Skip to content
2000
image of Anti-breast Cancer Potential of Prosopis cineraria L. Phytocompounds: A Network Pharmacology and in vitro Analysis based Approach

Abstract

Background

L. (PCL) is a herbal plant commonly used in Asia for the therapeutic intervention of different kinds of illnesses. Preclinical reports have revealed the beneficial effects of PCL against various types of life-threatening diseases, including cancer. However, studies targeting breast cancer (BCa) and bioactive for its mechanistic approach are limited or not available.

Methods

The current work utilized network pharmacology, built a network between plant compounds and BCa targets, and explored the effective phytocompounds of PCL and its possible mode of action. All phytoconstituents of PCL were segregated using the IMPPAT database, and thus, potential phytoconstituents were selected for this study. Phytocompounds and BCa target data were entered into Cytoscape software to compose the PCL network, and subsequently GO and pathway enrichment analysis were examined. Molecular docking and experiments were used to further validate the network pharmacology results.

Results

We retrieved 24 phytocompounds from PCL and 301 potent BCa-associated targets for network construction, and obtained one main ingredient, luteolin of PCL. MMP9, GSK3Β, PARP1, CYP19A1, MMP2, ABCG2, ESR2, HMGCR, AR, and ABCB1 have been recognized as crucial targets of PCL in BCa treatment. Subsequent experiments showed that PCL and its final screened constituent, luteolin, inhibited the proliferation of MDA-MB-231 cells and reduced the expression level of MMP9 target genes.

Conclusion

Network analysis exhibited that PCL exerted a significant repressive impact on BCa by acting on tumor-associated signaling cascade, which would be helpful for future anticancer research of PCL against breast cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096357177250212095056
2025-03-20
2025-09-13
Loading full text...

Full text loading...

