Skip to content
2000
image of Advances in Nanomaterials for Targeted Drug Delivery: Emerging Trends and Future Prospects in Nanodrug Development

Abstract

The development of targeted drug delivery systems has transformed modern medicine, offering novel approaches to improve the efficacy and safety of therapeutic agents. Nanomaterials, due to their unique physicochemical properties, have emerged as pivotal contributors to this transformation. This paper aimed to explore recent advancements in nanomaterials for targeted drug delivery, highlighting emerging trends and prospects in nanodrug development. Nanomaterials, including polymers, liposomes, metal-based nanoparticles, dendrimers, and carbon-based structures, possess high surface area, tunable surface chemistry, and biocompatibility, which enable precise drug delivery, enhanced solubility, improved stability, and controlled release profiles. These characteristics allow for the targeting of specific tissues or cells, thereby maximizing therapeutic efficacy while minimizing systemic side effects. The objective of this review was to provide a comprehensive analysis of the role of these nanomaterials in improving drug bioavailability, targeting specificity, and controlled release, with particular emphasis on their applications in cancer therapy, antibiotic delivery, and gene therapy. This paper addresses critical challenges associated with the use of nanomaterials, including toxicity, potential immunogenicity, regulatory hurdles, and the complexities involved in large-scale manufacturing and clinical translation. Strategies to overcome these barriers, such as surface modification, optimization of nanomaterial properties, and the development of multifunctional and smart nanocarriers, are discussed. The review concludes by emphasizing the potential of nanomaterials to revolutionize drug delivery systems, contributing to the development of more effective, personalized, and patient-friendly therapeutic options, thereby paving the way for next-generation treatments for a wide range of diseases.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096362452250301054711
2025-03-12
2025-09-13
Loading full text...

Full text loading...

References

  1. Patel P. Geed S.R. Recent advancements in the application of nanomaterial in modern drug delivery and future perspective. Biogenic nanomaterials for environmental sustainability: Principles, practices, and opportunities. Shah M.P. Switzerland Springer Nature Switzerland AG 2024 6 13 10.1007/978‑3‑031‑45956‑6_13
    [Google Scholar]
  2. Sood A. Gupta A. Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl. 2021 2 100067 10.1016/j.carpta.2021.100067
    [Google Scholar]
  3. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  4. Yan Y. Chen D. Nanomaterials and their applications in drug delivery systems. J. Mater. Sci. Mater. Med. 2022 33 3 1 19 10.1007/s10856‑021‑06556‑y
    [Google Scholar]
  5. Salim A. El-Rafei A. El-Rahman S. Acid-sensitive drug release from nanocarriers. Int. J. Pharm. 2022 611 121 138 10.1016/j.ijpharm.2022.121616
    [Google Scholar]
  6. Koopaei M. Abdollahi M. Mazloum-Ardakani M. Nanocarriers in targeted drug delivery. Nanomedicine 2021 16 8 751 771 10.2217/nnm‑2020‑0418
    [Google Scholar]
  7. Rabbani S. Naresh V. Toxicity assessment of nanomaterials in drug delivery. J. Biomed. Nanotechnol. 2021 17 4 1 12 10.1166/jbn.2021.3155
