 2011
    [Google Scholar]
  35. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017 524 13 30 10.1016/j.ab.2016.10.021 27789233
    [Google Scholar]
  36. Owen J.B. Butterfield D.A. Measurement of oxidized/reduced glutathione ratio. Methods Mol. Biol. 2010 648 269 277 10.1007/978‑1‑60761‑756‑3_18 20700719
    [Google Scholar]
  37. Kakkar P. Das B. Visvanathan P. A modified spectrophotometric assay of SOD. Indian J. Biochem. Biophys. 1984 21 130 132 [PMID: 6490072
    [Google Scholar]
  38. Sinha A.K. Colorimetric assay of catalase. Anal. Biochem. 1972 47 2 389 394 10.1016/0003‑2697(72)90132‑7 4556490
    [Google Scholar]
  39. Alturkistani H.A. Tashkandi F.M. Mohammedsaleh Z.M. Histological stains: A literature review and case study. Glob. J. Health Sci. 2015 8 3 72 79 10.5539/gjhs.v8n3p72 26493433
    [Google Scholar]
  40. Salah A. Hussein A. Hassan S. Hussein M. Bassiouny K. Green synthesis of RES-CMCS: A promising modulator of the GLUT-4/leptin signaling pathway in HFD-induced insulin resistance. Biomed. Res. Ther. 2022 9 7 5166 5178 10.15419/bmrat.v9i7.753
    [Google Scholar]
  41. Wang Y. Ma J. Qiu T. Tang M. Zhang X. Dong W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur. J. Pharm. Sci. 2021 163 105864 10.1016/j.ejps.2021.105864 33965502
    [Google Scholar]
  42. Miki Y. Suzuki T. Tazawa C. Yamaguchi Y. Kitada K. Honma S. Moriya T. Hirakawa H. Evans D.B. Hayashi S. Ohuchi N. Sasano H. Aromatase localization in human breast cancer tissues: possible interactions between intratumoral stromal and parenchymal cells. Cancer Res. 2007 67 8 3945 3954 10.1158/0008‑5472.CAN‑06‑3105 17440110
    [Google Scholar]
  43. Abdul Rahman M.S. Kanakarajan S. Selvaraj R. Kamalanathan A. Fatima S. Abudawood M. Siddiqi N.J. Alanazi H. Sharma B. de Lourdes Pereira M. Elucidation of the anticancer mechanism of durian fruit (Durio zibethinus) pulp extract in human leukemia (HL-60) cancer cells. Nutrients 2023 15 10 2417 10.3390/nu15102417 37242300
    [Google Scholar]
  44. Alamir M. Hussein M.A. Aboud H.M. Khedr M.H. Zanaty M.I. Optimization of phloretin-loaded nanospanlastics for targeting of FAS/SREBP1c/AMPK/ OB-Rb signaling pathway in HFD-induced obesity. Curr. Pharm. Biotechnol. 2025 26 1 92 107 10.2174/0113892010278684240105115516 38698746
    [Google Scholar]
  45. El Gizawy H.A. Abo-Salem H.M. Ali A.A. Hussein M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABA A α5, GSK-3β, and p38α MAP-kinase genes. ACS Omega 2021 6 31 20492 20511 10.1021/acsomega.1c02340 34395996
    [Google Scholar]
  46. Elzoghby A.O. Samy W.M. Elgindy N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012 157 2 168 182 10.1016/j.jconrel.2011.07.031 21839127
    [Google Scholar]
  47. Salah A. Mohammed El-Laban N. Mafiz Alam S. Shahidul Islam M. Abdalla Hussein M. Roshdy T. Optimization of naringenin-loaded nanoparticles for targeting of Vanin-1, iNOS, and MCP-1 signaling pathway in HFD-induced obesity. Int. J. Pharm. 2024 654 123967 10.1016/j.ijpharm.2024.123967 38438083
    [Google Scholar]
  48. Song Y. Zhang J. Zhu L. Zhang H. Wu G. Liu T. Recent advances in nanodelivery systems of resveratrol and their biomedical and food applications: A review. Food Funct. 2024 15 17 8629 8643 10.1039/D3FO03892K 39140384
    [Google Scholar]
