Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Transcription factor 19 (TCF19) is considered a crucial transcription factor and acts as an oncogene in a few cancers. Nevertheless, the effect and mechanism of TCF19 on glioma remain unknown.

Objective

This research aimed to explore the function of TCF19 on glioma progression and clarify the potential mechanism.

Methods

TCF19 and DHX32 expressions in glioma were determined using bioinformatics, Quantitative real-time PCR, and immunohistochemistry. MTT assay was carried out to detect the biological function of TCF19 and DHX32 in glioma cell multiplication. Cell-cycle distribution and apoptosis were measured by using FACS. The function of TCF19 on glioma growth was examined using tumor xenografts assay. Bioinformatics analysis, ChIP-qRT-PCR, and reporter gene assay were employed to illustrate the TCF19 target regulating DHX32 transcription.

Results

TCF19 was observably upregulated in glioma and has important clinical significance. Overexpressing TCF19 expedited glioma cell multiplication and cell-cycle transition, meanwhile preventing apoptosis. TCF19 knockdown inhibited cell proliferation, cell-cycle transition, and tumour growth, simultaneously accelerating apoptosis. TCF19 expressions had a positive correlation with DHX32 expressions in glioma. It was demonstrated that TCF19 activated DHX32 transcriptional activity in glioma by combining it with the promoter of DHX32. DHX32 promoted glioma cell growth and cell-cycle transition while restraining apoptosis. Overexpressing DHX32 eliminated the function of TCF19 knockdown on cell multiplication, cell-cycle transition, and apoptosis. Moreover, TCF19 activated the β-catenin pathway by enhancing DHX32 transcriptional activity.

Conclusion

TCF19 promotes glioma cell multiplication and cell-cycle transition while suppressing apoptosis by modulating the β-catenin signaling pathway via accelerating DHX32 transcription. These findings provide a promising therapeutic target for glioma.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096360071241215171342
2025-01-20
2025-10-11
Loading full text...

Full text loading...

