Skip to content
2000
image of FS222, a CD137/PD-L1 Tetravalent Bispecific Antibody, Designed for Optimal CD137 Engagement Resulting in Potent Conditional T-Cell Activity

Abstract

Introduction

Agonists of CD137, a co-stimulatory receptor expressed on activated lymphocytes, are under investigation, including their use in combination with immune checkpoint blockade. FS222 is a tetravalent bispecific antibody targeting both CD137 and programmed death-ligand 1 (PD-L1).

Methods

Fragment crystallizable regions with antigen-binding (Fcab™) domains with high avidity to CD137 were engineered and matured. A resulting Fcab was introduced into a human high-affinity PD-L1 monoclonal antibody, generating FS222. Valency variants of FS222 and its mouse surrogate (FS222m) were generated. Antibody properties were assessed , while antitumor efficacy and T-cell proliferation were evaluated .

Results

FS222 could bind to two copies of each antigen concurrently (‘2+2’ binding). In T-cell activation assays, FS222 and a variant that is bivalent for CD137 and monovalent for PD-L1 activated T cells, whereas monovalent variants for CD137 did not. FS222 had no hook effect up to 300 nM and was superior to a heterodimeric ‘1+1’ CD137/PD-L1 bispecific antibody. In mixed lymphocyte reaction assays, FS222 and another bivalently linked antibody for PD-L1 were more potent than monovalent antibodies for PD-L1. In syngeneic mouse models, FS222m was associated with more peripheral T-cell proliferation and antitumor efficacy than all MC38 or most CT26.WT valency variants.

Discussion

FS222 could potently target and activate high CD137-expressing tumor-infiltrating lymphocytes due to its high avidity for CD137. FS222 demonstrates activity when PD-L1 levels are limited, highlighting its potential activity in tumors insensitive to PD-1 blockade, and in situations requiring both PD-L1 and CD137 binding. This may have clinical relevance.

Conclusion

In this study, it was found that the ‘2+2’ structure of FS222 is superior to that of a ‘1+1’ CD137/PD-L1 antibody.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096362922250918112113
2025-10-09
2025-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/10.2174/0115680096362922250918112113/BMS-CCDT-2024-461.html?itemId=/content/journals/ccdt/10.2174/0115680096362922250918112113&mimeType=html&fmt=ahah