  49. Flores-Pérez A. Elizondo G. Apoptosis induction and inhibition of HeLa cell proliferation by alpha-naphthoflavone and resveratrol are aryl hydrocarbon receptor-independent. Chem. Biol. Interact. 2018 281 98 105 10.1016/j.cbi.2017.12.029 29274324
    [Google Scholar]
  50. Judy E. Lopus M. Kishore N. Mechanistic insights into encapsulation and release of drugs in colloidal niosomal systems: Biophysical aspects. RSC Advances 2021 11 56 35110 35126 10.1039/D1RA06057K 35493162
    [Google Scholar]
  51. Ross D.S. Steele G. Rodrick M.L. Milford E. Bleday R.S. Lahey S.J. Deasy J.M. Rayner A.A. Wilson R.E. The effect of 1,2‐dimethylhydrazine (DMH) carcinogenesis on peripheral T cell subsets in the wistar furth rat. J. Surg. Oncol. 1984 26 4 238 244 10.1002/jso.2930260408 6236335
    [Google Scholar]
  52. Younis M. Iqbal M. Shoukat N. Nawaz B. Watto F.H. Shahzad K.A. Effect of chemotherapy and radiotherapy on red blood cells and hemoglobin in cancer patients. Sci. Lett 2014 2 15 18
    [Google Scholar]
  53. Bozorgi A. Haghighi Z. Khazaei M.R. Bozorgi M. Khazaei M. The anti‐cancer effect of chitosan/resveratrol polymeric nanocomplex against triple‐negative breast cancer; An in vitro assessment. IET Nanobiotechnol. 2023 17 2 91 102 10.1049/nbt2.12108 36420812
    [Google Scholar]
  54. Zeuner A. Signore M. Martinetti D. Bartucci M. Peschle C. De Maria R. Chemotherapy-induced thrombocytopenia derives from the selective death of megakaryocyte progenitors and can be rescued by stem cell factor. Cancer Res. 2007 67 10 4767 4773 10.1158/0008‑5472.CAN‑06‑4303 17510405
    [Google Scholar]
  55. Abou-Taleb N.I. Elblasy O.A. Elbesoumy E.A. Basuny H.I. Elhamadi E.A. Nasr eldin, M.S.; Emara, A.A.; Ali, A.A.; Salem, M.A.; Ahmed, F.M.; Hussein, M.A. Mechanism of antiangiogenic and antioxidant activity of newly synthesized CAMBA in ehrlich ascites carcinoma-bearing mice. Asian J. Chem. 2021 33 10 2465 2471 10.14233/ajchem.2021.23310
    [Google Scholar]
  56. Eroglu E. A resveratrol‐loaded poly(2‐hydroxyethyl methacrylate)‐chitosan based nanotherapeutic: Characterization and in vitro cytotoxicity against prostate cancer. J. Nanosci. Nanotechnol. 2021 21 4 2090 2098 10.1166/jnn.2021.19317 33500023
    [Google Scholar]
  57. Barcellos-Hoff M.H. Ewan K.B.R. Transforming growth factor-β and breast cancer: Mammary gland development. Breast Cancer Res. 2000 2 2 92 99 10.1186/bcr40 11250698
    [Google Scholar]
  58. Dou T. Li J. Zhang Y. Pei W. Zhang B. Wang B. Wang Y. Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front. Immunol. 2024 15 1368687 10.3389/fimmu.2024.1368687 38487526
    [Google Scholar]
  59. Rajendran J. Pachaiappan P. Subramaniyan S. RETRACTED: Dose‐dependent chemopreventive effects of citronellol in DMBA‐induced breast cancer among rats. Drug Dev. Res. 2019 80 6 867 876 10.1002/ddr.21570 31313341
    [Google Scholar]
  60. Lee-Chang C. Bodogai M. Martin-Montalvo A. Wejksza K. Sanghvi M. Moaddel R. de Cabo R. Biragyn A. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J. Immunol. 2013 191 8 4141 4151 10.4049/jimmunol.1300606 24043896
    [Google Scholar]
  61. Ashrafizadeh M. Najafi M. Orouei S. Zabolian A. Saleki H. Azami N. Sharifi N. Hushmandi K. Zarrabi A. Ahn K.S. Resveratrol modulates transforming growth factor-beta (TGF-β) signaling pathway for disease therapy: A new insight into its pharmacological activities. Biomedicines 2020 8 8 261 10.3390/biomedicines8080261 32752069
