Skip to content
2000
image of Using Cyclic Ketones to Synthesize New 3,5,6,7,8,9-Hexahydro-pyrazolo[1,5-a]quinoline Derivatives with Antiproliferative Activities: Morphological Studies

Abstract

Background

Quinoline derivatives, often incorporating other heterocyclic structures, have shown a wide range of therapeutic potential, especially in the treatment of cancer. These compounds have demonstrated significant anticancer activity against various cell lines, including HeLa (human cervical cancer) and MDA-MB-435 (melanoma), exhibiting strong inhibitory effects.

Objective

In this study, arylhydrazonopyrazole derivatives () were employed in a series of multicomponent reactions to synthesize 3,5,6,7,8,9-hexahydropyrazolo[1,5-]quinoline and pyran derivatives. Pyrazolo[1,5-]quinoline derivatives, due to their structural properties, are considered valuable scaffolds for the development of novel drugs targeting similar biological pathways, with the potential for improved therapeutic efficacy. This study aimed to demonstrate the use of simple arylhydrazonopyrazole derivatives in multicomponent reactions with cyclic ketones and aromatic aldehydes. The resulting compounds were then assessed for their cytotoxic and antiproliferative activities. Following these reactions, further heterocyclization processes were conducted, incorporating the quinoline moiety into the final structures. These findings underscore the potential of pyrazolo[1,5-a]quinoline derivatives as promising candidates for drug discovery, offering new avenues for targeting diseases with related molecular mechanisms.

Methods

The key starting compound in this study was 3,5-dimethyl-4-(2-phenylhydrazono)-4-pyrazole, which has been utilized in numerous heterocyclization reactions. These reactions, involving various reagents, such as cyclic ketones and diketones in the presence of aromatic aldehydes, led to the formation of fused tetracyclic compounds. Arylhydrazonopyrazole derivatives () were employed in multicomponent reactions to synthesize 3,5,6,7,8,9-hexahydropyrazolo[1,5-]quinoline and pyran derivatives. The reactions were carried out using both conventional catalysts and ionic liquid-immobilized catalysts. Notably, the use of ionic liquid-immobilized catalysts resulted in higher yields of the desired compounds.

Results

In this study, new compounds were synthesized, characterized, and evaluated for their cytotoxicity against six cancer cell lines: A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460. Additionally, the cytotoxic effects of the synthesized compounds were assessed against hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cell lines. Morphological studies of selected compounds were also conducted to further understand their effects on the cancer cells. Moreover, the cytotoxicity of the selected compounds was tested against seventeen different cancer cell lines, categorized by disease type. Morphological analyses of these selected compounds were also performed to gain deeper insights into their potential as anticancer agents.

Conclusion

The inhibition assays of the tested compounds demonstrated significant activity against c-Met enzymatic activity, with IC values ranging from 0.25 to 10.30 nM. Additionally, potent inhibition was observed in the prostate PC-3 cell line, with IC values ranging from 0.19 to 8.62 µM. These promising results highlight the potential of these compounds and encourage further research to explore their therapeutic applications in the future.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096356497250210064209
2025-02-28
2025-09-13
Loading full text...

Full text loading...