References

  1. Africander D. Storbeck K.H. Steroid metabolism in breast cancer: Where are we and what are we missing? Mol. Cell. Endocrinol. 2018 466 86 97 10.1016/j.mce.2017.05.016 28527781
    [Google Scholar]
  2. Mandapati A. Lukong K.E. Triple negative breast cancer: Approved treatment options and their mechanisms of action. J. Cancer Res. Clin. Oncol. 2023 149 7 3701 3719 10.1007/s00432‑022‑04189‑6 35976445
    [Google Scholar]
  3. Li Y. Tsang J.Y. Tam F. Loong T. Tse G.M. Comprehensive characterization of HER2-low breast cancers: Implications in prognosis and treatment. EBioMedicine 2023 91 104571 10.1016/j.ebiom.2023.104571 37068349
    [Google Scholar]
  4. Zhang N. Li Y. Sundquist J. Sundquist K. Ji J. Identifying actionable druggable targets for breast cancer: Mendelian randomization and population-based analyses. EBioMedicine 2023 98 104859 10.1016/j.ebiom.2023.104859 38251461
    [Google Scholar]
  5. Huang Y. Yao Z. Li L. Mao R. Huang W. Hu Z. Hu Y. Wang Y. Guo R. Tang X. Yang L. Wang Y. Luo R. Yu J. Zhou J. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. EBioMedicine 2023 94 104706 10.1016/j.ebiom.2023.104706 37478528
    [Google Scholar]
  6. Marinovich M.L. Wylie E. Lotter W. Lund H. Waddell A. Madeley C. Pereira G. Houssami N. Artificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detection. EBioMedicine 2023 90 104498 10.1016/j.ebiom.2023.104498 36863255
    [Google Scholar]
  7. Leon-Ferre R.A. Hieken T.J. Boughey J.C. The landmark series: Neoadjuvant chemotherapy for triple-negative and HER2-positive breast cancer. Ann. Surg. Oncol. 2021 28 4 2111 2119 10.1245/s10434‑020‑09480‑9 33486641
    [Google Scholar]
  8. Chen H. Yang J. Yang Y. Zhang J. Xu Y. Lu X. The natural products and extracts: Anti‐triple‐negative breast cancer in vitro. Chem. Biodivers. 2021 18 7 e2001047 10.1002/cbdv.202001047 34000082
    [Google Scholar]
  9. Shrihastini V. Muthuramalingam P. Adarshan S. Sujitha M. Chen J.T. Shin H. Ramesh M. Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview. Cancers 2021 13 24 6222 10.3390/cancers13246222 34944840
    [Google Scholar]
  10. Bansal I. Pandey A.K. Ruwali M. Small-molecule inhibitors of kinases in breast cancer therapy: Recent advances, opportunities, and challenges. Front. Pharmacol. 2023 14 1244597 10.3389/fphar.2023.1244597 37711177
    [Google Scholar]
  11. Xu C. Chen Y. Yu Q. Song J. Jin Y. Gao X. Compounds targeting ferroptosis in breast cancer: Progress and their therapeutic potential. Front. Pharmacol. 2023 14 1243286 10.3389/fphar.2023.1243286 37920209
    [Google Scholar]
  12. Teijaro C.N. Adhikari A. Shen B. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts. J. Ind. Microbiol. Biotechnol. 2019 46 3-4 433 444 10.1007/s10295‑018‑2094‑5 30426283
    [Google Scholar]
  13. Qi L. Wu S. Liu N. Zhang X. Ping L. Xia L. Salvia miltiorrhiza bunge extract improves the Th17/Treg imbalance and modulates gut microbiota of hypertensive rats induced by high-salt diet. J. Funct. Foods 2024 117 106211 10.1016/j.jff.2024.106211
    [Google Scholar]
  14. Wu S. Zhao K. Wang J. Liu N. Nie K. Qi L. Xia L. Recent advances of tanshinone in regulating autophagy for medicinal research. Front. Pharmacol. 2023 13 1059360 10.3389/fphar.2022.1059360 36712689
    [Google Scholar]
  15. Li X. Geng-Ji J.J. Quan Y.Y. Qi L.M. Sun Q. Huang Q. Jiang H.M. Sun Z.J. Liu H.M. Xie X. Role of potential bioactive metabolites from traditional Chinese medicine for type 2 diabetes mellitus: An overview. Front. Pharmacol. 2022 13 1023713 10.3389/fphar.2022.1023713 36479195
    [Google Scholar]
  16. Janbaz K.H. Haider S. Imran I. Zia-Ul-Haq M. De Martino L. De Feo V. Pharmacological evaluation of Prosopis cineraria (L.) druce in gastrointestinal, respiratory, and vascular disorders. Evid. Based Complement. Alternat. Med. 2012 2012 1 7 10.1155/2012/735653 23431326
    [Google Scholar]
  17. Desai A. Qazi G. Ganju R. El-Tamer M. Singh J. Saxena A. Bedi Y. Taneja S. Bhat H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab. 2008 9 7 581 591 10.2174/138920008785821657 18781909
    [Google Scholar]
  18. Bithu B.S. Reddy N.R. Prasad S.K. Sairam K. Hemalatha S. Prosopis cineraria : A potential nootropic agent. Pharm. Biol. 2012 50 10 1241 1247 10.3109/13880209.2012.666253 22906223