References

  1. WangR. ChengL. YangX. ChenX. MiaoY. QiuY. ZhouZ. Histone methyltransferase SUV39H2 regulates cell growth and chemosensitivity in glioma via regulation of hedgehog signaling.Cancer Cell Int.201919126910.1186/s12935‑019‑0982‑z31636512
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. LiuY. WangZ. TangZ. FuY. WangL. mirna-383-5p functions as an anti-oncogene in glioma through the Akt/mTOR signaling pathway by targeting VEGFA.Curr. Canc. Drug Targ.202424446347510.2174/156800962366623081710210437592783
    [Google Scholar]
  4. MeyerM.A. Malignant gliomas in adults.N. Engl. J. Med.200835917185010.1056/NEJMc08638018946076
    [Google Scholar]
  5. ZhuM. ZhaoW. ZhaoH. ZhangJ. Diagnostic and prognostic value of microRNA 193b in patients with glioma and its effect on tumor progression.Oncol. Lett.20191854882489010.3892/ol.2019.1081931611998
    [Google Scholar]
  6. LouisD.N. OhgakiH. WiestlerO.D. CaveneeW.K. BurgerP.C. JouvetA. ScheithauerB.W. KleihuesP. The 2007 WHO classification of tumours of the central nervous system.Acta Neuropathol.200711429710910.1007/s00401‑007‑0243‑417618441
    [Google Scholar]
  7. KuD.H. ChangC.D. KonieckiJ. CannizzaroL.A. SellB.L. AlderH. BasergaR. A new growth-regulated complementary DNA with the sequence of a putative trans-activating factor.Cell Growth Differ.1991241791861868030
    [Google Scholar]
  8. KrautkramerK.A. LinnemannA.K. FontaineD.A. WhillockA.L. HarrisT.W. SchleisG.J. TruchanN.A. SantosM.L. LavineJ.A. CleaverO. KimpleM.E. DavisD.B. Tcf19 is a novel islet factor necessary for proliferation and survival in the INS-1 β-cell line.Am. J. Physiol. Endocrinol. Metab.20133055E600E61010.1152/ajpendo.00147.201323860123
    [Google Scholar]
  9. SimS.H. MessengerM.P. GregoryW.M. WindT.C. VasudevN.S. CartledgeJ. ThompsonD. SelbyP.J. BanksR.E. Prognostic utility of pre-operative circulating osteopontin, carbonic anhydrase IX and CRP in renal cell carcinoma.Br. J. Cancer201210771131113710.1038/bjc.2012.36022918393
    [Google Scholar]
  10. YangG. FontaineD. LodhS. BlumerJ. RoopraA. DavisD. TCF19 impacts a network of inflammatory and DNA damage response genes in the pancreatic beta-Cell.Metabolites202111851310.3390/metabo1108051334436454
    [Google Scholar]
  11. ZengC.X. FuS.B. FengW.S. ZhaoJ.Y. LiF.X. GaoP. TCF19 enhances cell proliferation in hepatocellular carcinoma by activating the ATK/FOXO1 signaling pathway.Neoplasma2019661465310.4149/neo_2018_171227N84530509085
    [Google Scholar]
  12. SenS. SanyalS. SrivastavaD.K. DasguptaD. RoyS. DasC. Transcription factor 19 interacts with histone 3 lysine 4 trimethylation and controls gluconeogenesis via the nucleosome-remodeling-deacetylase complex.J. Biol. Chem.201729250203622037810.1074/jbc.M117.78686329042441
    [Google Scholar]
  13. MondalP. SenS. KleinB.J. TiwaryN. GadadS.S. KutateladzeT.G. RoyS. DasC. TCF19 promotes cell proliferation through binding to the histone H3K4me3 mark.Biochemistry202059438939910.1021/acs.biochem.9b0077131746185
    [Google Scholar]
  14. ZhouZ.H. ChenG. DengC. TangJ.M. XieL. ZhouH.Y. YeX. ZhangD.K. ShiR.Q. TianD. QiaoG.B. BenX.S. TCF19 contributes to cell proliferation of non‐small cell lung cancer by inhibiting FOXO1.Cell Biol. Int.201943121416142410.1002/cbin.1118931141247
    [Google Scholar]
  15. JiP. ChangJ. WeiX. SongX. YuanH. GongL. LiY. DingD. ZhangE. YanC. ZhuM. MiaoX. WuC. JinG. HuZ. ShenH. MaH. Genetic variants associated with expression of TCF19 contribute to the risk of head and neck cancer in Chinese population.J. Med. Genet.202259433534510.1136/jmedgenet‑2020‑10741034085947
    [Google Scholar]
  16. YuF. YuC. LiF. ZuoY. WangY. YaoL. WuC. WangC. YeL. Wnt/β-catenin signaling in cancers and targeted therapies.Signal Transduct. Target. Ther.20216130710.1038/s41392‑021‑00701‑534456337
    [Google Scholar]
  17. ZhangW. RuanX. LiY. ZhiJ. HuL. HouX. ShiX. WangX. WangJ. MaW. GuP. ZhengX. GaoM. KDM1A promotes thyroid cancer progression and maintains stemness through the Wnt/β-catenin signaling pathway.Theranostics20221241500151710.7150/thno.6614235198054
    [Google Scholar]
  18. SongP. GaoZ. BaoY. ChenL. HuangY. LiuY. DongQ. WeiX. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy.J. Hematol. Oncol.20241714610.1186/s13045‑024‑01563‑438886806
    [Google Scholar]
  19. XueW. YangL. ChenC. AshrafizadehM. TianY. SunR. Wnt/β-catenin-driven EMT regulation in human cancers.Cell. Mol. Life Sci.20248117910.1007/s00018‑023‑05099‑738334836
    [Google Scholar]
  20. LiH. LiuJ. QinX. SunJ. LiuY. JinF. Function of long noncoding RNAs in glioma progression and treatment based on the Wnt/beta-Catenin and PI3K/AKT signaling pathways.Cell. Mol. Neurobiol.20234383929394210.1007/s10571‑023‑01414‑937747595
    [Google Scholar]
  21. ChenY. XuH. YuP. WangQ. LiS. JiF. WuC. LanQ. Interferon‐γ inducible protein 30 promotes the epithelial–mesenchymal transition‐like phenotype and chemoresistance by activating EGFR / AKT / GSK3β /β‐catenin pathway in glioma.CNS Neurosci. Ther.202329124124413810.1111/cns.1433437408388