References

  1. Yang Y. Liu L. Tian Y. Gu M. Wang Y. Ashrafizadeh M. Reza Aref A. Cañadas I. Klionsky D.J. Goel A. Reiter R.J. Wang Y. Tambuwala M. Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett. 2024 587 216659 10.1016/j.canlet.2024.216659 38367897
    [Google Scholar]
  2. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2015. CA Cancer J. Clin. 2015 65 1 5 29 10.3322/caac.21254 25559415
    [Google Scholar]
  3. WHO World Cancer Report. 2014 Available from: http://www.nydailynews.com/life-style/health/14-million-people-cancer-2012-article-1.1545738
  4. Aydemir N. Bilaloğlu R. Genotoxicity of two anticancer drugs, gemcitabine and topotecan, in mouse bone marrow in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2003 537 1 43 51 10.1016/S1383‑5718(03)00049‑4 12742506
    [Google Scholar]
  5. Heiniger B. Gakhar G. Prasain K. Hua D.H. Nguyen T.A. Second-generation substituted quinolines as anticancer drugs for breast cancer. Anticancer Res. 2010 30 10 3927 3932 https:// doi.org/ar.iiarjournals.org/content/30/10/3927 21036704
    [Google Scholar]
  6. Afzal O. Kumar S. Haider M.R. Ali M.R. Kumar R. Jaggi M. Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015 97 871 910 10.1016/j.ejmech.2014.07.044 25073919
    [Google Scholar]
  7. Marganakop S.B. Kamble R.R. Taj T. Kariduraganvar M.Y. An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1,3,4-thiadiazole as anticancer and anti-tubercular agents. Med. Chem. Res. 2012 21 2 185 191 10.1007/s00044‑010‑9522‑z
    [Google Scholar]
  8. Marganakop S.B. Kamble R.R. Hoskeri J. Prasad D.J. Meti G.Y. Facile synthesis of novel quinoline derivatives as anticancer agents. Med. Chem. Res. 2014 23 6 2727 2735 10.1007/s00044‑013‑0855‑2
    [Google Scholar]
  9. Aly E.I. Design, synthesis and in vitro cytotoxic activity ofnew 4-anilino-7-chloro quinoline derivatives targeting EGFRtyrosine kinase. J. Am. Sci. 2010 6 73 83 10.1016/j.bmc.2008.07.038
    [Google Scholar]
  10. Kubo K. Shimizu T. Ohyama S. Murooka H. Iwai A. Nakamura K. Hasegawa K. Kobayashi Y. Takahashi N. Takahashi K. Kato S. Izawa T. Isoe T. Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N'-4-(4-quinolyloxy)phenylureas. J. Med. Chem. 2005 48 5 1359 1366 10.1021/jm030427r 15743179
    [Google Scholar]
  11. Tseng C.H. Chen Y.L. Hsu C.Y. Chen T.C. Cheng C.M. Tso H.C. Lu Y.J. Tzeng C.C. Synthesis and antiproliferative evaluation of 3-phenylquinolinylchalcone derivatives against non-small cell lung cancers and breast cancers. Eur. J. Med. Chem. 2013 59 274 282 10.1016/j.ejmech.2012.11.027 23237975
    [Google Scholar]
  12. El-Gamal M.I. Khan M.A. Abdel-Maksoud M.S. Gamal El-Din M.M. Oh C.H. A new series of diarylamides possessing quinoline nucleus: Synthesis, in vitro anticancer activities, and kinase inhibitory effect. Eur. J. Med. Chem. 2014 87 484 492 10.1016/j.ejmech.2014.09.068 25282271
    [Google Scholar]
  13. Chakrabarty S. Croft M.S. Marko M.G. Moyna G. Synthesis and evaluation as potential anticancer agents of novel tetracyclic indenoquinoline derivatives. Bioorg. Med. Chem. 2013 21 5 1143 1149 10.1016/j.bmc.2012.12.026 23357037
    [Google Scholar]
  14. Chen C.T. Hsu M.H. Cheng Y.Y. Liu C.Y. Chou L.C. Huang L.J. Wu T.S. Yang X. Lee K.H. Kuo S.C. Synthesis and in vitro anticancer activity of 6,7-methylenedioxy (or 5-hydroxy-6-methoxy)-2-(substituted selenophenyl)quinolin-4-one analogs. Eur. J. Med. Chem. 2011 46 12 6046 6056 10.1016/j.ejmech.2011.10.017 22030314
    [Google Scholar]
  15. Abdel-Aziz M. Metwally K.A. Gamal-Eldeen A.M. Aly O.M. 1,3,4-Oxadiazole-2-thione derivatives; novel approachfor anticancer and tubulin polymerization inhibitory activities. Anticancer. Agents Med. Chem. 2015 16 2 269 277 10.2174/1871520615666150907093855 26343141
    [Google Scholar]
  16. Salahuddin M. Shaharyar M. Mazumder A. Ahsan M.J. Synthesis, characterization and anticancer evaluation of 2-(naphthalen-1-ylmethyl/naphthalen-2-yloxymethyl)-1-[5-(substituted phenyl)-[1,3,4]oxadiazol-2-ylmethyl]-1H-benzimidazole. Arab. J. Chem. 2014 7 4 418 424 10.1016/j.arabjc.2013.02.001