    [Google Scholar]
  8. Lombardo D. Kiselev M.A. Caccamo M.T. Smart nanoparticles for drug delivery. Materials 2022 15 6 1654 10.3390/ma15061654
    [Google Scholar]
  9. Feng Q. Wang C. Dong Z. Nanomedicine in cancer therapy: Emerging trends and future prospects. Adv. Sci. 2022 9 16 10.1002/advs.202104673
    [Google Scholar]
  10. Zhao Z. Ukidve A. Kim J. Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell 2020 181 1 151 167 32243788 10.1016/j.cell.2020.02.001
    [Google Scholar]
  11. Zhao B. Chen S. Hong Y. Research progress of conjugated nanomedicine for cancer treatment. Pharmaceutics 2022 14 8 1541 35893797 10.3390/pharmaceutics14081541
    [Google Scholar]
  12. Zheng G. Zhao R. Xu A. Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy. Eur. J. Pharm. Sci. 2023 134 4 502 519 10.1016/j.ejps.2023.123
    [Google Scholar]
  13. Chen G. Roy I. Yang C. Prasad P.N. Nanochemistry and nanomedicine for nanoparticle-based targeted drug delivery. Chem. Rev. 2021 116 5 2826 2885 10.1021/acs.chemrev.5b00148 26799741
    [Google Scholar]
  14. Wang A.Z. Langer R. Farokhzad O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 2012 63 1 185 198 21888516 10.1146/annurev‑med‑040210‑162544
    [Google Scholar]
  15. Lombardo D. Calandra P. Pasqua L. Self-assembled nanomaterials: Design principles, examples, and biomedical applications. Int. J. Nanomedicine 2023 18 311 343
    [Google Scholar]
  16. Shi Y. van der Meel R. Chen X. Nanomedicine in cancer therapy: Challenges and future prospects. J. Clin. Oncol. 2021 29 7 587 594
    [Google Scholar]
  17. Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005 4 2 145 160 10.1038/nrd1632 15688077
    [Google Scholar]
  18. Ulbrich K. Holá K. Šubr V. Bakandritsos A. Tuček J. Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016 116 9 5338 5431 10.1021/acs.chemrev.5b00589 27109701
    [Google Scholar]
  19. Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014 43 3 744 764 10.1039/C3CS60273G 24220322
    [Google Scholar]
  20. Cai X. Bao X. Wu Y. Metal–organic frameworks as intelligent drug nanocarriers for cancer therapy. Pharmaceutics 2022 14 12 2641 36559134 10.3390/pharmaceutics14122641
    [Google Scholar]
  21. Singh R. Lillard J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009 86 3 215 223 10.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  22. Ferreira D. Silva R. Figueiredo L. Rodrigues L. Smart targeted-nanocarriers for cancer therapeutics. Nanomaterials 2021 11 3 620 10.3390/nano11030620 33801502
    [Google Scholar]
  23. Jafarizadeh-Malmiri H. Sayyar Z. Anarjan N. Berenjian A. Nanobiotechnology in food: Concepts, applications and perspectives. 1st ed Cham Springer 2019 155 10.1007/978‑3‑030‑05846‑3
    [Google Scholar]
  24. Khin M.M. Nair A.S. Babu V.J. Murugan R. Ramakrishna S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012 5 8 8075 10.1039/c2ee21818f
    [Google Scholar]
  25. Xia Y. Zhong J. Zhao M. Tang Y. Han N. Hua L. Xu T. Wang C. Zhu B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv. 2019 26 1 1 11 31928356 10.1080/10717544.2018.1556359
    [Google Scholar]
  26. Xiao D. Huang Y. Huang S. Zhuang J. Chen P. Wang Y. Zhang L. Targeted delivery of cancer drug paclitaxel to chordomas tumor cells via an RNA nanoparticle harboring an EGFR aptamer. Coll. Surf. B Biointerf. 2022 212 112366 10.1016/j.colsurfb.2022.112366 35144131