    [Google Scholar]
  19. Chaudhary K.K. Kumar G. Varshney A. Meghvansi M.K. Ali S.F. Karthik K. Dhama K. Siddiqui S. Kaul R.K. Ethnopharmacological and phytopharmaceutical evaluation of Prosopis cineraria: An overview and future prospects. curr. drug metab. 2018 19 3 192 214 10.2174/1389200218666171031125439 29086686
    [Google Scholar]
  20. Sumathi S. Dharani B. Sivaprabha J. Raj K.S. Padma P.R. Cell death induced by methanolic extract of Prosopis cineraria leaves in MCF-7 breast cancer cell line. Int. J. Pharm. Sci. Invent. 2013 2 21 26
    [Google Scholar]
  21. Robertson S. Narayanan N. Isolation and characterization of secondary metabolite from Prosopis cineraria (L.) druce for anticancer activity. World J. Pharm. Res. 2014 3 3 876 884
    [Google Scholar]
  22. Pakkir Maideen N.M. Velayutham R. Manavalan G. Protective effect of Prosopis cineraria against N-nitrosodiethylamine induced liver tumor by modulating membrane bound enzymes and glycoproteins. Adv. Pharm. Bull. 2012 2 2 179 182 24312790
    [Google Scholar]
  23. Prabha D.S. Dahms H.U. Malliga P. Pharmacological potentials of phenolic compounds from Prosopis spp.-a. J. Coast. Life Med. 2014 2 918 924
    [Google Scholar]
  24. López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009 9 1 31 59 10.2174/138955709787001712 19149659
    [Google Scholar]
  25. Mohanraj K. Karthikeyan B.S. Vivek-Ananth R.P. Chand R.P.B. Aparna S.R. Mangalapandi P. Samal A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 2018 8 1 4329 10.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  26. Kosugi Y. Hosea N. Prediction of oral pharmacokinetics using a combination of in silico descriptors and in vitro ADME properties. Mol. Pharm. 2021 18 3 1071 1079 10.1021/acs.molpharmaceut.0c01009 33512165
    [Google Scholar]
  27. Stelzer G Rosen N Plaschkes I Zimmerman S Twik M Fishilevich S Stein TI Nudel R Lieder I Mazor Y Kaplan S Dahary D Warshawsky D Guan-Golan Y Kohn A Rappaport N Safran M Lancet D The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016 54 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  28. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  29. Demchak B. Hull T. Reich M. Liefeld T. Smoot M. Ideker T. Mesirov J.P. Cytoscape: The network visualization tool for GenomeSpace workflows. F1000 Res. 2014 3 151 10.12688/f1000research.4492.2 25165537
    [Google Scholar]
  30. Afiqah-Aleng N. Mohamed-Hussein Z.A. Construction of protein expression network. Methods Mol. Biol. 2021 2189 119 132 10.1007/978‑1‑0716‑0822‑7_10 33180298
    [Google Scholar]
  31. Prome A.A. Robin T.B. Ahmed N. Rani N.A. Ahmad I. Patel H. Bappy M.N.I. Zinnah K.M.A. A reverse docking approach to explore the anticancer potency of natural compounds by interfering metastasis and angiogenesis. J. Biomol. Struct. Dyn. 2024 42 14 7174 7189 10.1080/07391102.2023.2240895 37526218
    [Google Scholar]
  32. Lee Y. Yoon S.B. Hong H. Kim H.Y. Jung D. Moon B.S. Park W.K. Lee S. Kwon H. Park J. Cho H. Discovery of GSK3β inhibitors through in silico prediction-and-experiment cycling strategy, and biological evaluation. Molecules 2022 27 12 3825 10.3390/molecules27123825 35744952
    [Google Scholar]
  33. Shawky E. Nassra R.A. El-Alkamy A.M.T. Sallam S.M. El Sohafy S.M. Unraveling the mechanisms of Fenugreek seed for managing different gynecological disorders: Steroidal saponins and isoflavones revealed as key bioactive metabolites. J. Pharm. Biomed. Anal. 2024 238 115865 10.1016/j.jpba.2023.115865 38000191
    [Google Scholar]
  34. Ishikura N. Kawata H. Nishimoto A. Nakamura R. Tsunenari T. Watanabe M. Tachibana K. Shiraishi T. Yoshino H. Honma A. Emura T. Ohta M. Nakagawa T. Houjo T. Corey E. Vessella R.L. Aoki Y. Sato H. CH5137291, an androgen receptor nuclear translocation-inhibiting compound, inhibits the growth of castration-resistant prostate cancer cells. Int. J. Oncol. 2015 46 4 1560 1572 10.3892/ijo.2015.2860 25634071
    [Google Scholar]
  35. Qi L. Zhong F. Liu N. Wang J. Nie K. Tan Y. Ma Y. Xia L. Characterization of the anti-AChE potential and alkaloids in Rhizoma Coptidis from different Coptis species combined with spectrum-effect relationship and molecular docking. Front. Plant Sci. 2022 13 1020309 10.3389/fpls.2022.1020309 36388527
    [Google Scholar]