References

  1. Dunn G.P. Bruce A.T. Ikeda H. Old L.J. Schreiber R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002 3 11 991 998 10.1038/ni1102‑991 12407406
    [Google Scholar]
  2. Keenan T.E. Burke K.P. Van Allen E.M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 2019 25 3 389 402 10.1038/s41591‑019‑0382‑x 30842677
    [Google Scholar]
  3. Kalbasi A. Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020 20 1 25 39 10.1038/s41577‑019‑0218‑4 31570880
    [Google Scholar]
  4. Pathak R. Pharaon R.R. Mohanty A. Villaflor V.M. Salgia R. Massarelli E. Acquired resistance to pd-1/pd-l1 blockade in lung cancer: Mechanisms and patterns of failure. Cancers 2020 12 12 3851 10.3390/cancers12123851 33419311
    [Google Scholar]
  5. Broll K. Richter G. Pauly S. Hofstaedter F. Schwarz H. CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am. J. Clin. Pathol. 2001 115 4 543 549 10.1309/E343‑KMYX‑W3Y2‑10KY 11293902
    [Google Scholar]
  6. Reali C. Curto M. Sogos V. Scintu F. Pauly S. Schwarz H. Gremo F. Expression of CD137 and its ligand in human neurons, astrocytes, and microglia: Modulation by FGF‐2. J. Neurosci. Res. 2003 74 1 67 73 10.1002/jnr.10727 13130507
    [Google Scholar]
  7. Bartkowiak T. Curran M.A. 4-1BB Agonists: Multi-potent potentiators of tumor immunity. Front. Oncol. 2015 5 117 10.3389/fonc.2015.00117 26106583
    [Google Scholar]
  8. Croft M. Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev. 2003 14 3-4 265 273 10.1016/S1359‑6101(03)00025‑X 12787564
    [Google Scholar]
  9. Lin G.H.Y. Snell L.M. Wortzman M.E. Clouthier D.L. Watts T.H. GITR-dependent regulation of 4-1BB expression: Implications for T cell memory and anti-4-1BB-induced pathology. J. Immunol. 2013 190 9 4627 4639 10.4049/jimmunol.1201854 23536631
    [Google Scholar]
  10. Marin-Acevedo J.A. Dholaria B. Soyano A.E. Knutson K.L. Chumsri S. Lou Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 2018 11 1 39 10.1186/s13045‑018‑0582‑8 29544515
    [Google Scholar]
  11. Shuford W.W. Klussman K. Tritchler D.D. Loo D.T. Chalupny J. Siadak A.W. Brown T.J. Emswiler J. Raecho H. Larsen C.P. Pearson T.C. Ledbetter J.A. Aruffo A. Mittler R.S. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med. 1997 186 1 47 55 10.1084/jem.186.1.47 9206996
    [Google Scholar]
  12. Chacon J.A. Pilon-Thomas S. Sarnaik A.A. Radvanyi L.G. Continuous 4–1BB co-stimulatory signals for the optimal expansion of tumor-infiltrating lymphocytes for adoptive T-cell therapy. OncoImmunology 2013 2 9 e25581 10.4161/onci.25581 24319633
    [Google Scholar]
  13. Milone M.C. Fish J.D. Carpenito C. Carroll R.G. Binder G.K. Teachey D. Samanta M. Lakhal M. Gloss B. Danet-Desnoyers G. Campana D. Riley J.L. Grupp S.A. June C.H. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 2009 17 8 1453 1464 10.1038/mt.2009.83 19384291
    [Google Scholar]
  14. Claus C. Ferrara-Koller C. Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs 2023 15 1 2167189 10.1080/19420862.2023.2167189 36727218
    [Google Scholar]
  15. Segal N.H. Logan T.F. Hodi F.S. McDermott D. Melero I. Hamid O. Schmidt H. Robert C. Chiarion-Sileni V. Ascierto P.A. Maio M. Urba W.J. Gangadhar T.C. Suryawanshi S. Neely J. Jure-Kunkel M. Krishnan S. Kohrt H. Sznol M. Levy R. Results from an Integrated safety analysis of urelumab, an agonist Anti-CD137 monoclonal antibody. Clin. Cancer Res. 2017 23 8 1929 1936 10.1158/1078‑0432.CCR‑16‑1272 27756788
    [Google Scholar]
