Skip to content
2000
image of Promotion of Melanoma Progression through MCM4-Induced Immune Suppression and Polarization of Macrophages by Carcinogenic Exosomes

Abstract

Objective

This study aims to provide a comprehensive understanding of the crucial role of MCM4 in melanoma progression regarding the regulatory communication between macrophages and cancer cells mediated by extracellular vesicles.

Methods

Initially, a preliminary analysis was conducted using the Tumor Immune Estimation Resource (TIMER) database. Subsequently, the role of MCM4 knockdown on the polarization of THP-1 and RAW264.7 macrophages was observed. Finally, the biological functionalities of exosomes derived from A375 cells overexpressing MCM4 on normal melanocytes (HEM-L) were explored.

Results

On the one hand, MCM4 knockdown resulted in the upregulation of M1 macrophage markers and downregulation of M2 macrophage markers, indicating that MCM4 could facilitate polarization of macrophages toward the M2 phenotype and suggesting its oncogenic potential. On the other hand, MCM4 overexpression in melanocytes increased the secretion of exosomes, enhancing the proliferation, clonogenic, and DNA synthesis abilities of normal melanocytes. In addition, MCM4 overexpression-induced secretion of exosomes promoted the migration and invasion capabilities of normal melanocytes.

Conclusion

Exosomes secreted by MCM4-overexpressed melanocytes could stimulate their proliferation, migration, and invasion abilities. MCM4 promoted M2 polarization of macrophages, indicating its crucial role in tumor microenvironment formation and thereby facilitating tumor development.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096357750250507073948
2025-05-14
2025-08-16
The full text of this item is not currently available.

References

  1. Belli C. Trapani D. Viale G. D’Amico P. Duso B.A. Della Vigna P. Orsi F. Curigliano G. Targeting the microenvironment in solid tumors. Cancer Treat. Rev. 2018 65 22 32 10.1016/j.ctrv.2018.02.004 29502037
    [Google Scholar]
  2. Jiang W. Jin W.L. Xu A.M. Cholesterol metabolism in tumor microenvironment: Cancer hallmarks and therapeutic opportunities. Int. J. Biol. Sci. 2024 20 6 2044 2071 10.7150/ijbs.92274 38617549
    [Google Scholar]
  3. Liang T. Gu L. Kang X. Li J. Song Y. Wang Y. Ma W. Programmed cell death disrupts inflammatory tumor microenvironment (TME) and promotes glioblastoma evolution. Cell Commun. Signal. 2024 22 1 333 10.1186/s12964‑024‑01602‑0 38890642
    [Google Scholar]
  4. Polak R. Zhang E.T. Kuo C.J. Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat. Rev. Cancer 2024 24 8 523 539 10.1038/s41568‑024‑00706‑6 38977835
    [Google Scholar]
  5. Elia I. Haigis M.C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab. 2021 3 1 21 32 10.1038/s42255‑020‑00317‑z 33398194
    [Google Scholar]
  6. Dong Z. Luo Y. Yuan Z. Tian Y. Jin T. Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol. Cancer 2024 23 1 181 10.1186/s12943‑024‑02096‑7 39217404
    [Google Scholar]
  7. Jin Y. Huang Y. Ren H. Huang H. Lai C. Wang W. Tong Z. Zhang H. Wu W. Liu C. Bao X. Fang W. Li H. Zhao P. Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024 305 122463 10.1016/j.biomaterials.2023.122463 38232643
    [Google Scholar]