  36. Zeng B. Qi L. Wu S. Liu N. Wang J. Nie K. Xia L. Yu S. Network pharmacology prediction and metabolomics validation of the mechanism of fructus Phyllanthi against Hyperlipidemia. J. Vis. Exp. 2023 194 10.3791/65071 37092814
    [Google Scholar]
  37. Li Y. Sundquist K. Zhang N. Wang X. Sundquist J. Memon A.A. Mitochondrial related genome-wide Mendelian randomization identifies putatively causal genes for multiple cancer types. EBioMedicine 2023 88 104432
    [Google Scholar]
  38. Mir WR Bhat BA Kumar A Dhiman R Alkhanani M Almilai-bary A Dar MY Ganie SA Mir MA Network pharmacology combined with molecular docking and in vitro verification reveals the therapeutic potential of Delphinium roylei munz constituents on breast carcinoma. Front Pharmacol. 2023 1 14 1135898 10.3389/fphar.2023.1135898 37724182
    [Google Scholar]
  39. Boeing T. de Souza P. Speca S. Somensi L.B. Mariano L.N.B. Cury B.J. Ferreira dos Anjos M. Quintão N.L.M. Dubuqoy L. Desreumax P. da Silva L.M. de Andrade S.F. Luteolin prevents irinotecan‐induced intestinal mucositis in mice through antioxidant and anti‐inflammatory properties. Br. J. Pharmacol. 2020 177 10 2393 2408 10.1111/bph.14987 31976547
    [Google Scholar]
  40. Vahitha V. Lali G. Prasad S. Karuppiah P. Karunakaran G. AlSalhi M.S. Unveiling the therapeutic potential of thymol from Nigella sativa L. seed: Selective anticancer action against human breast cancer cells (MCF-7) through down-regulation of Cyclin D1 and proliferative cell nuclear antigen (PCNA) expressions. Mol. Biol. Rep. 2024 51 1 61 10.1007/s11033‑023‑09032‑w 38170326
    [Google Scholar]
  41. Ahmed S. Khan H. Fratantonio D. Hasan M.M. Sharifi S. Fathi N. Ullah H. Rastrelli L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine 2019 59 152883 10.1016/j.phymed.2019.152883 30986716
    [Google Scholar]
  42. Kim M.J. Woo J.S. Kwon C.H. Kim J.H. Kim Y.K. Kim K.H. Luteolin induces apoptotic cell death through AIF nuclear translocation mediated by activation of ERK and p38 in human breast cancer cell lines. Cell Biol. Int. 2012 36 4 339 344 10.1042/CBI20110394 22073986
    [Google Scholar]
  43. Joseph C. Alsaleem M. Orah N. Narasimha P.L. Miligy I.M. Kurozumi S. Ellis I.O. Mongan N.P. Green A.R. Rakha E.A. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res. Treat. 2020 182 2 267 282 10.1007/s10549‑020‑05670‑x 32445177
    [Google Scholar]
  44. Augoff K. Hryniewicz-Jankowska A. Tabola R. Stach K. MMP9: A tough target for targeted therapy for cancer. Cancers 2022 14 7 1847 10.3390/cancers14071847 35406619
    [Google Scholar]
  45. Wu H.T. Lin J. Liu Y.E. Chen H.F. Hsu K.W. Lin S.H. Peng K.Y. Lin K.J. Hsieh C.C. Chen D.R. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine 2021 81 153437 10.1016/j.phymed.2020.153437 33352494
    [Google Scholar]
  46. Ko H.S. Lee H.J. Kim S.H. Lee E.O. Piceatannol suppresses breast cancer cell invasion through the inhibition of MMP-9: Involvement of PI3K/AKT and NF-κB pathways. J. Agric. Food Chem. 2012 60 16 4083 4089 10.1021/jf205171g 22480333
    [Google Scholar]
  47. Yan C. Boyd D.D. Regulation of matrix metalloproteinase gene expression. J. Cell. Physiol. 2007 211 1 19 26 10.1002/jcp.20948 17167774
    [Google Scholar]
  48. Shen Z. Zhu D. Liu J. Chen J. Liu Y. Hu C. Li Z. Li Y. 27-Hydroxycholesterol induces invasion and migration of breast cancer cells by increasing MMP9 and generating EMT through activation of STAT-3. Environ. Toxicol. Pharmacol. 2017 51 1 8 10.1016/j.etap.2017.02.001 28257824
    [Google Scholar]
  49. Ukani M.D. Limbani N.B. Mehta N.K. A Review on the Ayurvedic Herb Prosopis cineraria (L) Druce. Anc. Sci. Life 2000 20 1-2 58 70 22556999
    [Google Scholar]
  50. Pandey V. Patel S. Danai P. Yadav G. Kumar A. Phyto-constituents profiling of Prosopis cineraria and in vitro assessment of antioxidant and anti-ulcerogenicity activities. Phytomed. Plus 2023 3 3 100452 10.1016/j.phyplu.2023.100452
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096357177250212095056
Loading
/content/journals/ccdt/10.2174/0115680096357177250212095056
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Breast cancer ; Prosopis cineraria L. ; anticancer ; network pharmacology ; phytocompounds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test