    [Google Scholar]
  17. Vyas A.K. Lunagariya K.S. Khunt R.C. Multi-step synthesis of novel pyrazole derivatives as anticancer agents. Polycycl. Aromat. Compd. 2024 44 10 6550 6563 10.1080/10406638.2023.2278664
    [Google Scholar]
  18. Ali T.E. Assiri M.A. Alzahrani A.Y. Salem M.A. Shati A.A. Alfaifi M.Y. Elbehairi S.E.I. An effective green one-pot synthesis of some novel 5-(thiophene-2-carbonyl)-6-(trifluoromethyl)pyrano[2,3- c ]pyrazoles and 6-(thiophene-2-carbonyl)-7-(trifluoromethyl)pyrano[2,3- d ]pyrimidines bearing chromone ring as anticancer agents. Synth. Commun. 2021 51 21 3267 3276 10.1080/00397911.2021.1966804
    [Google Scholar]
  19. Alharbi A. Alqahtani A.M. Mojally M. Qarah A.F. Alessa A.H. Alatawi O.M. Attar R.M.S. El-Metwaly N.M. Synthesis of new methylthiourea-thiophene, -thiazole, and -pyrazole conjugates: Molecular modelling and docking studies as antimicrobial agents. J. Mol. Struct. 2024 1305 137833 10.1016/j.molstruc.2024.137833
    [Google Scholar]
  20. Basavanna V. Chandramouli M. Bhadraiah U.K. Shettar A.K. Doddamani S. Ningaiah S. Novel (quinolin-8-yl-oxy)-pyrazole/thiophene derivatives: Synthesis, characterization and their pharmacological evaluation. Results Chem. 2022 4 100281 10.1016/j.rechem.2021.100281
    [Google Scholar]
  21. El-Shoukrofy M.S. Abd El Razik H.A. AboulWafa O.M. Bayad A.E. El-Ashmawy I.M. Selective inhibitors: Design, synthesis, in vivo anti-inflammatory activity, docking and in silico chemo-informatic studies. Bioorg. Chem. 2019 85 541 557 10.1016/j.bioorg.2019.02.036 30807897
    [Google Scholar]
  22. Ramaprasad G.C. Kalluraya B. Sunil Kumar B. Mallya S. Synthesis of new oxadiazole derivatives as anti-inflammatory, analgesic, and antimicrobial agents. Med. Chem. Res. 2013 22 11 5381 5389 https://ncats.nih.gov/files/ZD4054.pdf 10.1007/s00044‑012‑0298‑1
    [Google Scholar]
  23. Mohareb R.M. Abbas N.S. Ibrahim R.A. New approaches for the synthesis of thiophene derivatives with anti-tumor activities. Acta Chim. Slov. 2013 60 3 583 594 24169713
    [Google Scholar]
  24. Mohareb R.M. El-Arab E.Z. El-Sharkawy K.A. The Reaction of cyanoacetic acid hydrazide with 2-acetylfuran: Synthesis of coumarin, pyridine, thiophene and thiazole derivatives with potential antimicrobial activities. Sci. Pharm. 2009 77 2 355 366 10.3797/scipharm.0901‑20
    [Google Scholar]
  25. El-Sayed N.N.E. Abdelaziz M.A. Wardakhan W.W. Mohareb R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno[2,3-d]pyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids 2016 107 98 111 10.1016/j.steroids.2015.12.023 26772772
    [Google Scholar]
  26. Mohareb R.M. Megally Abdo N.Y. Synthesis and cytotoxic evaluation of pyran, dihydropyridine and thiophene derivatives of 3-acetylcoumarin. Chem. Pharm. Bull. (Tokyo) 2015 63 9 678 687 10.1248/cpb.c15‑00115 26329861
    [Google Scholar]
  27. Mohareb R.M. Zaki M.Y. Abbas N.S. Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids 2015 98 80 91 10.1016/j.steroids.2015.03.001 25759119
    [Google Scholar]
  28. Mohareb R.M. Mikhail, I.R. Gemaan M.S. Alwan, E.S. Synthesis, antiproliferative evaluations and molecular docking of thieno[3,2-e]indazole derivatives. Lett Drug Des Discov 2024 21 16 3555 3576 10.2174/0115701808287763240302165049
    [Google Scholar]
  29. Mohareb R.M. Ibrahim R.A. Alwan E.S. Multi-component reactions of cyclohexan-1,3-diketones to produce fused pyran derivatives with antiproliferative activities and tyrosine kinases and pim-1 kinase inhibitions. Acta Chim. Slov. 2021 68 1 51 64 10.17344/acsi.2020.6090 34057520
    [Google Scholar]
  30. Mohareb R. Mohamed A. Abdalla A. New approaches for the synthesis, cytotoxicity and toxicity of heterocyclic compounds derived from 2-cyanomethyl benzo[c]imidazole. Acta Chim. Slov. 2016 63 2 227 240 10.17344/acsi.2015.1668 27333544
    [Google Scholar]