    [Google Scholar]
  27. Mao K. Zhang W. Yu L. Yu Y. Liu H. Zhang X. Transferrin-decorated protein-lipid hybrid nanoparticle efficiently delivers cisplatin and docetaxel for targeted lung cancer treatment. Drug Des. Devel. Ther. 2021 15 3475 3486 10.2147/DDDT.S296253 34413632
    [Google Scholar]
  28. Ura T. Shirao K. Matsumura Y. Hamaguchi T. Miyata Y. Okura H. Chin K. Yamao T. Kannami A. Takahashi K. Clinical trial of MCC-465, a doxorubicin encapsulated in PEG-immunoliposome, in patients with metastatic stomach cancer. Drug Deliv. Syst. 2004 19 5 439 444 10.2745/dds.19.439
    [Google Scholar]
  29. Malka E. Perelshtein I. Lipovsky A. Shalom Y. Naparstek L. Perkas N. Patick T. Lubart R. Nitzan Y. Banin E. Gedanken A. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013 9 23 4069 4076 10.1002/smll.201301081 23813908
    [Google Scholar]
  30. Matai I. Sachdev A. Dubey P. Uday Kumar S. Bhushan B. Gopinath P. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf. B Biointerfaces 2014 115 359 367 10.1016/j.colsurfb.2013.12.005 24412348
    [Google Scholar]
  31. Mekkawy A. El-Mokhtar M. Nafady N. Yousef N. Hamad M. El-Shanawany S. Ibrahim E. Elsabahy M. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: Effect of surface coating and loading into hydrogels. Int. J. Nanomedicine 2017 12 759 777 10.2147/IJN.S124294 28176951
    [Google Scholar]
  32. Li H. Chen Q. Zhao J. Urmila K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep. 2015 5 1 11033 10.1038/srep11033 26046938
    [Google Scholar]
  33. Lee I.H. An S. Yu M.K. Kwon H.K. Im, S.H.; Jon, S. Targeted chemoimmunotherapy using drug-loaded aptamer–dendrimer bioconjugates. J. Control. Release 2011 155 3 435 441 10.1016/j.jconrel.2011.05.025 21641946
    [Google Scholar]
  34. Duarte A.C. Rodrigues S. Afonso A. Nogueira A. Coutinho P. Antibiotic resistance in the drinking water: Old and new strategies to remove antibiotics, resistant bacteria, and resistance genes. Pharmaceuticals 2022 15 4 393 10.3390/ph15040393 35455389
    [Google Scholar]
  35. Mahendra R. Yadav A.Y. Bridge P. Gade A.G. Myconanotechnology: A new and emerging science.In: Applied Mycology, 14th Ed.; CAB International New York: New York, 2009 258 267 10.1079/9781845935344.0258
    [Google Scholar]
  36. Adeel M. Bilal M. Rasheed T. Sharma A. Iqbal H.M.N. Gra-phene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Int. J. Biol. Macromol., 2018 120 Pt B 1430 1440 10.1016/j.ijbiomac.2018.09.14 30261251
  37. Bayda S. Adeel M. Tuccinardi T. Cordani M. Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019 25 1 112 10.3390/molecules25010112 31892180
    [Google Scholar]
  38. Kumar L. Bharadvaja N. Biosynthesis, characterization, and evaluation of antibacterial and photocatalytic dye degradation activities of silver nanoparticles biosynthesized by Chlorella sorokiniana. Biomass Convers. Biorefin. 2022 22 03433 10.1007/s13399‑022‑03433‑w
    [Google Scholar]
  39. Nikaeen G. Abbaszadeh S. Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine 2020 15 15 1501 1512 10.2217/nnm‑2020‑0117 32378459
    [Google Scholar]
  40. Savla N. Anand R. Pandit S. Prasad R. Utilization of nanomaterials as anode modifiers for improving microbial fuel cells performance. J. Renew. Mater. 2020 8 12 1581 1605 10.32604/jrm.2020.011803
    [Google Scholar]
