Skip to content
2000
image of Recent Advancements in Drug Targeting for Ferroptosis as an Antitumor Therapy: Development of Novel therapeutics

Abstract

Objectives

The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.

Methods

To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nanomedicine, TCM, and Western medicine. The review also included an assessment of how ferroptosis influences cancer treatment, including its role in tumor drug resistance and immunotherapy, and provided a detailed analysis of pharmacological activators of ferroptosis.

Results

The review highlights several key findings, like primary mechanisms that regulate cancer cell sensitivity to ferroptosis, and provides an overview of the latest advancements in ferroptosis drug research. The review reveals that ferroptosis has both beneficial and detrimental effects on human cancer, reflecting its complex role in cancer progression and treatment. The review also emphasizes the dual nature of ferroptosis, noting its potential as both a tumor suppressor and an oncogenic factor. Additionally, it provides a comprehensive examination of various pharmacological agents that activate ferroptosis and their potential therapeutic applications.

Conclusion

In conclusion, ferroptosis represents a promising target for cancer therapy, given its distinctive characteristics and significant role in tumor biology. The review underscores the need for further research to clarify the complex roles of ferroptosis in carcinogenesis and to optimize the development of novel therapeutics targeting this form of cell death. It also highlights current challenges and opportunities in the field, including the potential for overcoming cancer metastasis through ferroptosis modulation and the need for continued exploration of pharmacological activators to advance therapeutic strategies.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096337123241217070834
2025-01-29
2025-09-13
Loading full text...

Full text loading...