  31. Selvaraj L. Eswaran R. Natesan V.K. Muthu S.P. Tandem aqueous extract of onion catalyzed Knoevenagel condensation-Michael addition-cyclization: A green synthesis of 2-amino- 3-cyano-4H-pyran derivatives and their anti-oxidant and molecular docking studies. J. Mol. Struct. 2024 1302 137373 10.1016/j.molstruc.2023.137373
    [Google Scholar]
  32. Saundane A.R. Vijaykumar K. Vaijinath A.V. Synthesis of novel 2-amino-4-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-6-aryl-4H-pyran-3-carbonitrile derivatives as antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 2013 23 7 1978 1984 10.1016/j.bmcl.2013.02.036 23454016
    [Google Scholar]
  33. Tabassum S. Govindaraju S. Khan R.R. Pasha M.A. Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives. Ultrason. Sonochem. 2015 24 1 7 10.1016/j.ultsonch.2014.12.006 25557792
    [Google Scholar]
  34. Wang D.C. Xie Y.M. Fan C. Yao S. Song H. Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity. Chin. Chem. Lett. 2014 25 7 1011 1013 10.1016/j.cclet.2014.04.026
    [Google Scholar]
  35. Yang Z.J. Gong Q.T. Wang Y. Yu Y. Liu Y.H. Wang N. Yu X.Q. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation. Molecular Catalysis 2020 491 110983 10.1016/j.mcat.2020.110983
    [Google Scholar]
  36. Azgomi A. Mokhtary M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. A Chem. 2015 398 58 64 10.1016/j.molcata.2014.11.018
    [Google Scholar]
  37. Liu L. Siegmund A. Xi N. Kaplan-Lefko P. Rex K. Chen A. Lin J. Moriguchi J. Berry L. Huang L. Teffera Y. Yang Y. Zhang Y. Bellon S.F. Lee M. Shimanovich R. Bak A. Dominguez C. Norman M.H. Harmange J.C. Dussault I. Kim T.S. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-Hydroxy-2-methylpropyl)- N -(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1 H -pyrazole-4-carboxamide (AMG 458). J. Med. Chem. 2008 51 13 3688 3691 10.1021/jm800401t 18553959
    [Google Scholar]
  38. Vahedi M.M. Asghari S. Tajbakhsh M. Mohseni M. Khalilpour A. One-pot three-component synthesis of novel pyrano[3,2-e]pyrazolo[1,5-a]pyrimidines and investigation of their biological activities. J. Mol. Struct. 2023 1284 135446 10.1016/j.molstruc.2023.135446
    [Google Scholar]
  39. Fallah-Mehrjardi M. Shirzadi M. Banitaba S.H. A new basic ionic liquid supported on magnetite nanoparticles: An efficient phase-transfer catalyst for the green synthesis of 2-amino-3-cyano-4 H -pyrans. Polycycl. Aromat. Compd. 2022 42 5 2198 2209 10.1080/10406638.2020.1830131
    [Google Scholar]
  40. Gupta P. Rani S. Sah D. Surabhi Shabir J. Singh B. Pani B. Mozumdar S. Basic ionic liquid grafted on magnetic nanoparticles: An efficient and highly active recyclable catalyst for the synthesis of β-nitroalcohols and 4H-benzo[b]pyrans. J. Mol. Struct. 2023 1274 134351 10.1016/j.molstruc.2022.134351
    [Google Scholar]
  41. Medjahed N. Kibou Z. Berrichi A. Choukchou-Braham N. Advances in pyrazoles rings’ syntheses by heterogeneous catalysts, ionic liquids, and multicomponent reactions - a review. Curr. Org. Chem. 2023 27 6 471 509 10.2174/1385272827666230602121855
    [Google Scholar]
  42. Peach M.L. Tan N. Choyke S.J. Giubellino A. Athauda G. Burke T.R. Nicklaus M.C. Bottaro D.P. Bottaro D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem. 2009 52 4 943 951 10.1021/jm800791f 19199650
    [Google Scholar]
  43. Bacco F.D. Luraghi P. Medico E. Reato G. Girolami F. Perera T. Gabriele P. Comoglio P.M. Boccaccio C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst. 2011 103 645 661 10.1093/jnci/djr093 21464397
    [Google Scholar]
  44. Knudsen B.S. Gmyrek G.A. Inra J. Scherr D.S. Vaughan E.D. Nanus D.M. Kattan M.W. Gerald W.L. Vande Woude G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology 2002 60 6 1113 1117 10.1016/S0090‑4295(02)01954‑4 12475693
    [Google Scholar]
  45. Humphrey P.A. Zhu X. Zarnegar R. Swanson P.E. Ratliff T.L. Vollmer R.T. Day M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 1995 147 2 386 396 7639332
    [Google Scholar]