  8. Lin H. Tison K. Du Y. Kirchhoff P. Kim C. Wang W. Yang H. Pitter M. Yu J. Liao P. Zhou J. Vatan L. Grove S. Wei S. Vigil T. Shah Y.M. Mortensen R. Kryczek I. Garmire L. Sivaccumar J.P. Ramesh A.K. Zhang N. An Z. Wang S. Zou W. Itaconate transporter SLC13A3 impairs tumor immunity via endowing ferroptosis resistance. Cancer Cell 2024 42 12 2032 2044.e6 10.1016/j.ccell.2024.10.010 39515327
    [Google Scholar]
  9. Georgoudaki A.M. Prokopec K.E. Boura V.F. Hellqvist E. Sohn S. Östling J. Dahan R. Harris R.A. Rantalainen M. Klevebring D. Sund M. Brage S.E. Fuxe J. Rolny C. Li F. Ravetch J.V. Karlsson M.C.I. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016 15 9 2000 2011 10.1016/j.celrep.2016.04.084 27210762
    [Google Scholar]
  10. Kloosterman D.J. Erbani J. Boon M. Farber M. Handgraaf S.M. Ando-Kuri M. Sánchez-López E. Fontein B. Mertz M. Nieuwland M. Liu N.Q. Forn-Cuni G. van der Wel N.N. Grootemaat A.E. Reinalda L. van Kasteren S.I. de Wit E. Ruffell B. Snaar-Jagalska E. Petrecca K. Brandsma D. Kros A. Giera M. Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024 187 19 5336 5356.e30 10.1016/j.cell.2024.07.030 39137777
    [Google Scholar]
  11. Boutilier A.J. Elsawa S.F. Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci. 2021 22 13 6995 10.3390/ijms22136995 34209703
    [Google Scholar]
  12. Zheng P. He J. Fu Y. Yang Y. Li S. Duan B. Yang Y. Hu Y. Yang Z. Wang M. Liu Q. Zheng X. Hua L. Li W. Li D. Ding Y. Yang X. Bai H. Long Q. Huang W. Ma Y. Engineered bacterial biomimetic vesicles reprogram tumor-associated macrophages and remodel tumor microenvironment to promote innate and adaptive antitumor immune responses. ACS Nano 2024 18 9 6863 6886 10.1021/acsnano.3c06987 38386537
    [Google Scholar]
  13. Wu K. Lin K. Li X. Yuan X. Xu P. Ni P. Xu D. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front. Immunol. 2020 11 1731 10.3389/fimmu.2020.01731 32849616
    [Google Scholar]
  14. Yang P. Qin H. Li Y. Xiao A. Zheng E. Zeng H. Su C. Luo X. Lu Q. Liao M. Zhao L. Wei L. Varghese Z. Moorhead J.F. Chen Y. Ruan X.Z. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat. Commun. 2022 13 1 5782 10.1038/s41467‑022‑33349‑y 36184646
    [Google Scholar]
  15. Cao W. Zeng Z. Sun J. Chen Y. Kuang F. Luo S. Lan J. Lei S. Exosome-derived circ-001422 promotes tumor-associated macrophage M2 polarization to accelerate the progression of glioma. Commun. Biol. 2024 7 1 1504 10.1038/s42003‑024‑07134‑0 39538012
    [Google Scholar]
  16. Jin S. Wen J. Zhang Y. Mou P. Luo Z. Cai Y. Chen A. Fu X. Meng W. Zhou Z. Li J. Zeng W. M2 macrophage-derived exosome-functionalized topological scaffolds regulate the foreign body response and the coupling of angio/osteoclasto/osteogenesis. Acta Biomater. 2024 177 91 106 10.1016/j.actbio.2024.01.043 38311198
    [Google Scholar]
  17. Li W. Zeng Q. Wang B. Lv C. He H. Yang X. Cheng B. Tao X. Oxidative stress promotes oral carcinogenesis via Thbs1-mediated M1-like tumor-associated macrophages polarization. Redox Biol. 2024 76 103335 10.1016/j.redox.2024.103335 39255693
    [Google Scholar]
  18. Wortzel I. Dror S. Kenific C.M. Lyden D. Exosome-mediated metastasis: Communication from a distance. Dev. Cell 2019 49 3 347 360 10.1016/j.devcel.2019.04.011 31063754
    [Google Scholar]