References

  1. Brown J.S. Amend S.R. Austin R.H. Gatenby R.A. Hammarlund E.U. Pienta K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023 21 11 1142 1147 10.1158/1541‑7786.MCR‑23‑0411 37409952
    [Google Scholar]
  2. Min H.Y. Lee H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022 54 10 1670 1694 10.1038/s12276‑022‑00864‑3 36224343
    [Google Scholar]
  3. Dong L. Vargas C.P.D. Tian X. Chu X. Yin C. Wong A. Yang Y. Harnessing the potential of non-apoptotic cell death processes in the treatment of drug-resistant melanoma. Int. J. Mol. Sci. 2023 24 12 10376 10.3390/ijms241210376 37373523
    [Google Scholar]
  4. Pu F. Chen F. Zhang Z. Shi D. Zhong B. Lv X. Tucker A.B. Fan J. Li A.J. Qin K. Hu D. Chen C. Wang H. He F. Ni N. Huang L. Liu Q. Wagstaff W. Luu H.H. Haydon R.C. Shen L. He T.C. Liu J. Shao Z. Ferroptosis as a novel form of regulated cell death: Implications in the pathogenesis, oncometabolism and treatment of human cancer. Genes Dis. 2022 9 2 347 357 10.1016/j.gendis.2020.11.019 35224151
    [Google Scholar]
  5. Chen Y. Hua Y. Li X. Arslan I.M. Zhang W. Meng G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front. Pharmacol. 2020 11 42 10.3389/fphar.2020.00042 32116717
    [Google Scholar]
  6. Zhou Q. Meng Y. Li D. Yao L. Le J. Liu Y. Sun Y. Zeng F. Chen X. Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct. Target. Ther. 2024 9 1 55 10.1038/s41392‑024‑01769‑5 38453898
    [Google Scholar]
  7. Chen Z. Wang W. Abdul Razak S.R. Han T. Ahmad N.H. Li X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis. 2023 14 7 460 10.1038/s41419‑023‑05930‑w 37488128
    [Google Scholar]
  8. Tong X. Tang R. Xiao M. Xu J. Wang W. Zhang B. Liu J. Yu X. Shi S. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol. 2022 15 1 174 10.1186/s13045‑022‑01392‑3 36482419
    [Google Scholar]
  9. Liu Q. Zhao Y. Zhou H. Chen C. Ferroptosis: Challenges and opportunities for nanomaterials in cancer therapy. Regen. Biomater. 2023 10 rbad004 10.1093/rb/rbad004 36817975
    [Google Scholar]
  10. Zhang L. Jia R. Li H. Yu H. Ren K. Jia S. Li Y. Wang Q. Insight into the double-edged role of ferroptosis in disease. Biomolecules 2021 11 12 1790 10.3390/biom11121790 34944434
    [Google Scholar]
  11. Norum J. Nieder C. Treatments for metastatic prostate cancer (mPC): A review of costing evidence. PharmacoEconomics 2017 35 12 1223 1236 10.1007/s40273‑017‑0555‑8 28756597
    [Google Scholar]
  12. Peng S. Yi Z. Liu M. Ailanthone: A new potential drug for castration-resistant prostate cancer. Chin. J. Cancer 2017 36 1 25 10.1186/s40880‑017‑0194‑7 28257652
    [Google Scholar]
  13. Gaffan J. Dacre J. Jones A. Educating undergraduate medical students about oncology: A literature review. J. Clin. Oncol. 2006 24 12 1932 1939 10.1200/JCO.2005.02.6617 16622269
    [Google Scholar]
  14. Pei S. Yang X. Wang H. Zhang H. Zhou B. Zhang D. Lin D. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer 2015 15 1 965 10.1186/s12885‑015‑1960‑z 26674531
    [Google Scholar]
  15. Ferlay J. Steliarova-Foucher E. Lortet-Tieulent J. Rosso S. Coebergh J.W.W. Comber H. Forman D. Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013 49 6 1374 1403 10.1016/j.ejca.2012.12.027 23485231
    [Google Scholar]
  16. Li J. Meng H. Bai Y. Wang K. Regulation of lncRNA and its role in cancer metastasis. Oncol. Res. 2016 23 5 205 217 10.3727/096504016X14549667334007 27098144
    [Google Scholar]
  17. Meng F. Yu Z. Zhang D. Chen S. Guan H. Zhou R. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Mol Cell 2021 81 20 4147 4164 10.1016/j.molcel.2021.07.040
    [Google Scholar]
  18. Petrilli A.M. Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016 35 5 537 548 10.1038/onc.2015.125 25893302
    [Google Scholar]
  19. Wu J. Minikes A.M. Gao M. Bian H. Li Y. Stockwell B.R. Chen Z.N. Jiang X. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling. Nature 2019 572 7769 402 406 10.1038/s41586‑019‑1426‑6 31341276
    [Google Scholar]
  20. Okada T. Lopez-Lago M. Giancotti F.G. Merlin/ NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J. Cell Biol. 2005 171 2 361 371 10.1083/jcb.200503165 16247032
    [Google Scholar]
  21. Kim N.G. Koh E. Chen X. Gumbiner B.M. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl. Acad. Sci. USA 2011 108 29 11930 11935 10.1073/pnas.1103345108 21730131
    [Google Scholar]