    [Google Scholar]
  22. ZuoJ. LiuC. NiH. YuZ. WDR34 affects PI3K/Akt and Wnt/β-catenin pathways to regulates malignant biological behaviors of glioma cells.J. Neurooncol.2022156228129310.1007/s11060‑021‑03932‑234981299
    [Google Scholar]
  23. XuG. ZhuY. LiuH. LiuY. ZhangX. LncRNA MIR194-2HG promotes cell proliferation and metastasis via regulation of miR-1207-5p/TCF19/Wnt/beta-catenin signaling in liver cancer.OncoTargets Ther.2020139887989910.2147/OTT.S26461433116574
    [Google Scholar]
  24. ChengX. HouJ. WenX. DongR. LuZ. JiangY. WuG. YuanY. Immunotherapeutic value of transcription factor 19 (TCF19) associated with renal clear cell carcinoma: A comprehensive analysis of 33 human cancer cases.J. Oncol.2022202211510.1155/2022/148816536111242
    [Google Scholar]
  25. DuW.B. HuangZ. LuoL. TongS.P. LiH.Q. LiX. TongJ.H. YaoY.L. ZhangW.B. MengY. TCF19 aggravates the malignant progression of colorectal cancer by negatively regulating WWC1.Eur. Rev. Med. Pharmacol. Sci.202024265566332016966
    [Google Scholar]
  26. LiS. ZhangN. ZhangH. WangN. DuY. LiH. HuangC. LiX. Deciphering the TCF19/miR-199a-5p/SP1/LOXL2 pathway: Implications for breast cancer metastasis and epithelial-mesenchymal transition.Cancer Lett.202459721699510.1016/j.canlet.2024.21699538851313
    [Google Scholar]
  27. TianY. XinS. WanZ. DongH. LiuL. FanZ. LiT. PengF. XiongY. HanY. TCF19 promotes cell proliferation and tumor formation in lung cancer by activating the Raf/MEK/ERK signaling pathway.Transl. Oncol.20244510197810.1016/j.tranon.2024.10197838701650
    [Google Scholar]
  28. MondalP. GadadS.S. AdhikariS. RamosE.I. SenS. PrasadP. DasC. TCF19 and p53 regulate transcription of TIGAR and SCO2 in HCC for mitochondrial energy metabolism and stress adaptation.FASEB J.2021359e2181410.1096/fj.202002486RR34369624
    [Google Scholar]
  29. MaX. WangQ. SunC. AgarwalI. WuH. ChenJ. ZhaoC. QiG. TengQ. YuanC. YanS. PengJ. LiR. SongK. ZhangQ. KongB. Targeting TCF19 sensitizes MSI endometrial cancer to anti-PD-1 therapy by alleviating CD8+ T cell exhaustion via TRIM14-IFN-β axis.Cell Rep.202342811294410.1016/j.celrep.2023.11294437566545
    [Google Scholar]
  30. AbdelhaleemM. MaltaisL. WainH. The human DDX and DHX gene families of putative RNA helicases.Genomics200381661862210.1016/S0888‑7543(03)00049‑112782131
    [Google Scholar]
  31. PaceF.F.V. DExD/H box RNA helicases: Multifunctional proteins with important roles in transcriptional regulation.Nucleic Acids Res.200634154206421510.1093/nar/gkl46016935882
    [Google Scholar]
  32. PantD. NarayananS.P. VijayN. ShuklaS. Hypoxia-induced changes in intragenic DNA methylation correlate with alternative splicing in breast cancer.J. Biosci.2020451310.1007/s12038‑019‑9977‑031965981
    [Google Scholar]
  33. WeiQ. GengJ. ChenY. LinH. WangJ. FangZ. WangF. ZhangZ. Structure and function of DEAH-box helicase 32 and its role in cancer. (Review)Oncol. Lett.202121538210.3892/ol.2021.1264333777205
    [Google Scholar]
  34. AlliZ. ChenY. WajidA.S. SaudA.B. AbdelhaleemM. A role for DHX32 in regulating T-cell apoptosis.Anticancer Res.2007271A37337717352256
    [Google Scholar]
  35. LinH. LiuW. FangZ. LiangX. LiJ. BaiY. LinL. YouH. PeiY. WangF. ZhangZ.Y. Overexpression of DHX32 contributes to the growth and metastasis of colorectal cancer.Sci. Rep.201551924710.1038/srep0924725782664
    [Google Scholar]
  36. HuX. YuanG. LiQ. HuangJ. ChengX. ChenJ. DEAH-box polypeptide 32 promotes hepatocellular carcinoma progression via activating the β-catenin pathway.Ann. Med.202153143744710.1080/07853890.2021.189867433729094
    [Google Scholar]
  37. LinH. FangZ. SuY. LiP. WangJ. LiaoH. HuQ. YeC. FangY. LuoQ. LinZ. PanC. WangF. ZhangZ.Y. DHX32 promotes angiogenesis in colorectal cancer through augmenting beta-catenin signaling to induce expression of VEGFA.EBioMedicine201718627210.1016/j.ebiom.2017.03.01228330603
    [Google Scholar]
  38. WangJ. YuH. DongW. ZhangC. HuM. MaW. JiangX. LiH. YangP. XiangD. N6-Methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and lenvatinib resistance through WNT/β-Catenin and hippo signaling pathways.Gastroenterology20231646990100510.1053/j.gastro.2023.01.04136764493
    [Google Scholar]
  39. WuJ. WuY. ChenS. GuoQ. ShaoY. LiuC. LinK. WangS. ZhuJ. ChenX. JuX. XiaL. WuX. PARP1-stabilised FOXQ1 promotes ovarian cancer progression by activating the LAMB3/WNT/β-catenin signalling pathway.Oncogene2024431286688310.1038/s41388‑024‑02943‑338297082
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096360071241215171342
Loading
/content/journals/ccdt/10.2174/0115680096360071241215171342
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): apoptosis; DHX32; glioma; proliferation; TCF19; β-catenin signaling pathway
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test