  19. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  20. Mashouri L. Yousefi H. Aref A.R. Ahadi A. Molaei F. Alahari S.K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer 2019 18 1 75 10.1186/s12943‑019‑0991‑5 30940145
    [Google Scholar]
  21. Feng Y. Jin C. Wang T. Chen Z. Ji D. Zhang Y. Zhang C. Zhang D. Peng W. Sun Y. The uridylyl transferase TUT7‐mediated accumulation of exosomal miR‐1246 Reprograms TAMs to support CRC progression. Adv. Sci. (Weinh.) 2024 11 15 2304222 10.1002/advs.202304222 38342611
    [Google Scholar]
  22. Chen J. Duan Y. Che J. Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun. (Lond.) 2024 44 9 1047 1070 10.1002/cac2.12596 39051512
    [Google Scholar]
  23. Zhang J. Li S. Li L. Li M. Guo C. Yao J. Mi S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015 13 1 17 24 10.1016/j.gpb.2015.02.001 25724326
    [Google Scholar]
  24. Zheng P. Luo Q. Wang W. Li J. Wang T. Wang P. Chen L. Zhang P. Chen H. Liu Y. Dong P. Xie G. Ma Y. Jiang L. Yuan X. Shen L. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E. Cell Death Dis. 2018 9 4 434 10.1038/s41419‑018‑0465‑5 29567987
    [Google Scholar]
  25. Binenbaum Y. Fridman E. Yaari Z. Milman N. Schroeder A. Ben David G. Shlomi T. Gil Z. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 2018 78 18 5287 5299 10.1158/0008‑5472.CAN‑18‑0124 30042153
    [Google Scholar]
  26. Polasek-Sedlackova H. Miller T.C.R. Krejci J. Rask M.B. Lukas J. Solving the MCM paradox by visualizing the scaffold of CMG helicase at active replisomes. Nat. Commun. 2022 13 1 6090 10.1038/s41467‑022‑33887‑5 36241664
    [Google Scholar]
  27. Xie H. Hua C. Sun L. Zhao X. Fan H. Dou H. Sun L. Hou Y. 17β‐estradiol induces CD40 expression in dendritic cells via MAPK signaling pathways in a minichromosome maintenance protein 6–dependent manner. Arthritis Rheum. 2011 63 8 2425 2435 10.1002/art.30420 21538324
    [Google Scholar]
  28. Xu Y. Fan H. Li X. Sun L. Hou Y. 17β-Estradiol enhances response of mice spleen B cells elicited by TLR9 agonist. Cell. Immunol. 2012 278 1-2 125 135 10.1016/j.cellimm.2012.07.007 22960279
    [Google Scholar]
  29. Desai P. Takahashi N. Kumar R. Nichols S. Malin J. Hunt A. Schultz C. Cao Y. Tillo D. Nousome D. Chauhan L. Sciuto L. Jordan K. Rajapakse V. Tandon M. Lissa D. Zhang Y. Kumar S. Pongor L. Singh A. Schroder B. Sharma A.K. Chang T. Vilimas R. Pinkiert D. Graham C. Butcher D. Warner A. Sebastian R. Mahon M. Baker K. Cheng J. Berger A. Lake R. Abel M. Krishnamurthy M. Chrisafis G. Fitzgerald P. Nirula M. Goyal S. Atkinson D. Bateman N.W. Abulez T. Nair G. Apolo A. Guha U. Karim B. El Meskini R. Ohler Z.W. Jolly M.K. Schaffer A. Ruppin E. Kleiner D. Miettinen M. Brown G.T. Hewitt S. Conrads T. Thomas A. Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities. Cell Rep. Med. 2024 5 6 101610 10.1016/j.xcrm.2024.101610 38897168
    [Google Scholar]
  30. Crouigneau R. Li Y.F. Auxillos J. Goncalves-Alves E. Marie R. Sandelin A. Pedersen S.F. Mimicking and analyzing the tumor microenvironment. Cell Rep. Methods 2024 4 10 100866 10.1016/j.crmeth.2024.100866 39353424
    [Google Scholar]
  31. Zhen X. Li Y. Yuan W. Zhang T. Li M. Huang J. Kong N. Xie X. Wang S. Tao W. Biointerface‐engineered hybrid nanovesicles for targeted reprogramming of tumor microenvironment. Adv. Mater. 2024 36 41 2401495 10.1002/adma.202401495 38851884
