Skip to content
2000
image of A Comprehensive Evaluation of the Effectiveness and Safety of Pembrolizumab for the Treatment of Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis

Abstract

Aim

This comprehensive assessment and quantitative synthesis aimed to assess the effectiveness and safety profile of pembrolizumab, an antagonist of the programmed cell death protein 1 [PD-1] pathway, for individuals with metastatic colorectal carcinoma [mCRC].

Methods

A comprehensive search of scholarly articles was performed using the PubMed and Web of Science [WOS] databases from January 2015 to August 2024. The scope of the search was limited to randomized controlled trials and clinical studies that reported the effectiveness of pembrolizumab in patients with metastatic colorectal cancer [mCRC], which emphasized critical indicators, such as overall survival, progression-free survival, objective response rate, and disease control rate. The research also considered secondary outcomes, including the incidence of severe adverse events and mortality rates. Data extraction was performed by two independent reviewers, who employed a standardized data collection form. The subsequent meta-analysis was performed using RevMan 5.0, a software tool for statistical analysis.

Results

Six studies with 1,634 patients were included, and of these patients, 812 were in the pembrolizumab group, and 822 were in the control group. The results of the meta-analysis indicated the standard mean difference [SMD] that the overall survival [OS] of patients in the pembrolizumab group was significantly different from that of patients in the control group [SMD = 0.21, 95% CI [0.09, 0.32], P = 0.0005]. The progression-free survival [PFS] of patients in the pembrolizumab group was slightly longer than that of patients in the control group according to the SMD, and this difference was statistically significant [SMD = 0.11, 95% CI [0.01, 0.22], P = 0.03]. Compared with the objective response rate [ORR] of patients in the control group, that of patients in the pembrolizumab group was significantly higher [OR = 1.71, 95% CI [1.34, 2.17], P < 0.0001]. The mortality rate in the pembrolizumab group was also significantly different from that in the control group [OR = 0.67, 95% CI [0.52, 0.87], P = 0.002].

Conclusion

Pembrolizumab may help improve overall survival [OS] and progression-free survival [PFS] in patients with metastatic colorectal cancer, which can potentially reduce the mortality rate. More research using larger, well-designed studies is needed to further confirm these findings.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096357426250310070752
2025-04-23
2025-09-13
Loading full text...

Full text loading...

References

  1. Yang K. Halima A. Chan T.A. Antigen presentation in cancer — Mechanisms and clinical implications for immunotherapy. Nat. Rev. Clin. Oncol. 2023 20 9 604 623 10.1038/s41571‑023‑00789‑4 37328642
    [Google Scholar]
  2. Rui R. Zhou L. He S. Cancer immunotherapies: Advances and bottlenecks. Front. Immunol. 2023 14 1212476 10.3389/fimmu.2023.1212476 37691932
    [Google Scholar]
  3. Brandenburg A. Heine A. Brossart P. Next-generation cancer vaccines and emerging immunotherapy combinations. Trends Cancer 2024 10 8 749 769 10.1016/j.trecan.2024.06.003 39048489
    [Google Scholar]
  4. Goodman R.S. Johnson D.B. Balko J.M. Corticosteroids and cancer immunotherapy. Clin. Cancer Res. 2023 29 14 2580 2587 10.1158/1078‑0432.CCR‑22‑3181 36648402