  16. Niu L. Strahotin S. Hewes B. Zhang B. Zhang Y. Archer D. Spencer T. Dillehay D. Kwon B. Chen L. Vella A.T. Mittler R.S. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J. Immunol. 2007 178 7 4194 4213 10.4049/jimmunol.178.7.4194 17371976
    [Google Scholar]
  17. Bartkowiak T. Jaiswal A.R. Ager C.R. Chin R. Chen C.H. Budhani P. Ai M. Reilley M.J. Sebastian M.M. Hong D.S. Curran M.A. Activation of 4-1BB on liver myeloid cells triggers hepatitis via an interleukin-27–dependent pathway. Clin. Cancer Res. 2018 24 5 1138 1151 10.1158/1078‑0432.CCR‑17‑1847 29301830
    [Google Scholar]
  18. Link A. Hepp J. Reichen C. Schildknecht P. Tosevski I. Taylor J. Juglair L. Titz A. Matzner M. Bessey R. Zitt C. Lemaillet G. Herbst J. Dawson K.M. Ji H. Levitsky V. Snell D. Stumpp M.T. Harstrick A. Baur E. Abstract 3752: Preclinical pharmacology of MP0310: A 4-1BB/FAP bispecific DARPin drug candidate promoting tumor-restricted T-cell costimulation. Cancer Res. 2018 78 13 Supplement. 3752 (Suppl.) 10.1158/1538‑7445.AM2018‑3752
    [Google Scholar]
  19. Liu L. Lam C-Y.K. Long V. Widjaja L. Yang Y. Shah K. Smith D. Pan J. Johnson S. Bonvini E. Moore P. Abstract 3642: Tumor-antigen expression-dependent activation of the CD137 costimulatory pathway by bispecific DART® proteins. Cancer Res. 2017 77 13 Supplement. 3642 (Suppl.) 10.1158/1538‑7445.AM2017‑3642
    [Google Scholar]
  20. Piha-Paul S. O82 A phase 1 dose escalation study of PRS-343, a HER2/4–1BB bispecific molecule, in patients with HER2-positive malignancies. J. Immunother Cancer 2020 8 A1-A2 (Suppl. 1)
    [Google Scholar]
  21. Sznol M. Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin. Cancer Res. 2013 19 5 1021 1034 10.1158/1078‑0432.CCR‑12‑2063 23460533
    [Google Scholar]
  22. Tolcher A.W. Sznol M. Hu-Lieskovan S. Papadopoulos K.P. Patnaik A. Rasco D.W. Di Gravio D. Huang B. Gambhire D. Chen Y. Thall A.D. Pathan N. Schmidt E.V. Chow L.Q.M. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 Agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin. Cancer Res. 2017 23 18 5349 5357 10.1158/1078‑0432.CCR‑17‑1243 28634283
    [Google Scholar]
  23. Morales-Kastresana A. Pavlidou M. Peper J. Pattarini L. Barthels C. Hansbauer E-M. Aiba R.B. Bossenmaier B. Scholer-Dahirel A. Jaquin T. Gallou C. Blanc V. Rothe C. Olwill S. Abstract LB135: Simultaneous costimulatory T-cell engagement and checkpoint inhibition by PRS-344/S095012, a PD-L1/4-1BB bispecific compound for tumor localized activation of the immune system. Cancer Res. 2021 81 13 Supplement. LB135 LB135 (Suppl.) 10.1158/1538‑7445.AM2021‑LB135
    [Google Scholar]
  24. Kinkead H. Macedo C. Sanabria A. Cyprus G. Pandit R. Kalabus J. Becklund B. Sulzmaier F. Timmer J. Deveraux Q. Eckelman B. Heidt A. 12 Key pharmacokinetic and pharmacodynamic parameters that correlate with the anti-tumor activity of a bispecific PD-L1 conditional 4–1BB agonist. J. Immunother Cancer 2021 9 A12-A12 (Suppl. 2) 10.1136/jitc‑2021‑SITC2021.012
    [Google Scholar]
  25. Geuijen C. Tacken P. Wang L.C. Klooster R. van Loo P.F. Zhou J. Mondal A. Liu Y. Kramer A. Condamine T. Volgina A. Hendriks L.J.A. van der Maaden H. Rovers E. Engels S. Fransen F. den Blanken-Smit R. Zondag-van der Zande V. Basmeleh A. Bartelink W. Kulkarni A. Marissen W. Huang C.Y. Hall L. Harvey S. Kim S. Martinez M. O’Brien S. Moon E. Albelda S. Kanellopoulou C. Stewart S. Nastri H. Bakker A.B.H. Scherle P. Logtenberg T. Hollis G. de Kruif J. Huber R. Mayes P.A. Throsby M. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat. Commun. 2021 12 1 4445 10.1038/s41467‑021‑24767‑5 34290245