  22. Li W. Cooper J. Karajannis M.A. Giancotti F.G. Merlin: A tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep. 2012 13 3 204 215 10.1038/embor.2012.11 22482125
    [Google Scholar]
  23. Li W. Cooper J. Zhou L. Yang C. Erdjument-Bromage H. Zagzag D. Snuderl M. Ladanyi M. Hanemann C.O. Zhou P. Karajannis M.A. Giancotti F.G. Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell 2014 26 1 48 60 10.1016/j.ccr.2014.05.001 25026211
    [Google Scholar]
  24. Bueno R. Stawiski E.W. Goldstein L.D. Durinck S. De Rienzo A. Modrusan Z. Gnad F. Nguyen T.T. Jaiswal B.S. Chirieac L.R. Sciaranghella D. Dao N. Gustafson C.E. Munir K.J. Hackney J.A. Chaudhuri A. Gupta R. Guillory J. Toy K. Ha C. Chen Y.J. Stinson J. Chaudhuri S. Zhang N. Wu T.D. Sugarbaker D.J. de Sauvage F.J. Richards W.G. Seshagiri S. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 2016 48 4 407 416 10.1038/ng.3520 26928227
    [Google Scholar]
  25. Pan D. The hippo signaling pathway in development and cancer. Dev. Cell 2010 19 4 491 505 10.1016/j.devcel.2010.09.011 20951342
    [Google Scholar]
  26. Lamar J.M. Stern P. Liu H. Schindler J.W. Jiang Z.G. Hynes R.O. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. USA 2012 109 37 E2441 E2450 10.1073/pnas.1212021109 22891335
    [Google Scholar]
  27. Chen X. Kang R. Kroemer G. Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021 a 18 5 280 296 10.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  28. Yang J. Antin P. Berx G. Blanpain C. Brabletz T. Bronner M. Campbell K. Cano A. Casanova J. Christofori G. Dedhar S. Derynck R. Ford H.L. Fuxe J. García de Herreros A. Goodall G.J. Hadjantonakis A.K. Huang R.Y.J. Kalcheim C. Kalluri R. Kang Y. Khew-Goodall Y. Levine H. Liu J. Longmore G.D. Mani S.A. Massagué J. Mayor R. McClay D. Mostov K.E. Newgreen D.F. Nieto M.A. Puisieux A. Runyan R. Savagner P. Stanger B. Stemmler M.P. Takahashi Y. Takeichi M. Theveneau E. Thiery J.P. Thompson E.W. Weinberg R.A. Williams E.D. Xing J. Zhou B.P. Sheng G. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020 21 6 341 352 10.1038/s41580‑020‑0237‑9 32300252
    [Google Scholar]
  29. El-Ashmawy N.E. El-Zamarany E.A. Khedr E.G. Abo-Saif M.A. Activation of EMT in colorectal cancer by MTDH/NF-κB p65 pathway. Mol. Cell. Biochem. 2019 457 1-2 83 91 10.1007/s11010‑019‑03514‑x 30825051
    [Google Scholar]
  30. Jin Y. Zhang Z.L. Huang Y. Zhang K.N. Xiong B. MiR-182-5p inhibited proliferation and metastasis of colorectal cancer by targeting MTDH. Eur. Rev. Med. Pharmacol. Sci. 2019 23 4 1494 1501 30840271
    [Google Scholar]
  31. Sugano K. Maeda K. Ohtani H. Nagahara H. Shibutani M. Hirakawa K. Expression of xCT as a predictor of disease recurrence in patients with colorectal cancer. Anticancer Res. 2015 35 2 677 682 25667445
    [Google Scholar]
  32. Chen R-S. Song Y-M. Zhou Z-Y. Tong T. Li Y. Fu M. Guo X-L. Dong L-J. He X. Qiao H-X. Zhan Q-M. Li W. Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/β-catenin pathway. Oncogene 2009 28 4 599 609 10.1038/onc.2008.414 19015640
    [Google Scholar]
  33. Lyons S.A. Chung W.J. Weaver A.K. Ogunrinu T. Sontheimer H. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res. 2007 67 19 9463 9471 10.1158/0008‑5472.CAN‑07‑2034 17909056
    [Google Scholar]
  34. Brahimi-Horn M.C. Chiche J. Pouysségur J. Hypoxia and cancer. J. Mol. Med. 2007 85 12 1301 1307 10.1007/s00109‑007‑0281‑3 18026916
    [Google Scholar]
  35. Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012 148 3 399 408 10.1016/j.cell.2012.01.021 22304911
    [Google Scholar]
  36. Rankin E.B. Giaccia A.J. Hypoxic control of metastasis. Science 2016 352 6282 175 180 10.1126/science.aaf4405 27124451
    [Google Scholar]
  37. Keith B. Johnson R.S. Simon M.C. HIF1α and HIF2α: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2012 12 1 9 22 10.1038/nrc3183 22169972
    [Google Scholar]
  38. Xia X. Wang S. Ni B. Xing S. Cao H. Zhang Z. Yu F. Zhao E. Zhao G. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene 2020 39 39 6231 6244 10.1038/s41388‑020‑01425‑6 32826951
    [Google Scholar]
  39. Singhal R. Mitta S.R. Das N.K. Kerk S.A. Sajjakulnukit P. Solanki S. Andren A. Kumar R. Olive K.P. Banerjee R. Lyssiotis C.A. Shah Y.M. HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron. J. Clin. Invest. 2021 131 12 e143691 10.1172/JCI143691 33914705