    [Google Scholar]
  5. Uppal N.N. Workeneh B.T. Rondon-Berrios H. Jhaveri K.D. Electrolyte and acid-base disorders associated with cancer immunotherapy. Clin. J. Am. Soc. Nephrol. 2022 17 6 922 933 10.2215/CJN.14671121 35063968
    [Google Scholar]
  6. Mei J. Liu X. Tian H.X. Chen Y. Cao Y. Zeng J. Liu Y.C. Chen Y. Gao Y. Yin J.Y. Wang P.Y. Tumour organoids and assembloids: Patient‐derived cancer avatars for immunotherapy. Clin. Transl. Med. 2024 14 4 e1656 10.1002/ctm2.1656 38664597
    [Google Scholar]
  7. Jin X. Liu Z. Yang D. Yin K. Chang X. Recent progress and future perspectives of immunotherapy in advanced gastric cancer. Front. Immunol. 2022 13 948647 10.3389/fimmu.2022.948647 35844558
    [Google Scholar]
  8. Naimi A. Mohammed R.N. Raji A. Chupradit S. Yumashev A.V. Suksatan W. Shalaby M.N. Thangavelu L. Kamrava S. Shomali N. Sohrabi A.D. Adili A. Noroozi-Aghideh A. Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); The pros and cons. Cell Commun. Signal. 2022 20 1 44 10.1186/s12964‑022‑00854‑y 35392976
    [Google Scholar]
  9. Rizzo A. Cusmai A. Acquafredda S. Giovannelli F. Rinaldi L. Misino A. Palmiotti G. KEYNOTE-522, IMpassion031 and GeparNUEVO: Changing the paradigm of neoadjuvant immune checkpoint inhibitors in early triple-negative breast cancer. Future Oncol. 2022 18 18 2301 2309 10.2217/fon‑2021‑1647 35378995
    [Google Scholar]
  10. Wang S.J. Dougan S.K. Dougan M. Immune mechanisms of toxicity from checkpoint inhibitors. Trends Cancer 2023 9 7 543 553 10.1016/j.trecan.2023.04.002 37117135
    [Google Scholar]
  11. Tang S. Qin C. Hu H. Liu T. He Y. Guo H. Yan H. Zhang J. Tang S. Zhou H. Immune checkpoint inhibitors in non-small cell lung cancer: Progress, challenges, and prospects. Cells 2022 11 3 320 10.3390/cells11030320 35159131
    [Google Scholar]
  12. Tang Q. Chen Y. Li X. Long S. Shi Y. Yu Y. Wu W. Han L. Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front. Immunol. 2022 13 964442 10.3389/fimmu.2022.964442 36177034
    [Google Scholar]
  13. Jia D. Wang Q. Qi Y. Jiang Y. He J. Lin Y. Sun Y. Xu J. Chen W. Fan L. Yan R. Zhang W. Ren G. Xu C. Ge Q. Wang L. Liu W. Xu F. Wu P. Wang Y. Chen S. Wang L. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 2024 187 7 1651 1665.e21 10.1016/j.cell.2024.02.022 38490195
    [Google Scholar]
  14. Ai L. Xu A. Xu J. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond. Adv. Exp. Med. Biol. 2020 1248 33 59 10.1007/978‑981‑15‑3266‑5_3 32185706
    [Google Scholar]
  15. Groeger S. Meyle J. The role of programmed death receptor (PD‐)1/PD‐ligand (L)1 in periodontitis and cancer. Periodontol. 2000 2024 96 1 150 169 10.1111/prd.12548 38351432
    [Google Scholar]
  16. Sun C. Mezzadra R. Schumacher T.N. Regulation and function of the PD-L1 checkpoint. Immunity 2018 48 3 434 452 10.1016/j.immuni.2018.03.014 29562194
    [Google Scholar]
  17. Charoentong P. Finotello F. Angelova M. Mayer C. Efremova M. Rieder D. Hackl H. Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017 18 1 248 262 10.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  18. Veen T. Kanani A. Lea D. Søreide K. Clinical trials of neoadjuvant immune checkpoint inhibitors for early-stage operable colon and rectal cancer. Cancer Immunol. Immunother. 2023 72 10 3135 3147 10.1007/s00262‑023‑03480‑w 37528319
    [Google Scholar]