    [Google Scholar]
  26. Muik A. Garralda E. Altintas I. Gieseke F. Geva R. Ben-Ami E. Maurice-Dror C. Calvo E. LoRusso P.M. Alonso G. Rodriguez-Ruiz M.E. Schoedel K.B. Blum J.M. Sänger B. Salcedo T.W. Burm S.M. Stanganello E. Verzijl D. Vascotto F. Sette A. Quinkhardt J. Plantinga T.S. Toker A. van den Brink E.N. Fereshteh M. Diken M. Satijn D. Kreiter S. Breij E.C.W. Bajaj G. Lagkadinou E. Sasser K. Türeci Ö. Forssmann U. Ahmadi T. Şahin U. Jure-Kunkel M. Melero I. Preclinical characterization and phase i trial results of a bispecific antibody targeting PD-L1 and 4-1BB (GEN1046) in patients with advanced refractory solid tumors. Cancer Discov. 2022 12 5 1248 1265 10.1158/2159‑8290.CD‑21‑1345 35176764
    [Google Scholar]
  27. Betts A. van der Graaf P.H. Mechanistic quantitative pharmacology strategies for the early clinical development of bispecific antibodies in oncology. Clin. Pharmacol. Ther. 2020 108 3 528 541 10.1002/cpt.1961 32579234
    [Google Scholar]
  28. Everett K.L. Kraman M. Wollerton F.P.G. Zimarino C. Kmiecik K. Gaspar M. Pechouckova S. Allen N.L. Doody J.F. Tuna M. Generation of Fcabs targeting human and murine LAG-3 as building blocks for novel bispecific antibody therapeutics. Methods 2019 154 60 69 10.1016/j.ymeth.2018.09.003 30208333
    [Google Scholar]
  29. Lakins M.A. Koers A. Giambalvo R. Munoz-Olaya J. Hughes R. Goodman E. Marshall S. Wollerton F. Batey S. Gliddon D. Tuna M. Brewis N. FS222, a CD137/PD-L1 tetravalent bispecific antibody, exhibits low toxicity and antitumor activity in colorectal cancer models. Clin. Cancer Res. 2020 26 15 4154 4167 10.1158/1078‑0432.CCR‑19‑2958 32345647
    [Google Scholar]
  30. Lakins M.A. Antibody molecules that bind PD-L1 and CD137. Patent reference. E 2019 A1 3820569
    [Google Scholar]
  31. Hasenhindl C. Lai B. Delgado J. Traxlmayr M.W. Stadlmayr G. Rüker F. Serrano L. Oostenbrink C. Obinger C. Creating stable stem regions for loop elongation in Fcabs — Insights from combining yeast surface display, in silico loop reconstruction and molecular dynamics simulations. Biochim. Biophys. Acta. Proteins Proteomics 2014 1844 9 1530 1540 10.1016/j.bbapap.2014.04.020 24792385
    [Google Scholar]
  32. Atwell S. Ridgway J.B.B. Wells J.A. Carter P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 1997 270 1 26 35 10.1006/jmbi.1997.1116 9231898
    [Google Scholar]
  33. He X. Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020 30 8 660 669 10.1038/s41422‑020‑0343‑4 32467592
    [Google Scholar]
  34. Kim H.D. Park S. Jeong S. Lee Y.J. Lee H. Kim C.G. Kim K.H. Hong S.M. Lee J.Y. Kim S. Kim H.K. Min B.S. Chang J.H. Ju Y.S. Shin E.C. Song G.W. Hwang S. Park S.H. 4‐1BB Delineates Distinct activation status of exhausted tumor‐infiltrating CD8+ T cells in hepatocellular carcinoma. Hepatology 2020 71 3 955 971 10.1002/hep.30881 31353502
    [Google Scholar]
  35. Zhu Y. Chen L. CD137 as a biomarker for tumor-reactive T cells: Finding gold in the desert. Clin. Cancer Res. 2014 20 1 3 5 10.1158/1078‑0432.CCR‑13‑2573 24166912
    [Google Scholar]
  36. Liu L. Wu Y. Ye K. Cai M. Zhuang G. Wang J. Antibody-targeted tnfrsf activation for cancer immunotherapy: The role of FcγRIIB cross-linking. Front. Pharmacol. 2022 13 924197 10.3389/fphar.2022.924197 35865955
    [Google Scholar]