    [Google Scholar]
  40. Yang M. Chen P. Liu J. Zhu S. Kroemer G. Klionsky D.J. Lotze M.T. Zeh H.J. Kang R. Tang D. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci. Adv. 2019 5 7 eaaw2238 10.1126/sciadv.aaw2238 31355331
    [Google Scholar]
  41. Jain A. Jain P. Soni P. Tiwari A. Tiwari S.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J. Gastrointest. Cancer 2023 54 1 90 95 10.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  42. Ursini F. Purifcation from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 1982 710 197 211 10.1016/0005‑2760(82)90150‑3 7066358
    [Google Scholar]
  43. Maiorino M. Conrad M. Ursini F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018 29 1 61 74 10.1089/ars.2017.7115 28462584
    [Google Scholar]
  44. Liu J. Liu M. Zhang H. Wei X. Wang J. Xian M. Guo W. Exploring cysteine regulation in cancer cell survival with a highly specific “Lock and Key” fluorescent probe for cysteine. Chem. Sci. 2019 10 43 10065 10071 10.1039/C9SC02618E 32055360
    [Google Scholar]
  45. Richardson D.R. Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta Rev. Biomembr. 1997 1331 1 1 40 10.1016/S0304‑4157(96)00014‑7 9325434
    [Google Scholar]
  46. Hou W. Xie Y. Song X. Sun X. Lotze M.T. Zeh H.J. III Kang R. Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016 12 8 1425 1428 10.1080/15548627.2016.1187366 27245739
    [Google Scholar]
  47. Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995 82-83 969 974 10.1016/0378‑4274(95)03532‑X 8597169
    [Google Scholar]
  48. Dixon S.J. Stockwell B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014 10 1 9 17 10.1038/nchembio.1416 24346035
    [Google Scholar]
  49. Manz D.H. Blanchette N.L. Paul B.T. Torti F.M. Torti S.V. Iron and cancer: Recent insights. Ann. N. Y. Acad. Sci. 2016 1368 1 149 161 10.1111/nyas.13008 26890363
    [Google Scholar]
  50. Conrad M. Pratt D.A. The chemical basis of ferroptosis. Nat. Chem. Biol. 2019 15 12 1137 1147 10.1038/s41589‑019‑0408‑1 31740834
    [Google Scholar]
  51. Doll S. Proneth B. Tyurina Y.Y. Panzilius E. Kobayashi S. Ingold I. Irmler M. Beckers J. Aichler M. Walch A. Prokisch H. Trümbach D. Mao G. Qu F. Bayir H. Füllekrug J. Scheel C.H. Wurst W. Schick J.A. Kagan V.E. Angeli J.P.F. Conrad M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017 13 1 91 98 10.1038/nchembio.2239 27842070
    [Google Scholar]
  52. Dixon S.J. Winter G.E. Musavi L.S. Lee E.D. Snijder B. Rebsamen M. Superti-Furga G. Stockwell B.R. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 2015 10 7 1604 1609 10.1021/acschembio.5b00245 25965523
    [Google Scholar]
  53. Porter N.A. Caldwell S.E. Mills K.A. Mechanisms of free radical oxidation of unsaturated lipids. Lipids 1995 30 4 277 290 10.1007/BF02536034 7609594
    [Google Scholar]
  54. Xu T. Ding W. Ji X. Ao X. Liu Y. Yu W. Wang J. Molecular mechanisms of ferroptosis and its role in cancer therapy. J. Cell. Mol. Med. 2019 23 8 4900 4912 10.1111/jcmm.14511 31232522
    [Google Scholar]
  55. Liang C. Zhang X. Yang M. Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater. 2019 31 51 1904197 10.1002/adma.201904197 31595562
    [Google Scholar]
  56. Liang D. Minikes A.M. Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022 82 12 2215 2227 10.1016/j.molcel.2022.03.022 35390277
    [Google Scholar]
  57. Liu T. Liu W. Zhang M. Yu W. Gao F. Li C. Wang S.B. Feng J. Zhang X.Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano 2018 12 12 12181 12192 10.1021/acsnano.8b05860 30458111
    [Google Scholar]
  58. Su Y. Zhao B. Zhou L. Zhang Z. Shen Y. Lv H. AlQudsy L.H.H. Shang P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020 483 127 136 10.1016/j.canlet.2020.02.015 32067993
    [Google Scholar]
  59. Kumar M.K. Narayan S. Singh P.K. A review on advancement of mouth dissolving tablets. Prob. Sci. 2024 1 1 34 49
    [Google Scholar]
  60. Xu W.H. Li C.H. Jiang T.L. Ferroptosis pathway and its intervention regulated by Chinese materia medica. Zhongguo Zhongyao Zazhi 2018 43 20 4019 4026 30486525
    [Google Scholar]
  61. Efferth T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol. 2017 46 65 83 10.1016/j.semcancer.2017.02.009 28254675
    [Google Scholar]
  62. Greenshields A.L. Shepherd T.G. Hoskin D.W. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol. Carcinog. 2017 56 1 75 93 10.1002/mc.22474 26878598