  19. Lin K.X. Istl A.C. Quan D. Skaro A. Tang E. Zheng X. PD-1 and PD-L1 inhibitors in cold colorectal cancer: Challenges and strategies. Cancer Immunol. Immunother. 2023 72 12 3875 3893 10.1007/s00262‑023‑03520‑5 37831146
    [Google Scholar]
  20. Yang X. Li W. Li S. Chen S. Hu Z. He Z. Zhu X. Niu X. Zhou X. Li H. Xiao Y. Liu J. Sui X. Chen G. Gao Y. Fish oil-based microemulsion can efficiently deliver oral peptide blocking PD-1/PD-L1 and simultaneously induce ferroptosis for cancer immunotherapy. J. Control. Release 2024 365 654 667 10.1016/j.jconrel.2023.11.042 38030081
    [Google Scholar]
  21. Fan A. Wang B. Wang X. Nie Y. Fan D. Zhao X. Lu Y. Immunotherapy in colorectal cancer: Current achievements and future perspective. Int. J. Biol. Sci. 2021 17 14 3837 3849 10.7150/ijbs.64077 34671202
    [Google Scholar]
  22. Ganesh K. Stadler Z.K. Cercek A. Mendelsohn R.B. Shia J. Segal N.H. Diaz L.A. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019 16 6 361 375 10.1038/s41575‑019‑0126‑x 30886395
    [Google Scholar]
  23. Le D.T. Kim T.W. Van Cutsem E. Geva R. Jäger D. Hara H. Burge M. O’Neil B. Kavan P. Yoshino T. Guimbaud R. Taniguchi H. Elez E. Al-Batran S.E. Boland P.M. Crocenzi T. Atreya C.E. Cui Y. Dai T. Marinello P. Diaz L.A. André T. Phase II open-label study of Pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020 38 1 11 19 10.1200/JCO.19.02107 31725351
    [Google Scholar]
  24. Ludford K. Ho W.J. Thomas J.V. Raghav K.P.S. Murphy M.B. Fleming N.D. Lee M.S. Smaglo B.G. You Y.N. Tillman M.M. Kamiya-Matsuoka C. Thirumurthi S. Messick C. Johnson B. Vilar E. Dasari A. Shin S. Hernandez A. Yuan X. Yang H. Foo W.C. Qiao W. Maru D. Kopetz S. Overman M.J. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors. J. Clin. Oncol. 2023 41 12 2181 2190 10.1200/JCO.22.01351 36623241
    [Google Scholar]
  25. Zhao W. Jin L. Chen P. Li D. Gao W. Dong G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett. 2022 545 215816 10.1016/j.canlet.2022.215816 35810989
    [Google Scholar]
  26. Weng J. Li S. Zhu Z. Liu Q. Zhang R. Yang Y. Li X. Exploring immunotherapy in colorectal cancer. J. Hematol. Oncol. 2022 15 1 95 10.1186/s13045‑022‑01294‑4 35842707
    [Google Scholar]
  27. Zhang X. Wu T. Cai X. Dong J. Xia C. Zhou Y. Ding R. Yang R. Tan J. Zhang L. Zhang Y. Wang Y. Dong C. Li Y. Neoadjuvant immunotherapy for MSI-H/dMMR locally advanced colorectal cancer: New strategies and unveiled opportunities. Front. Immunol. 2022 13 795972 10.3389/fimmu.2022.795972 35371084
    [Google Scholar]
  28. Bando H. Ohtsu A. Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 2023 20 5 306 322 10.1038/s41575‑022‑00736‑1 36670267
    [Google Scholar]
  29. Picard E. Verschoor C.P. Ma G.W. Pawelec G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol. 2020 11 369 10.3389/fimmu.2020.00369 32210966
    [Google Scholar]
  30. André T. Shiu K.K. Kim T.W. Jensen B.V. Jensen L.H. Punt C. Smith D. Garcia-Carbonero R. Benavides M. Gibbs P. de la Fouchardiere C. Rivera F. Elez E. Bendell J. Le D.T. Yoshino T. Van Cutsem E. Yang P. Farooqui M.Z.H. Marinello P. Diaz L.A. Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N. Engl. J. Med. 2020 383 23 2207 2218 10.1056/NEJMoa2017699 33264544
    [Google Scholar]
  31. Diaz L.A. Shiu K.K. Kim T.W. Jensen B.V. Jensen L.H. Punt C. Smith D. Garcia-Carbonero R. Benavides M. Gibbs P. de la Fourchardiere C. Rivera F. Elez E. Le D.T. Yoshino T. Zhong W.Y. Fogelman D. Marinello P. Andre T. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022 23 5 659 670 10.1016/S1470‑2045(22)00197‑8 35427471