    [Google Scholar]
  62. Ciardiello D. Elez E. Tabernero J. Seoane J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 2020 31 10 1336 1349 10.1016/j.annonc.2020.07.009 32710930
    [Google Scholar]
  63. Abdel-Gawad S.M. Ghorab M.M. El-Sharief A.M.S. El-Telbany F.A. Abdel-Alla M. Design, synthesis, and antimicrobial activity of some new pyrazolo[3,4‐d]pyrimidines. Heteroatom Chem. 2003 14 6 530 534 10.1002/hc.10187
    [Google Scholar]
  64. Beauford S.S. Kumari A. Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunol. 2020 21 1 18 10.1186/s12865‑020‑00349‑w 32299365
    [Google Scholar]
  65. Warrier N.M. Agarwal P. Kumar P. Emerging importance of survivin in stem cells and cancer: The development of new cancer therapeutics. Stem Cell Rev. Rep. 2020 16 5 828 852 10.1007/s12015‑020‑09995‑4 32691369
    [Google Scholar]
  66. Khan F. Pandey P. Verma M. Upadhyay T.K. Terpenoid-mediated targeting of STAT3 signaling in cancer: An overview of preclinical studies. Biomolecules 2024 14 2 200 10.3390/biom14020200 38397437
    [Google Scholar]
  67. Mosaad Y. Gobba N. Hussein M. Astaxanthin; A promising protector against gentamicin-induced nephrotoxicity in rats. Curr. Pharm. Biotechnol. 2016 17 13 1189 1197 10.2174/1389201017666160922110740 27658618
    [Google Scholar]
  68. Fayed M. A.; A Abdalla, E.; Hassan, S.A.; A Hussein, M.; M Roshdy, T. Downregulation of TLR4-NF-?B-p38 MAPK Signalling in Cholestatic Rats Treated with Cranberry Extract. Pak. J. Biol. Sci. 2022 25 2 112 122 10.3923/pjbs.2022.112.122 35233999
    [Google Scholar]
  69. Naser Eldin M.S. Eissa M.T. Mansour M.T. Abdelmonem H.A. Ahmed A.A. Ali N.O. El-haleem M.A.A. Sayed S.A. Emara S.M. Yousif M.M. Ibrahim M.A. Salem M.A. Ahmed F.M. Hussein M.A. Green synthesis of purslane seeds-selenium nanoparticles and evaluate its cytokines inhibitor in lead acetate induced toxicity in rats. Asian J. Chem. 2022 34 4 894 900 10.14233/ajchem.2022.23362
    [Google Scholar]
  70. Hussein M.A. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity. Med. Chem. Res. 2012 21 8 1876 1886 10.1007/s00044‑011‑9707‑0
    [Google Scholar]
  71. Kamal G.F. Nasr M.Y. Hussein M.A. Abdel-Aziz A. Fayed A.M. Morin: a promising nutraceutical therapy for modulation of the NF-kB/NOX-2/IL-6/HO-1 signaling pathways in paracetamol-induced liver toxicity. Biomed. Res. Ther. 2022 9 9 5260 5271 10.15419/bmrat.v9i9.763
    [Google Scholar]
  72. Shehata M.R. Mohamed M.M.A. Shoukry M.M. Hussein M.A. Hussein F.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine. J. Coord. Chem. 2015 68 6 1101 1114 10.1080/00958972.2015.1007962
    [Google Scholar]
  73. Soliman M. S.; Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; M Abd El-Halim, S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv. 2022 29 1 427 439 10.1080/10717544.2022.2032875 35098843
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096364549250828062651
Loading
/content/journals/ccdt/10.2174/0115680096364549250828062651
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: p53 ; CD8 ; STAT3 ; survivin ; CD4 ; γ-irradiation ; Resveratrol ; Res-Ch-NPs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test