    [Google Scholar]
  32. Baghban R. Roshangar L. Jahanban-Esfahlan R. Seidi K. Ebrahimi-Kalan A. Jaymand M. Kolahian S. Javaheri T. Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 2020 18 1 59 10.1186/s12964‑020‑0530‑4 32264958
    [Google Scholar]
  33. Chudnovskiy A. Castro T.B.R. Nakandakari-Higa S. Cui A. Lin C.H. Sade-Feldman M. Phillips B.K. Pae J. Mesin L. Bortolatto J. Schweitzer L.D. Pasqual G. Lu L.F. Hacohen N. Victora G.D. Proximity-dependent labeling identifies dendritic cells that drive the tumor-specific CD4 + T cell response. Sci. Immunol. 2024 9 100 eadq8843 10.1126/sciimmunol.adq8843 39365874
    [Google Scholar]
  34. Toledo B. Zhu Chen L. Paniagua-Sancho M. Marchal J.A. Perán M. Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: A call for precision immunotherapy. J. Hematol. Oncol. 2024 17 1 44 10.1186/s13045‑024‑01559‑0 38863020
    [Google Scholar]
  35. Shapouri-Moghaddam A. Mohammadian S. Vazini H. Taghadosi M. Esmaeili S.A. Mardani F. Seifi B. Mohammadi A. Afshari J.T. Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018 233 9 6425 6440 10.1002/jcp.26429 29319160
    [Google Scholar]
  36. Yang J. Song X. Zhang H. Liu Q. Wei R. Guo L. Yuan C. Chen F. Xue K. Lai Y. Wang L. Shi J. Zhou C. Wang J. Yu Y. Mei Q. Hu L. Wang H. Zhang C. Zhang Q. Li H. Gu Y. Zhao W. Yu H. Wang J. Liu Z. Li H. Zheng S. Liu J. Yang L. Li W. Xu R. Chen J. Zhou Y. Cheng X. Yu Y. Wang D. Sun X. Yu H. Single-cell transcriptomic landscape deciphers olfactory neuroblastoma subtypes and intra-tumoral heterogeneity. Nat. Cancer 2024 5 12 1919 1939 10.1038/s43018‑024‑00855‑5 39543363
    [Google Scholar]
  37. Vesely M.D. Kershaw M.H. Schreiber R.D. Smyth M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 2011 29 1 235 271 10.1146/annurev‑immunol‑031210‑101324 21219185
    [Google Scholar]
  38. Noy R. Pollard J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014 41 1 49 61 10.1016/j.immuni.2014.06.010 25035953
    [Google Scholar]
  39. Lin Y. Xu J. Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019 12 1 76 10.1186/s13045‑019‑0760‑3 31300030
    [Google Scholar]
  40. Zheng T. Li S. Zhang T. Fu W. Liu S. He Y. Wang X. Ma T. Exosome-shuttled miR-150–5p from LPS-preconditioned mesenchymal stem cells down-regulate PI3K/Akt/mTOR pathway via Irs1 to enhance M2 macrophage polarization and confer protection against sepsis. Front. Immunol. 2024 15 1397722 10.3389/fimmu.2024.1397722 38957471
    [Google Scholar]
  41. Zhang H. Mao Y. Nie Z. Li Q. Wang M. Cai C. Hao W. Shen X. Gu N. Shen W. Song H. Iron oxide nanoparticles engineered macrophage-derived exosomes for targeted pathological angiogenesis therapy. ACS Nano 2024 18 10 7644 7655 10.1021/acsnano.4c00699 38412252
    [Google Scholar]
  42. Pan Y. Yu Y. Wang X. Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020 11 583084 10.3389/fimmu.2020.583084 33365025
    [Google Scholar]
  43. Zheng R. Du M. Wang X. Xu W. Liang J. Wang W. Lv Q. Qin C. Chu H. Wang M. Yuan L. Qian J. Zhang Z. Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol. Cancer 2018 17 1 143 10.1186/s12943‑018‑0880‑3 30285771
    [Google Scholar]
  44. Duan S. Yang Q. Wu F. Li Z. Hong W. Cao M. Chen X. Zhong X. Zhou Q. Zhao H. Maternal methylosome protein 50 is essential for embryonic development in medaka Oryzias latipes. J. Exp. Zool. A Ecol. Integr. Physiol. 2024 341 7 798 810 10.1002/jez.2824 38654580