    [Google Scholar]
  32. Yoshino T. Andre T. Kim T.W. Yong W.P. Shiu K.K. Jensen B.V. Jensen L.H. Punt C.J.A. Smith D. Garcia-Carbonero R. Alcaide-Garcia J. Gibbs P. de la Fouchardiere C. Rivera F. Elez E. Le D.T. Adachi N. Fogelman D. Marinello P. Diaz L.A. Pembrolizumab in Asian patients with microsatellite‐instability‐high/mismatch‐repair‐deficient colorectal cancer. Cancer Sci. 2023 114 3 1026 1036 10.1111/cas.15650 36369901
    [Google Scholar]
  33. Rahma O.E. Yothers G. Hong T.S. Russell M.M. You Y.N. Parker W. Jacobs S.A. Colangelo L.H. Lucas P.C. Gollub M.J. Hall W.A. Kachnic L.A. Vijayvergia N. O’Rourke M.A. Faller B.A. Valicenti R.K. Schefter T.E. George S. Kainthla R. Stella P.J. Sigurdson E. Wolmark N. George T.J. Use of total neoadjuvant therapy for locally advanced rectal cancer. JAMA Oncol. 2021 7 8 1225 1230 10.1001/jamaoncol.2021.1683 34196693
    [Google Scholar]
  34. Kawazoe A. Xu R.H. García-Alfonso P. Passhak M. Teng H.W. Shergill A. Gumus M. Qvortrup C. Stintzing S. Towns K. Kim T.W. Shiu K.K. Cundom J. Ananda S. Lebedinets A. Fu R. Jain R. Adelberg D. Heinemann V. Yoshino T. Elez E. Cundom J. Slutsky E. Grasselli J. Fein L. Bella Quero L. Joubert W. Gibbs P. Price T. Burge M. Ananda S. Khattak M. Colwell B. Couture F. Meyers B. Towns K. Sawyer M. Sideris L. Xu R. Wang W. Pan H. Pfeiffer P. Jensen L.H. Qvortrup C. Stintzing S. Arnold D. Lorenzen S. Kubicka S. Depenbusch R. Passhak M. Geva R. Hubert A. Shacham-Shmueli E. Kornev G. Kawazoe A. Masuishi T. Takashima A. Hara H. Kawakami H. Machida N. Yamazaki K. Yasui H. Tsuji A. Esaki T. Yamaguchi K. Kim T-Y. Ahn J.B. Lee M.A. Kim T.W. Park J.O. Lee S. Orlova R. Sarzhevskiy V. Sekacheva M. Tjulandin S. Shirokova O. Iskhakova A. Lebedinets A. Jimenez Fonseca P. Rivera Herrero F. Elez Fernandez E. Garcia Alfonso P. Gomez Reina M.J. Yeh K-H. Teng H-W. Yang T.S. Wang H-M. Yeh Y-M. Ozguroglu M. Gumus M. Yalcin S. Erdogan B. Demirci U. Gursoy P. Harputluoglu H. Demir A. Shiu K-K. Brown E. Ross P. Smyth E. Chau I. Saunders M. Vaccaro G. McCune S. Wadlow R. Khan G. Bashir B. Koontz M. Martin L. Shergill A. Cobb P. Kochenderfer M. Lenvatinib plus pembrolizumab versus standard of care for previously treated metastatic colorectal cancer: Final analysis of the randomized, open-label, phase III LEAP-017 study. J. Clin. Oncol. 2024 42 24 2918 2927 10.1200/JCO.23.02736 38833658
    [Google Scholar]
  35. Casak S.J. Marcus L. Fashoyin-Aje L. Mushti S.L. Cheng J. Shen Y.L. Pierce W.F. Her L. Goldberg K.B. Theoret M.R. Kluetz P.G. Pazdur R. Lemery S.J. FDA approval summary: Pembrolizumab for the first-line treatment of patients with MSI-H/dMMR advanced unresectable or metastatic colorectal carcinoma. Clin. Cancer Res. 2021 27 17 4680 4684 10.1158/1078‑0432.CCR‑21‑0557 33846198
    [Google Scholar]
  36. Li J. Ma X. Chakravarti D. Shalapour S. DePinho R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021 35 11-12 787 820 10.1101/gad.348226.120 34074695
    [Google Scholar]
  37. Shin A.E. Giancotti F.G. Rustgi A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci. 2023 44 4 222 236 10.1016/j.tips.2023.01.003 36828759
    [Google Scholar]
  38. Dekker E. Tanis P.J. Vleugels J.L.A. Kasi P.M. Wallace M.B. Colorectal cancer. Lancet 2019 394 10207 1467 1480 10.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  39. Underwood P.W. Ruff S.M. Pawlik T.M. Update on targeted therapy and immunotherapy for metastatic colorectal cancer. Cells 2024 13 3 245 10.3390/cells13030245 38334637