  41. Shahcheraghi N. Golchin H. Sadri Z. Tabari Y. Borhanifar F. Makani S. Nano-biotechnology, an applicable approach for sus-tainable future. 3 Biotech., 2022, 12(3), 65. 10.1007/s13205‑021‑03108‑9 35186662
  42. Wang H. Liang X. Wang J. Jiao S. Xue D. Multifunctional inorganic nanomaterials for energy applications. Nanoscale 2020 12 1 14 42 10.1039/C9NR07008G 31808494
    [Google Scholar]
  43. Zhang F. Grand challenges for nanoscience and nanotechnology in energy and health. Front Chem. 2017 5 80 10.3389/fchem.2017.00080 29164100
    [Google Scholar]
  44. Moreira A.F. Nanomaterials in drug delivery applications. Nanomaterials 2022 12 20 3565 10.3390/nano12203565 36296755
    [Google Scholar]
  45. Jiang Z. Zhang W. Zhang J. Liu T. Xing J. Zhang H. Tang D. Nanomaterial-based drug delivery systems: A new weapon for cancer immunotherapy. Int. J. Nanomedicine 2022 17 4677 4696 10.2147/IJN.S376216 36211025
    [Google Scholar]
  46. Crintea A. Dutu A.G. Sovrea A. Constantin A.M. Samasca G. Masalar A.L. Ifju B. Linga E. Neamti L. Tranca R.A. Fekete Z. Silaghi C.N. Craciun A.M. Nanocarriers for drug delivery: An overview with emphasis on vitamin D and K transportation. Nanomaterials 2022 12 8 1376 10.3390/nano12081376 35458084
    [Google Scholar]
  47. Uchida N. Yanagi M. Hamada H. Physical enhancement? Nanocarrier? Current progress in transdermal drug delivery. Nanomaterials 2021 11 2 335 10.3390/nano11020335 33525364
    [Google Scholar]
  48. Fernandes N. Rodrigues C.F. de Melo-Diogo D. Correia I.J. Moreira A.F. Optimization of the GSH-mediated formation of mesoporous silica-coated gold nanoclusters for NIR light-triggered photothermal applications. Nanomaterials 2021 11 8 1946 10.3390/nano11081946 34443777
    [Google Scholar]
  49. Pardridge W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005 2 1 3 14 10.1602/neurorx.2.1.3 15717053
    [Google Scholar]
  50. Lecrux C. Hamel E. The neurovascular unit in brain function and disease. Acta Physiol. (Oxf.) 2011 203 1 47 59 10.1111/j.1748‑1716.2011.02256.x 21272266
    [Google Scholar]
  51. Jain K.K. An overview of drug delivery systems. Drug Delivery Systems. Jain K.K. Cham Springer 2020 1 54 10.1007/978‑1‑4939‑9798‑5_1
    [Google Scholar]
  52. Hanafy A.S. Dietrich D. Fricker G. Lamprecht A. Blood-brain barrier models: Rationale for selection. Adv. Drug Deliv. Rev. 2021 176 113859 10.1016/j.addr.2021.113859 34246710
    [Google Scholar]
  53. Naik P. Cucullo L. In vitro blood-brain barrier models: Current and perspective technologies. J. Pharm. Sci. 2012 101 4 1337 1354 10.1002/jps.23022 22213383
    [Google Scholar]
  54. Li Q.Y. Lee J.H. Kim H.W. Jin G.Z. Research models of the nanoparticle-mediated drug delivery across the blood-brain barrier. Tissue Eng. Regen. Med. 2021 18 6 917 930 10.1007/s13770‑021‑00356‑x 34181202
    [Google Scholar]
  55. Garcia F.J. Sun N. Lee H. Godlewski B. Galani K. Mantero J. Bennett D.A. Sahin M. Kellis M. Heiman M. Single-cell dissection of the human cerebrovasculature in health and disease. bioRxiv 2021 440975 10.1101/2021.04.26.440975
    [Google Scholar]