    [Google Scholar]
  45. Faull S.V. Barbon M. Mossler A. Yuan Z. Bai L. Reuter L.M. Riera A. Winkler C. Magdalou I. Peach M. Li H. Speck C. MCM2-7 ring closure involves the Mcm5 C-terminus and triggers Mcm4 ATP hydrolysis. Nat. Commun. 2025 16 1 14 10.1038/s41467‑024‑55479‑1 39747125
    [Google Scholar]
  46. Bandres-Meriz J. Sanz-Cuadrado M.I. Hurtado de Mendoza I. Majali-Martinez A. Honeder S.E. Cindrova-Davies T. Birner-Gruenberger R. Dalgaard L.T. Desoye G. MCM proteins are up-regulated in placentas of women with reduced insulin sensitivity. Biosci. Rep. 2024 44 10 BSR20240430 10.1042/BSR20240430 39268985
    [Google Scholar]
  47. Fu Q.M. Fang Z. Ren L. Wu Q.S. Zhang J.B. Liu Q.P. Tan L.T. Weng Q.B. Partial alleviation of homologous superinfection exclusion of SeMNPV latently infected cells by G1 phase infection and G2/M phase arrest. Viruses 2024 16 5 736 10.3390/v16050736 38793618
    [Google Scholar]
  48. Jubelin C. Muñoz-Garcia J. Ollivier E. Cochonneau D. Vallette F. Heymann M.F. Oliver L. Heymann D. Identification of MCM4 and PRKDC as new regulators of osteosarcoma cell dormancy based on 3D cell cultures. Biochim. Biophys. Acta Mol. Cell Res. 2024 1871 3 119660 10.1016/j.bbamcr.2024.119660 38216092
    [Google Scholar]
  49. Liu X Zhang F Fan Y Qiu C Wang K MCM4 potentiates evasion of hepatocellular carcinoma from sorafenib-induced ferroptosis through Nrf2 signaling pathway. Int Immunopharmacol. 2024 142 113107 10.1016/j.intimp.2024.113107
    [Google Scholar]
  50. Pei L. Zhu Y. Li W. Xu B. Sun J. Celastrol promotes DNA damage and apoptosis in uterine corpus endometrial carcinoma via promotion of KAT2B-mediated RBPJ acetylation and repression of MCM4 transcription. Mol. Med. 2025 31 1 39 10.1186/s10020‑025‑01082‑z 39901144
    [Google Scholar]
  51. Wang C. Ma C. Gong L. Guo Y. Fu K. Zhang Y. Zhou H. Li Y. Macrophage Polarization and Its Role in Liver Disease. Front. Immunol. 2021 12 803037 10.3389/fimmu.2021.803037 34970275
    [Google Scholar]
  52. Yan X. Yang Y. Guan H. Zhang X. Li L. Yu P. Exosomal LINC00958 maintains ovarian cancer cell stemness and induces M2 macrophage polarization via Hedgehog signaling pathway and GLI1 protein. Int. J. Biol. Macromol. 2024 279 Pt 1 135080 10.1016/j.ijbiomac.2024.135080 39187098
    [Google Scholar]
  53. Yang J. Huang X. Yu Q. Wang S. Wen X. Bai S. Cao L. Zhang K. Zhang S. Wang X. Chen Z. Cai Z. Zhang G. Extracellular vesicles derived from M2‐like macrophages alleviate acute lung injury in a miR‐709‐mediated manner. J. Extracell. Vesicles 2024 13 4 e12437 10.1002/jev2.12437 38594787
    [Google Scholar]
  54. Yin Q. Tang T.T. Lu X.Y. Ni W.J. Yin D. Zhang Y.L. Jiang W. Zhang Y. Li Z.L. Wen Y. Gan W.H. Zhang A.Q. Lv L.L. Wang B. Liu B.C. Macrophage-derived exosomes promote telomere fragility and senescence in tubular epithelial cells by delivering miR-155. Cell Commun. Signal. 2024 22 1 357 10.1186/s12964‑024‑01708‑5 38987851
    [Google Scholar]
  55. Yuan Y. Yuan L. Yang J. Liu F. Liu S. Li L. Liao G. Tang X. Cheng J. Liu J. Chen Y. Lu Y. Autophagy-deficient macrophages exacerbate cisplatin-induced mitochondrial dysfunction and kidney injury via miR-195a-5p-SIRT3 axis. Nat. Commun. 2024 15 1 4383 10.1038/s41467‑024‑47842‑z 38782909