    [Google Scholar]
  40. Housini M. Dariya B. Ahmed N. Stevens A. Fiadjoe H. Nagaraju G.P. Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024 892 147857 10.1016/j.gene.2023.147857 37783294
    [Google Scholar]
  41. Liang B.J. Tang M. Huang C. A systematic review and meta-analysis of the efficacy and safety of regorafenib in the treatment of metastatic colorectal cancer. J. Gastrointest. Cancer 2024 56 1 36 10.1007/s12029‑024‑01158‑9 39710828
    [Google Scholar]
  42. Bruni D. Angell H.K. Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020 20 11 662 680 10.1038/s41568‑020‑0285‑7 32753728
    [Google Scholar]
  43. Zhai J. Chen H. Wong C.C. Peng Y. Gou H. Zhang J. Pan Y. Chen D. Lin Y. Wang S. Kang W. To K.F. Chen Z. Nie Y. He H.H. Sung J.J.Y. Yu J. ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology 2023 165 2 445 462 10.1053/j.gastro.2023.04.032 37169182
    [Google Scholar]
  44. El Hajj J. Reddy S. Verma N. Huang E.H. Kazmi S.M. Immune checkpoint inhibitors in pMMR/MSS colorectal cancer. J. Gastrointest. Cancer 2023 54 4 1017 1030 10.1007/s12029‑023‑00927‑2 37009977
    [Google Scholar]
  45. Sui Q. Zhang X. Chen C. Tang J. Yu J. Li W. Han K. Jiang W. Liao L. Kong L. Li Y. Hou Z. Zhou C. Zhang C. Zhang L. Xiao B. Mei W. Xu Y. Qin J. Zheng J. Pan Z. Ding P.R. Inflammation promotes resistance to immune checkpoint inhibitors in high microsatellite instability colorectal cancer. Nat. Commun. 2022 13 1 7316 10.1038/s41467‑022‑35096‑6 36443332
    [Google Scholar]
  46. Yan S. Wang W. Feng Z. Xue J. Liang W. Wu X. Tan Z. Zhang X. Zhang S. Li X. Zhang C. Immune checkpoint inhibitors in colorectal cancer: Limitation and challenges. Front. Immunol. 2024 15 1403533 10.3389/fimmu.2024.1403533 38919624
    [Google Scholar]
  47. Ganesh K. Optimizing immunotherapy for colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 2022 19 2 93 94 10.1038/s41575‑021‑00569‑4 34907331
    [Google Scholar]
  48. Sakata S. Larson D.W. Targeted therapy for colorectal cancer. Surg. Oncol. Clin. N. Am. 2022 31 2 255 264 10.1016/j.soc.2021.11.006 35351276
    [Google Scholar]
  49. Hou W. Yi C. Zhu H. Predictive biomarkers of colon cancer immunotherapy: Present and future. Front. Immunol. 2022 13 1032314 10.3389/fimmu.2022.1032314 36483562
    [Google Scholar]
  50. Modest D.P. Pant S. Sartore-Bianchi A. Treatment sequencing in metastatic colorectal cancer. Eur. J. Cancer 2019 109 70 83 10.1016/j.ejca.2018.12.019 30690295
    [Google Scholar]
  51. Crisafulli G. Sartore-Bianchi A. Lazzari L. Pietrantonio F. Amatu A. Macagno M. Barault L. Cassingena A. Bartolini A. Luraghi P. Mauri G. Battuello P. Personeni N. Zampino M.G. Pessei V. Vitiello P.P. Tosi F. Idotta L. Morano F. Valtorta E. Bonoldi E. Germano G. Di Nicolantonio F. Marsoni S. Siena S. Bardelli A. Temozolomide treatment alters mismatch repair and boosts mutational burden in tumor and blood of colorectal cancer patients. Cancer Discov. 2022 12 7 1656 1675 10.1158/2159‑8290.CD‑21‑1434 35522273
    [Google Scholar]
  52. Li J. Wu C. Hu H. Qin G. Wu X. Bai F. Zhang J. Cai Y. Huang Y. Wang C. Yang J. Luan Y. Jiang Z. Ling J. Wu Z. Chen Y. Xie Z. Deng Y. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell 2023 41 6 1152 1169.e7 10.1016/j.ccell.2023.04.011 37172580
    [Google Scholar]
  53. Chen C. Yang Y. Guo Y. He J. Chen Z. Qiu S. Zhang Y. Ding H. Pan J. Pan Y. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer. Cell Death Dis. 2023 14 4 271 10.1038/s41419‑023‑05803‑2 37059712