  37. Kwon B. CD137-CD137 ligand interactions in inflammation. Immune Netw. 2009 9 3 84 89 10.4110/in.2009.9.3.84 20107537
    [Google Scholar]
  38. Park J. Phase 1/2 study of the bispecific 4–1BB and PD-L1 antbody INBRX-105 alone and in combination with pembrolizumab in select solid tumors. J. Immunother. Cancer 2023 ••• 11 [abstract 742
    [Google Scholar]
  39. Kyi C. Marloes, Van D; Sylvie, R.; Ignacio, M B; Diana, M; Dane, G; Kees, Bol; Chris, Yan; Andrew, K; Joe; Gianluca, Laus; Victor, Moren Phase I study of MCLA-145, a bispecific antibody targeting CD137 and PD-L1, in solid tumors, as monotherapy or in combination with pembrolizumab. Journal of. Clinical. Oncology 2024 42 16 (suppl.) 10.1200/JCO.2024.42.16_suppl.2520
    [Google Scholar]
  40. Kelley R.K. Sangro B. Harris W. Ikeda M. Okusaka T. Kang Y.K. Qin S. Tai D.W.M. Lim H.Y. Yau T. Yong W.P. Cheng A.L. Gasbarrini A. Damian S. Bruix J. Borad M. Bendell J. Kim T.Y. Standifer N. He P. Makowsky M. Negro A. Kudo M. Abou-Alfa G.K. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: Randomized expansion of a phase i/ii study. J. Clin. Oncol. 2021 39 27 2991 3001 10.1200/JCO.20.03555 34292792
    [Google Scholar]
  41. Kamphorst A.O. Pillai R.N. Yang S. Nasti T.H. Akondy R.S. Wieland A. Sica G.L. Yu K. Koenig L. Patel N.T. Behera M. Wu H. McCausland M. Chen Z. Zhang C. Khuri F.R. Owonikoko T.K. Ahmed R. Ramalingam S.S. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients. Proc. Natl. Acad. Sci. USA 2017 114 19 4993 4998 10.1073/pnas.1705327114 28446615
    [Google Scholar]
  42. Spiliotaki M. Neophytou C.M. Vogazianos P. Stylianou I. Gregoriou G. Constantinou A.I. Deltas C. Charalambous H. Dynamic monitoring of PD‐L1 and Ki67 in circulating tumor cells of metastatic non‐small cell lung cancer patients treated with pembrolizumab. Mol. Oncol. 2023 17 5 792 809 10.1002/1878‑0261.13317 36177552
    [Google Scholar]
  43. Kim K.H. Cho J. Ku B.M. Koh J. Sun J.M. Lee S.H. Ahn J.S. Cheon J. Min Y.J. Park S.H. Park K. Ahn M.J. Shin E.C. The first-week proliferative response of peripheral blood pd-1+cd8+ t cells predicts the response to anti-pd-1 therapy in solid tumors. Clin. Cancer Res. 2019 25 7 2144 2154 10.1158/1078‑0432.CCR‑18‑1449 30647082
    [Google Scholar]
  44. Roy R.D. Rosenmund C. Stefan M.I. Cooperative binding mitigates the high-dose hook effect. BMC Syst. Biol. 2017 11 1 74 10.1186/s12918‑017‑0447‑8 28807050
    [Google Scholar]
  45. Schiettecatte J. Anckaert E. Smitz J. Interferences in Immunoassays 2012 10.5772/35797
    [Google Scholar]
  46. Li T. Hiemstra I.H. Chiu C. Oliveri R.S. Elliott B. DeMarco D. Salcedo T. Egerod F.L. Sasser K. Ahmadi T. Gupta M. Semimechanistic physiologically‐based pharmacokinetic/pharmacodynamic model informing epcoritamab dose selection for patients with b‐cell lymphomas. Clin. Pharmacol. Ther. 2022 112 5 1108 1119 10.1002/cpt.2729 35996883
    [Google Scholar]
  47. Fromm G. de Silva S. Schreiber T.H. Reconciling intrinsic properties of activating TNF receptors by native ligands versus synthetic agonists. Front. Immunol. 2023 14 1236332 10.3389/fimmu.2023.1236332 37795079
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096362922250918112113
Loading
/content/journals/ccdt/10.2174/0115680096362922250918112113
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: T cell ; FS222 ; immunotherapy ; tetravalent ; Fcab ; CD137 ; Bispecific antibody ; PD-L1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test