    [Google Scholar]
  56. Zhang F. Guo J. Yu S. Zheng Y. Duan M. Zhao L. Wang Y. Yang Z. Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun. (Lond.) 2024 44 9 929 966 10.1002/cac2.12591 38997794
    [Google Scholar]
  57. Liu Y. Lv H. Liu X. Xu L. Li T. Zhou H. Zhu H. Hao C. Lin C. Zhang Y. The RP11-417E7.1/THBS2 signaling pathway promotes colorectal cancer metastasis by activating the Wnt/β-catenin pathway and facilitating exosome-mediated M2 macrophage polarization. J. Exp. Clin. Cancer Res. 2024 43 1 195 10.1186/s13046‑024‑03107‑7 39020380
    [Google Scholar]
  58. Mao H Ye R Tang G Tao S Wei K Wu Y Pang S Wang J Shi J Ji Y Drug-resistant exosome miR-99b-3p induces macrophage polarization and confers chemoresistance on sensitive cells by targeting PPP2CA. Int Immunopharmacol. 2024 142 113168 10.1016/j.intimp.2024.113168
    [Google Scholar]
  59. Zhang Z. Hu J. DKK1 loss promotes endometrial fibrosis via autophagy and exosome-mediated macrophage-to-myofibroblast transition. J. Transl. Med. 2024 22 1 617 10.1186/s12967‑024‑05402‑5 38961399
    [Google Scholar]
  60. Troyer Z. Gololobova O. Koppula A. Liao Z. Horns F. Elowitz M.B. Tosar J.P. Batish M. Witwer K.W. Simultaneous protein and RNA analysis in single extracellular vesicles, including viruses. ACS Nano 2024 18 39 26568 26584 10.1021/acsnano.4c03679 39306763
    [Google Scholar]
  61. Fang L. Gu W. Li R. Chen C. Cai S. Luozhong S. Chen M. Hsu A. Tsai Y.C. Londhe K. Jiang S. Controlling circular RNA encapsulation within extracellular vesicles for gene editing and protein replacement. ACS Nano 2024 18 44 30378 30387 10.1021/acsnano.4c07530 39445782
    [Google Scholar]
  62. Chen Z. Zhang J. Pan Y. Hao Z. Li S. Extracellular vesicles as carriers for noncoding RNA-based regulation of macrophage/microglia polarization: An emerging candidate regulator for lung and traumatic brain injuries. Front. Immunol. 2024 15 1343364 10.3389/fimmu.2024.1343364 38558799
    [Google Scholar]
  63. Gu W. Luozhong S. Cai S. Londhe K. Elkasri N. Hawkins R. Yuan Z. Su-Greene K. Yin Y. Cruz M. Chang Y.W. McMullen P. Wu C. Seo C. Guru A. Gao W. Sarmiento T. Schaffer C. Nishimura N. Cerione R. Yu Q. Warden M. Langer R. Jiang S. Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons. Nat. Biomed. Eng. 2024 8 4 415 426 10.1038/s41551‑023‑01150‑x 38374224
    [Google Scholar]
  64. Miceli R.T. Chen T.Y. Nose Y. Tichkule S. Brown B. Fullard J.F. Saulsbury M.D. Heyliger S.O. Gnjatic S. Kyprianou N. Cordon-Cardo C. Sahoo S. Taioli E. Roussos P. Stolovitzky G. Gonzalez-Kozlova E. Dogra N. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. J. Extracell. Vesicles 2024 13 12 e70005 10.1002/jev2.70005 39625409
    [Google Scholar]
  65. Kalluri R. The biology and function of extracellular vesicles in immune response and immunity. Immunity 2024 57 8 1752 1768 10.1016/j.immuni.2024.07.009 39142276
    [Google Scholar]
  66. Xie H. Xi X. Lei T. Liu H. Xia Z. CD8+ T cell exhaustion in the tumor microenvironment of breast cancer. Front. Immunol. 2024 15 1507283 10.3389/fimmu.2024.1507283 39717767
    [Google Scholar]
  67. Muskan M. Abeysinghe P. Cecchin R. Branscome H. Morris K.V. Kashanchi F. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol. Ther. 2024 32 9 2939 2949 10.1016/j.ymthe.2024.02.025 38414242