    [Google Scholar]
  54. Abu Ahmad W. Nirel R. Barges S. Jolles M. Levine H. Meta-analysis of fine particulate matter exposure during pregnancy and birth weight: Exploring sources of heterogeneity. Sci. Total Environ. 2024 934 173205 10.1016/j.scitotenv.2024.173205 38754513
    [Google Scholar]
  55. Morris V.K. Kennedy E.B. Baxter N.N. Benson A.B. Cercek A. Cho M. Ciombor K.K. Cremolini C. Davis A. Deming D.A. Fakih M.G. Gholami S. Hong T.S. Jaiyesimi I. Klute K. Lieu C. Sanoff H. Strickler J.H. White S. Willis J.A. Eng C. Treatment of metastatic colorectal cancer: ASCO guideline. J. Clin. Oncol. 2023 41 3 678 700 10.1200/JCO.22.01690 36252154
    [Google Scholar]
  56. O’Malley D.M. Bariani G.M. Cassier P.A. Marabelle A. Hansen A.R. De Jesus Acosta A. Miller W.H. Safra T. Italiano A. Mileshkin L. Xu L. Jin F. Norwood K. Maio M. Pembrolizumab in patients with microsatellite instability–high advanced endometrial cancer: Results from the KEYNOTE-158 study. J. Clin. Oncol. 2022 40 7 752 761 10.1200/JCO.21.01874 34990208
    [Google Scholar]
  57. Garralda E. Sukari A. Lakhani N.J. Patnaik A. Lou Y. Im, S.A.; Golan, T.; Geva, R.; Wermke, M.; de Miguel, M.; Palcza, J.; Jha, S.; Chaney, M.; Abraham, A.K.; Healy, J.; Falchook, G.S. A first-in-human study of the anti-LAG-3 antibody favezelimab plus pembrolizumab in previously treated, advanced microsatellite stable colorectal cancer. ESMO Open 2022 7 6 100639 10.1016/j.esmoop.2022.100639 36493599
    [Google Scholar]
  58. Haag G.M. Springfeld C. Grün B. Apostolidis L. Zschäbitz S. Dietrich M. Berger A.K. Weber T.F. Zoernig I. Schaaf M. Waberer L. Müller D.W. Al-Batran S.E. Halama N. Jaeger D. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer – The PICCASSO phase I trial. Eur. J. Cancer 2022 167 112 122 10.1016/j.ejca.2022.03.017 35427833
    [Google Scholar]
  59. Shitara K. Van Cutsem E. Bang Y.J. Fuchs C. Wyrwicz L. Lee K.W. Kudaba I. Garrido M. Chung H.C. Lee J. Castro H.R. Mansoor W. Braghiroli M.I. Karaseva N. Caglevic C. Villanueva L. Goekkurt E. Satake H. Enzinger P. Alsina M. Benson A. Chao J. Ko A.H. Wainberg Z.A. Kher U. Shah S. Kang S.P. Tabernero J. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer. JAMA Oncol. 2020 6 10 1571 1580 10.1001/jamaoncol.2020.3370 32880601
    [Google Scholar]
  60. Garassino M.C. Gadgeel S. Speranza G. Felip E. Esteban E. Dómine M. Hochmair M.J. Powell S.F. Bischoff H.G. Peled N. Grossi F. Jennens R.R. Reck M. Hui R. Garon E.B. Kurata T. Gray J.E. Schwarzenberger P. Jensen E. Pietanza M.C. Rodríguez-Abreu D. Pembrolizumab plus pemetrexed and platinum in nonsquamous non–small-cell lung cancer: 5-Year outcomes from the phase 3 KEYNOTE-189 study. J. Clin. Oncol. 2023 41 11 1992 1998 10.1200/JCO.22.01989 36809080
    [Google Scholar]
  61. Gadgeel S. Rodríguez-Abreu D. Speranza G. Esteban E. Felip E. Dómine M. Hui R. Hochmair M.J. Clingan P. Powell S.F. Cheng S.Y.S. Bischoff H.G. Peled N. Grossi F. Jennens R.R. Reck M. Garon E.B. Novello S. Rubio-Viqueira B. Boyer M. Kurata T. Gray J.E. Yang J. Bas T. Pietanza M.C. Garassino M.C. Updated analysis From KEYNOTE-189: Pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non–small-cell lung cancer. J. Clin. Oncol. 2020 38 14 1505 1517 10.1200/JCO.19.03136 32150489
    [Google Scholar]