  56. Jiang L. Wang M. Lin S. Jian R. Li X. Chan J. Dong G. Fang H. Robinson A.E. Snyder M.P. Aguet F. Anand S. Ardlie K.G. Gabriel S. Getz G. Graubert A. Hadley K. Handsaker R.E. Huang K.H. Kashin S. MacArthur D.G. Meier S.R. Nedzel J.L. Nguyen D.Y. Segrè A.V. Todres E. Balliu B. Barbeira A.N. Battle A. Bonazzola R. Brown A. Brown C.D. Castel S.E. Conrad D. Cotter D.J. Cox N. Das S. de Goede O.M. Dermitzakis E.T. Engelhardt B.E. Eskin E. Eulalio T.Y. Ferraro N.M. Flynn E. Fresard L. Gamazon E.R. Garrido-Martيn, D.; Gay, N.R.; Guigَ, R.; Hamel, A.R.; He, Y.; Hoffman, P.J.; Hormozdiari, F.; Hou, L.; Im, H.K.; Jo, B.; Kasela, S.; Kellis, M.; Kim-Hellmuth, S.; Kwong, A.; Lappalainen, T.; Li, X.; Liang, Y.; Mangul, S.; Mohammadi, P.; Montgomery, S.B.; Muٌoz-Aguirre, M.; Nachun, D.C.; Nobel, A.B.; Oliva, M.; Park, Y.S.; Park, Y.; Parsana, P.; Reverter, F.; Rouhana, J.M.; Sabatti, C.; Saha, A.; Skol, A.D.; Stephens, M.; Stranger, B.E.; Strober, B.J.; Teran, N.A.; Viٌuela, A.; Wang, G.; Wen, X.; Wright, F.; Wucher, V.; Zou, Y.; Ferreira, P.G.; Li, G.; Melé, M.; Yeger-Lotem, E.; Barcus, M.E.; Bradbury, D.; Krubit, T.; McLean, J.A.; Qi, L.; Robinson, K.; Roche, N.V.; Smith, A.M.; Sobin, L.; Tabor, D.E.; Undale, A.; Bridge, J.; Brigham, L.E.; Foster, B.A.; Gillard, B.M.; Hasz, R.; Hunter, M.; Johns, C.; Johnson, M.; Karasik, E.; Kopen, G.; Leinweber, W.F.; McDonald, A.; Moser, M.T.; Myer, K.; Ramsey, K.D.; Roe, B.; Shad, S.; Thomas, J.A.; Walters, G.; Washington, M.; Wheeler, J.; Jewell, S.D.; Rohrer, D.C.; Valley, D.R.; Davis, D.A.; Mash, D.C.; Branton, P.A.; Barker, L.K.; Gardiner, H.M.; Mosavel, M.; Siminoff, L.A.; Flicek, P.; Haeussler, M.; Juettemann, T.; Kent, W.J.; Lee, C.M.; Powell, C.C.; Rosenbloom, K.R.; Ruffier, M.; Sheppard, D.; Taylor, K.; Trevanion, S.J.; Zerbino, D.R.; Abell, N.S.; Akey, J.; Chen, L.; Demanelis, K.; Doherty, J.A.; Feinberg, A.P.; Hansen, K.D.; Hickey, P.F.; Jasmine, F.; Kaul, R.; Kibriya, M.G.; Li, J.B.; Li, Q.; Linder, S.E.; Pierce, B.L.; Rizzardi, L.F.; Smith, K.S.; Stamatoyannopoulos, J.; Tang, H.; Carithers, L.J.; Guan, P.; Koester, S.E.; Little, A.R.; Moore, H.M.; Nierras, C.R.; Rao, A.K.; Vaught, J.B.; Volpi, S. A quantitative proteome map of the human body. Cell 2020 183 1 269 283.e19 10.1016/j.cell.2020.08.036 32916130
    [Google Scholar]
  57. Raevsky O.A. Solodova S.L. Lagunin A.A. Poroĭkov V.V. Computer modeling of blood brain barrier permeability of physiologically active compounds. Biomed. Khim. 2014 60 2 161 181 10.18097/PBMC20146002161 24837308
    [Google Scholar]
  58. Ang J. Ma D. Lund R. Keten S. Xu T. Internal structure of 15 nm 3-helix micelle revealed by small-angle neutron scattering and coarse-grained MD simulation. Biomacromolecules 2016 17 10 3262 3267 10.1021/acs.biomac.6b00986 27584005
    [Google Scholar]
  59. Ahlawat J. Guillama Barroso G. Masoudi Asil S. Alvarado M. Armendariz I. Bernal J. Carabaza X. Chavez S. Cruz P. Escalante V. Estorga S. Fernandez D. Lozano C. Marrufo M. Ahmad N. Negrete S. Olvera K. Parada X. Portillo B. Ramirez A. Ramos R. Rodriguez V. Rojas P. Romero J. Suarez D. Urueta G. Viel S. Narayan M. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: Challenges and possibilities. ACS Omega 2020 5 22 12583 12595 10.1021/acsomega.0c01592 32548442
    [Google Scholar]
  60. Hersh D.S. Wadajkar A.S. Roberts N. Perez J.G. Connolly N.P. Frenkel V. Winkles J.A. Woodworth G.F. Kim A.J. Evolving drug delivery strategies to overcome the blood-brain barrier. Curr. Pharm. Des. 2016 22 9 1177 1193 10.2174/1381612822666151221150733 26685681
    [Google Scholar]