    [Google Scholar]
  68. Payandeh Z. Tangruksa B. Synnergren J. Heydarkhan-Hagvall S. Nordin J.Z. Andaloussi S.E.L. Borén J. Wiseman J. Bohlooly-Y M. Lindfors L. Valadi H. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol. Aspects Med. 2024 99 101302 10.1016/j.mam.2024.101302 39094449
    [Google Scholar]
  69. Chen J. Zhang E. Wan Y. Huang T. Wang Y. Jiang H. A quick and innovative pipeline for producing chondrocyte-homing peptide-modified extracellular vesicles by three-dimensional dynamic culture of hADSCs spheroids to modulate the fate of remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment. J. Nanobiotechnology 2024 22 1 300 10.1186/s12951‑024‑02567‑5 38816719
    [Google Scholar]
  70. Chen R. Kang Z. Li W. Xu T. Wang Y. Jiang Q. Wang Y. Huang Z. Xu X. Huang Z. Extracellular vesicle surface display of αPD‐L1 and αCD3 antibodies via engineered late domain‐based scaffold to activate T‐cell anti‐tumor immunity. J. Extracell. Vesicles 2024 13 7 e12490 10.1002/jev2.12490 39051742
    [Google Scholar]
  71. Chen Y. Li X. Shang H. Sun Y. Wang C. Wang X. Tian H. Yang H. Zhang L. Deng L. Yang K. Wu B. Cheng W. Mechanism exploration of synergistic photo-immunotherapy strategy based on a novel exosome-like nanosystem for remodeling the immune microenvironment of HCC. Nano Converg. 2024 11 1 31 10.1186/s40580‑024‑00441‑6 39141072
    [Google Scholar]
  72. Hoshino A. Costa-Silva B. Shen T.L. Rodrigues G. Hashimoto A. Tesic Mark M. Molina H. Kohsaka S. Di Giannatale A. Ceder S. Singh S. Williams C. Soplop N. Uryu K. Pharmer L. King T. Bojmar L. Davies A.E. Ararso Y. Zhang T. Zhang H. Hernandez J. Weiss J.M. Dumont-Cole V.D. Kramer K. Wexler L.H. Narendran A. Schwartz G.K. Healey J.H. Sandstrom P. Jørgen Labori K. Kure E.H. Grandgenett P.M. Hollingsworth M.A. de Sousa M. Kaur S. Jain M. Mallya K. Batra S.K. Jarnagin W.R. Brady M.S. Fodstad O. Muller V. Pantel K. Minn A.J. Bissell M.J. Garcia B.A. Kang Y. Rajasekhar V.K. Ghajar C.M. Matei I. Peinado H. Bromberg J. Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015 527 7578 329 335 10.1038/nature15756 26524530
    [Google Scholar]
  73. Xiong Y. Chen L. Liu P. Yu T. Lin C. Yan C. Hu Y. Zhou W. Sun Y. Panayi A.C. Cao F. Xue H. Hu L. Lin Z. Xie X. Xiao X. Feng Q. Mi B. Liu G. All‐in‐One: Multifunctional hydrogel accelerates oxidative diabetic wound healing through timed‐release of exosome and fibroblast growth factor. Small 2022 18 1 2104229 10.1002/smll.202104229 34791802
    [Google Scholar]
  74. Wang C. Li N. Li Y. Hou S. Zhang W. Meng Z. Wang S. Jia Q. Tan J. Wang R. Zhang R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J. Nanobiotechnology 2022 20 1 247 10.1186/s12951‑022‑01462‑1 35642064
    [Google Scholar]
  75. Wu B. Liu D.A. Guan L. Myint P.K. Chin L. Dang H. Xu Y. Ren J. Li T. Yu Z. Jabban S. Mills G.B. Nukpezah J. Chen Y.H. Furth E.E. Gimotty P.A. Wells R.G. Weaver V.M. Radhakrishnan R. Wang X.W. Guo W. Stiff matrix induces exosome secretion to promote tumour growth. Nat. Cell Biol. 2023 25 3 415 424 10.1038/s41556‑023‑01092‑1 36797475
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096357750250507073948
Loading
/content/journals/ccdt/10.2174/0115680096357750250507073948
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test