  62. Makker V. Colombo N. Herráez A.C. Monk B.J. Mackay H. Santin A.D. Miller D.S. Moore R.G. Baron-Hay S. Ray-Coquard I. Ushijima K. Yonemori K. Kim Y.M. Guerra Alia E.M. Sanli U.A. Bird S. Orlowski R. McKenzie J. Okpara C. Barresi G. Lorusso D. Lenvatinib plus pembrolizumab in previously treated advanced endometrial cancer: Updated efficacy and safety from the randomized phase III study 309/KEYNOTE-775. J. Clin. Oncol. 2023 41 16 2904 2910 10.1200/JCO.22.02152 37058687
    [Google Scholar]
  63. Novello S. Kowalski D.M. Luft A. Gümüş M. Vicente D. Mazières J. Rodríguez-Cid J. Tafreshi A. Cheng Y. Lee K.H. Golf A. Sugawara S. Robinson A.G. Halmos B. Jensen E. Schwarzenberger P. Pietanza M.C. Paz-Ares L. Pembrolizumab plus chemotherapy in squamous non–small-cell lung cancer: 5-Year update of the phase III KEYNOTE-407 study. J. Clin. Oncol. 2023 41 11 1999 2006 10.1200/JCO.22.01990 36735893
    [Google Scholar]
  64. Chao J. Fuchs C.S. Shitara K. Tabernero J. Muro K. Van Cutsem E. Bang Y.J. De Vita F. Landers G. Yen C.J. Chau I. Elme A. Lee J. Özgüroglu M. Catenacci D. Yoon H.H. Chen E. Adelberg D. Shih C.S. Shah S. Bhagia P. Wainberg Z.A. Assessment of pembrolizumab therapy for the treatment of microsatellite instability–high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical trials. JAMA Oncol. 2021 7 6 895 902 10.1001/jamaoncol.2021.0275 33792646
    [Google Scholar]
  65. Lin J.X. Tang Y.H. Zheng H.L. Ye K. Cai J.C. Cai L.S. Lin W. Xie J.W. Wang J.B. Lu J. Chen Q.Y. Cao L.L. Zheng C.H. Li P. Huang C.M. Neoadjuvant camrelizumab and apatinib combined with chemotherapy versus chemotherapy alone for locally advanced gastric cancer: A multicenter randomized phase 2 trial. Nat. Commun. 2024 15 1 41 10.1038/s41467‑023‑44309‑5 38167806
    [Google Scholar]
  66. Frentzas S. Austria Mislang A.R. Lemech C. Nagrial A. Underhill C. Wang W. Wang Z.M. Li B. Xia Y. Coward J.I.G. Phase 1a dose escalation study of ivonescimab (AK112/SMT112), an anti-PD-1/VEGF-A bispecific antibody, in patients with advanced solid tumors. J. Immunother. Cancer 2024 12 4 e008037 10.1136/jitc‑2023‑008037 38642937
    [Google Scholar]
  67. Xu Y. Liu K. Li C. Li M. Zhou X. Sun M. Zhang L. Wang S. Liu F. Xu Y. Microsatellite instability in mismatch repair proficient colorectal cancer: Clinical features and underlying molecular mechanisms. EBioMedicine 2024 103 105142 10.1016/j.ebiom.2024.105142 38691939
    [Google Scholar]
  68. Andre T. Elez E. Van Cutsem E. Jensen L.H. Bennouna J. Mendez G. Schenker M. de la Fouchardiere C. Limon M.L. Yoshino T. Li J. Lenz H.J. Manzano Mozo J.L. Tortora G. Garcia-Carbonero R. Dahan L. Chalabi M. Joshi R. Goekkurt E. Braghiroli M.I. Cil T. Cela E. Chen T. Lei M. Dixon M. Abdullaev S. Lonardi S. Nivolumab plus Ipilimumab in microsatellite-instability–high metastatic colorectal cancer. N. Engl. J. Med. 2024 391 21 2014 2026 10.1056/NEJMoa2402141 39602630
    [Google Scholar]
  69. Rüschoff J. Schildhaus H.U. Rüschoff J.H. Jöhrens K. Bocker Edmonston T. Dietmaier W. Bläker H. Baretton G. Horst D. Dietel M. Hartmann A. Klauschen F. Merkelbach-Bruse S. Stenzinger A. Schöniger S. Tiemann M. Weichert W. Büttner R. Testing for deficient mismatch repair and microsatellite instability.Pathologie, 2023, 44(S2), 61-70.(Suppl. 2) 10.1007/s00292‑023‑01208‑2 37874379
    [Google Scholar]