  46. Rubin J. Bottaro D.P. Aaronson S.A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim. Biophys. Acta Rev. Cancer 1993 1155 3 357 371 10.1016/0304‑419X(93)90015‑5 8268192
    [Google Scholar]
  47. Organ S.L. Tsao M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 2011 3 1_suppl S7 S19 Suppl. 10.1177/1758834011422556 22128289
    [Google Scholar]
  48. Jeffers M. Rong S. Vande Woude G.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med. (Berl.) 1996 74 9 505 513 10.1007/BF00204976 8892055
    [Google Scholar]
  49. Gowda S.V. Kim N.Y. Harsha K.B. Gowda D. Suresh R.N. Deivasigamani A. Mohan C.D. Hui K.M. Sethi G. Ahn K.S. Rangappa K.S. A new 1,2,3-triazole-indirubin hybrid suppresses tumor growth and pulmonary metastasis by mitigating the HGF/c-MET axis in hepatocellular carcinoma. J. Adv. Res. 2024 S2090-1232 24 00377 10.1016/j.jare.2024.08.033 39216686
    [Google Scholar]
  50. Verras M. Lee J. Xue H. Li T.H. Wang Y. Sun Z. The androgen receptor negatively regulates the expression of c-Met: Implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007 67 3 967 975 10.1158/0008‑5472.CAN‑06‑3552 17283128
    [Google Scholar]
  51. Zhao H.P. Ma Y. Zhang X.J. Guo H.X. Yang B. Chi R.F. Zhang N.P. Wang J.P. Li B. Qin F.Z. Yang L.G. NADPH oxidase 2 inhibitor GSK2795039 prevents doxorubicin-induced cardiac atrophy by attenuating cardiac sympathetic nerve terminal abnormalities and myocyte autophagy. Eur. J. Pharmacol. 2024 967 176351 10.1016/j.ejphar.2024.176351 38290568
    [Google Scholar]
  52. Boyd M.R. Paull K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res. 1995 34 2 91 109 10.1002/ddr.430340203
    [Google Scholar]
  53. Ahmadi M. Hajikhani B. Shamosi A. Yaslianifard S. Sameni F. Qorbani M. Mohammadzadeh M. Dadashi M. Cytotoxic and apoptosis-inducing properties of Staphylococcus aureus cytoplasmic extract on lung cancer cells: Insights from MTT assay and bax/bcl-2 gene expression analysis. Gene Rep. 2024 36 101955 10.1016/j.genrep.2024.101955
    [Google Scholar]
  54. Li S. Zhao Y. Wang K. Gao Y. Han J. Cui B. Gong P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem. 2013 21 11 2843 2855 10.1016/j.bmc.2013.04.013 23628470
    [Google Scholar]
  55. Malich G. Markovic B. Winder C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 1997 124 3 179 192 10.1016/S0300‑483X(97)00151‑0 9482120
    [Google Scholar]
  56. Gieni R.S. Li Y. HayGlass K.T. Comparison of [3H]thymidine incorporation with MTT- and MTS-based bioassays for human and murine IL-2 and IL-4 analysis Tetrazolium assays provide markedly enhanced sensitivity. J. Immunol. Methods 1995 187 1 85 93 10.1016/0022‑1759(95)00170‑F 7490461
    [Google Scholar]
  57. Devoos L. Biguenet A. Rousselot J. Bour M. Plésiat P. Fournie D. Jeannot K. Performance of discs, sensititre EUMDROXF microplates and MTS gradient strips for the determination of the susceptibility of multidrug-resistant Pseudomonas aeruginosa to cefiderocol. Clin Microbiol Infect 2023 29 5 652.e1 652.e8 10.1016/j.cmi.2022.12.021 36587736
    [Google Scholar]
  58. Pareek A.K. Joseph P.E. Seth D.S. Synthesis, characterization of some new 1-phenyl(3-chloro- 4-methoxy, 2-methoxy-5-methyl)-4(substituted)phenyl benzene-azo acetyl acetone-3,5-dimethyl pyrazoles. Orient. J. Chem. 2010 26 1569 1572
    [Google Scholar]
  59. Thakare N.R. Dhawas A.K. Ganoskar P.S. Kale P.D. Synthesis, characterization of some new 3,5-dimethyl azopyrazoles and its derivatives. J. Chem. Pharm. Res. 2012 4 3329 3332 Available from: https://www.jocpr.com/articles/synthesis-characterization-of-some-new-3-5dimethyl-azopyrazoles-and-its-derivatives.pdf
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096356497250210064209
Loading
/content/journals/ccdt/10.2174/0115680096356497250210064209
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cytotoxicity ; Arylhydrazone ; pyrazole ; pyrazolo[1,5-a]quinoline ; morphological studies ; pyran
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test