  61. Vasey P.A. Kaye S.B. Morrison R. Twelves C. Wilson P. Duncan R. Thomson A.H. Murray L.S. Hilditch T.E. Murray T. Burtles S. Fraier D. Frigerio E. Cassidy J. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin. Cancer Res. 1999 5 1 83 94 9918206
    [Google Scholar]
  62. Dykman L.A. Khlebtsov N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Nat. 2011 3 2 34 55 22649683 10.32607/20758251‑2011‑3‑2‑34‑55
    [Google Scholar]
  63. Shilo M. Sharon A. Baranes K. Motiei M. Lellouche J.P.M. Popovtzer R. The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model. J. Nanobiotechnology 2015 13 1 19 10.1186/s12951‑015‑0075‑7 25880565
    [Google Scholar]
  64. Tan Q. Zhao S. Xu T. Wang Q. Zhang M. Yan L. Chen X. Lan M. Inorganic nano-drug delivery systems for crossing the blood–brain barrier: Advances and challenges. Coord. Chem. Rev. 2023 494 215344 10.1016/j.ccr.2023.215344
    [Google Scholar]
  65. Piccolo M. Misso G. Ferraro M.G. Riccardi C. Capuozzo A. Zarone M.R. Maione F. Trifuoggi M. Stiuso P. D’Errico G. Caraglia M. Paduano L. Montesarchio D. Irace C. Santamaria R. Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Sci. Rep. 2019 9 1 7006 10.1038/s41598‑019‑43411‑3 31065032
    [Google Scholar]
  66. Montesarchio D. Mangiapia G. Vitiello G. Musumeci D. Irace C. Santamaria R. D’Errico G. Paduano L. A new design for nucleolipid-based Ru(iii) complexes as anticancer agents. Dalton Trans. 2013 42 48 16697 16708 10.1039/c3dt52320a 24121739
    [Google Scholar]
  67. He Y.J. Selenium nanoparticles: A review of their applications and biocompatibility. Int. J. Nanomedicine 2017 12 2435 2444
    [Google Scholar]
  68. Saito T. Evaluation of carbon nanotubes for carcinogenicity in cancer models. Nanomaterials 2020 10 2 264 32033249
    [Google Scholar]
  69. Smith A. Advances in functionalized carbon nanotubes for drug delivery. J. Drug Deliv. Sci. Technol. 2023 82 104834
    [Google Scholar]
  70. Kumar A. NDs: Applications in cancer imaging and drug delivery. Nano Res. 2023 13 9 2901 2923
    [Google Scholar]
  71. Brown C.M. NDs for miRNA-based therapy: MiR-34a delivery and applications in breast cancer. Mol. Ther. Nucleic Acids 2023 30 1 12
    [Google Scholar]
  72. Santos J.L. Functionalized metal nanoparticles and their use in biomedical applications. J. Drug Deliv. Sci. Technol. 2021 64 104733
    [Google Scholar]
  73. Kong F.Y. Zhang J.W. Li R.F. Wang Z.X. Wang W.J. Wang W. Unique roles of gold nanoparticles in drug delivery, targeting, and imaging applications. Molecules 2017 22 9 1445 10.3390/molecules22091445 28858253
    [Google Scholar]
  74. Rai M. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2016 34 6 791 803 18854209
    [Google Scholar]
  75. Gao L. Liu G. Ma J. Wang X. Zhou L. Li X. Drug nanocrystals: In vivo performances. J. Control. Release 2012 160 3 418 430 10.1016/j.jconrel.2012.03.013 22465393
    [Google Scholar]
  76. Patel J.D. Polymeric nanoparticles for drug delivery: A review. J. Biomed. Mater. Res. A 2013 101 10 3202 3213
    [Google Scholar]
  77. Lee M.M. Dendrimers in drug delivery: A review. Drug Deliv. Transl. Res. 2019 9 1 1 14 10.1007/s13346‑018‑0556‑4 30511249
    [Google Scholar]
  78. Liu L.M.Y. Quantum dots for imaging and drug delivery: A review. Mol. Pharm. 2019 16 2 370 386 30592425
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096362452250301054711
Loading
/content/journals/ccdt/10.2174/0115680096362452250301054711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test