  70. Wagner S.J. Reisenbüchler D. West N.P. Niehues J.M. Zhu J. Foersch S. Veldhuizen G.P. Quirke P. Grabsch H.I. van den Brandt P.A. Hutchins G.G.A. Richman S.D. Yuan T. Langer R. Jenniskens J.C.A. Offermans K. Mueller W. Gray R. Gruber S.B. Greenson J.K. Rennert G. Bonner J.D. Schmolze D. Jonnagaddala J. Hawkins N.J. Ward R.L. Morton D. Seymour M. Magill L. Nowak M. Hay J. Koelzer V.H. Church D.N. Matek C. Geppert C. Peng C. Zhi C. Ouyang X. James J.A. Loughrey M.B. Salto-Tellez M. Brenner H. Hoffmeister M. Truhn D. Schnabel J.A. Boxberg M. Peng T. Kather J.N. Church D. Domingo E. Edwards J. Glimelius B. Gogenur I. Harkin A. Hay J. Iveson T. Jaeger E. Kelly C. Kerr R. Maka N. Morgan H. Oien K. Orange C. Palles C. Roxburgh C. Sansom O. Saunders M. Tomlinson I. Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study. Cancer Cell 2023 41 9 1650 1661.e4 10.1016/j.ccell.2023.08.002 37652006
    [Google Scholar]
  71. Wang R. Lian J. Wang X. Pang X. Xu B. Tang S. Shao J. Lu H. Intrinsic resistance and efficacy of immunotherapy in microsatellite instability-high colorectal cancer: A systematic review and meta-analysis. Biomol. Biomed. 2023 23 2 198 208 10.17305/bjbms.2022.8286 36408953
    [Google Scholar]
  72. Lo C.M. Jiang J.K. Lin C.C. Detecting microsatellite instability in colorectal cancer using Transformer-based colonoscopy image classification and retrieval. PLoS One 2024 19 1 e0292277 10.1371/journal.pone.0292277 38271352
    [Google Scholar]
  73. Greco L. Rubbino F. Dal Buono A. Laghi L. Microsatellite instability and immune response: From microenvironment features to therapeutic actionability—lessons from colorectal cancer. Genes (Basel) 2023 14 6 1169 10.3390/genes14061169 37372349
    [Google Scholar]
  74. Wu T. Zhang X. Liu X. Cai X. Shen T. Pan D. Liang R. Ding R. Hu R. Dong J. Li F. Li J. Xie L. Wang C. Geng S. Yang Z. Xing L. Li Y. Single-cell sequencing reveals the immune microenvironment landscape related to anti-PD-1 resistance in metastatic colorectal cancer with high microsatellite instability. BMC Med. 2023 21 1 161 10.1186/s12916‑023‑02866‑y 37106440
    [Google Scholar]
  75. Wang X. Fang Y. Liang W. Wong C.C. Qin H. Gao Y. Liang M. Song L. Zhang Y. Fan M. Liu C. Lau H.C.H. Xu L. Li X. Song W. Wang J. Wang N. Yang T. Mo M. Zhang X. Fang J. Liao B. Sung J.J.Y. Yu J. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell 2024 42 10 1729 1746.e8 10.1016/j.ccell.2024.08.019 39303724
    [Google Scholar]
  76. Guo L. Wang Y. Yang W. Wang C. Guo T. Yang J. Shao Z. Cai G. Cai S. Zhang L. Hu X. Xu Y. Molecular profiling provides clinical insights into targeted and immunotherapies as well as colorectal cancer prognosis. Gastroenterology 2023 165 2 414 428.e7 10.1053/j.gastro.2023.04.029 37146911
    [Google Scholar]
  77. Wu H. Deng M. Xue D. Guo R. Zhang C. Gao J. Li H. PD-1/PD-L1 inhibitors for early and middle stage microsatellite high-instability and stable colorectal cancer: A review. Int. J. Colorectal Dis. 2024 39 1 83 10.1007/s00384‑024‑04654‑3 38809459
    [Google Scholar]
  78. Le D.T. Diaz L.A. Kim T.W. Van Cutsem E. Geva R. Jäger D. Hara H. Burge M. O’Neil B.H. Kavan P. Yoshino T. Guimbaud R. Taniguchi H. Élez E. Al-Batran S.E. Boland P.M. Cui Y. Leconte P. Marinello P. André T. Pembrolizumab for previously treated, microsatellite instability–high/mismatch repair–deficient advanced colorectal cancer: Final analysis of KEYNOTE-164. Eur. J. Cancer 2023 186 185 195 10.1016/j.ejca.2023.02.016 37141828
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096357426250310070752
Loading
/content/journals/ccdt/10.2174/0115680096357426250310070752
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test