    [Google Scholar]
  63. Lin R. Zhang Z. Chen L. Zhou Y. Zou P. Feng C. Wang L. Liang G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett. 2016 381 1 165 175 10.1016/j.canlet.2016.07.033 27477901
    [Google Scholar]
  64. Roh J.L. Kim E.H. Jang H. Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017 11 254 262 10.1016/j.redox.2016.12.010 28012440
    [Google Scholar]
  65. Chen G.Q. Benthani F.A. Wu J. Liang D. Bian Z.X. Jiang X. Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 2020 27 1 242 254 10.1038/s41418‑019‑0352‑3 31114026
    [Google Scholar]
  66. Du J. Wang T. Li Y. Zhou Y. Wang X. Yu X. Ren X. An Y. Wu Y. Sun W. Fan W. Zhu Q. Wang Y. Tong X. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med. 2019 131 356 369 10.1016/j.freeradbiomed.2018.12.011 30557609
    [Google Scholar]
  67. Sinha L. Jain S.K. Choudhary R. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement. Prob. Sci. 2024 1 1 24 33
    [Google Scholar]
  68. Piska K. Gunia-Krzyżak A. Koczurkiewicz P. Wójcik-Pszczoła K. Pękala E. Piperlongumine (piplartine) as a lead compound for anticancer agents – Synthesis and properties of analogues: A mini-review. Eur. J. Med. Chem. 2018 156 13 20 10.1016/j.ejmech.2018.06.057 30006159
    [Google Scholar]
  69. Jain P. Satapathy T, Kumar R. Acaricidal Activity and Biochemical Analysis of Citrus limetta Seed Oil for Controlling Ixodid Tick Rhipicephalus microplus Infesting Cattle. Syst. Appl. Acarol. 2021 ••• 26
    [Google Scholar]
  70. Yamaguchi Y. Kasukabe T. Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int. J. Oncol. 2018 52 3 1011 1022 10.3892/ijo.2018.4259 29393418
    [Google Scholar]
  71. Roh J.L. Kim E.H. Park J.Y. Kim J.W. Kwon M. Lee B.H. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget 2014 5 19 9227 9238 10.18632/oncotarget.2402 25193861
    [Google Scholar]
  72. Miao Y. Chen Y. Xue F. Liu K. Zhu B. Gao J. Yin J. Zhang C. Li G. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine 2022 76 103847 10.1016/j.ebiom.2022.103847 35101656
    [Google Scholar]
  73. Ma J. Li T. Han X. Yuan H. Liang H. Wang Y. Wang X. Duan Y. Li A. Song H. Yang D. Discovery and mechanism of action of Novel Baicalein modified derivatives as potent antihepatitis agent. Virology 2017 507 199 205 10.1016/j.virol.2017.04.002 28453983
    [Google Scholar]
  74. Xie Y. Song X. Sun X. Huang J. Zhong M. Lotze M.T. Zeh H.J. III Kang R. Tang D. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun. 2016 473 4 775 780 10.1016/j.bbrc.2016.03.052 27037021
    [Google Scholar]
  75. Singh R Prasad J Satapathy T Jain P Singh S Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J. Biochem. Biophys. 2021 58 2 156 161
    [Google Scholar]
  76. Perez C.A. Wei Y. Guo M. Iron-binding and anti-Fenton properties of baicalein and baicalin. J. Inorg. Biochem. 2009 103 3 326 332 10.1016/j.jinorgbio.2008.11.003 19108897
    [Google Scholar]
  77. Probst L. Dächert J. Schenk B. Fulda S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem. Pharmacol. 2017 140 41 52 10.1016/j.bcp.2017.06.112 28595877
    [Google Scholar]
  78. Li F.J. Long H.Z. Zhou Z.W. Luo H.Y. Xu S.G. Gao L.C. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol. 2022 13 910292 10.3389/fphar.2022.910292 36105219
    [Google Scholar]
  79. Dixon S.J. Patel D.N. Welsch M. Skouta R. Lee E.D. Hayano M. Thomas A.G. Gleason C.E. Tatonetti N.P. Slusher B.S. Stockwell B.R. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014 3 e02523 10.7554/eLife.02523 24844246
    [Google Scholar]
  80. Eaton J.K. Furst L. Ruberto R.A. Moosmayer D. Hilpmann A. Ryan M.J. Zimmermann K. Cai L.L. Niehues M. Badock V. Kramm A. Chen S. Hillig R.C. Clemons P.A. Gradl S. Montagnon C. Lazarski K.E. Christian S. Bajrami B. Neuhaus R. Eheim A.L. Viswanathan V.S. Schreiber S.L. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat. Chem. Biol. 2020 16 5 497 506 10.1038/s41589‑020‑0501‑5 32231343
    [Google Scholar]
  81. Eaton J.K. Ruberto R.A. Kramm A. Viswanathan V.S. Schreiber S.L. Diacylfuroxans are masked nitrile oxides that inhibit GPX4 covalently. J. Am. Chem. Soc. 2019 141 51 20407 20415 10.1021/jacs.9b10769 31841309
    [Google Scholar]
  82. Gaschler M.M. Andia A.A. Liu H. Csuka J.M. Hurlocker B. Vaiana C.A. Heindel D.W. Zuckerman D.S. Bos P.H. Reznik E. Ye L.F. Tyurina Y.Y. Lin A.J. Shchepinov M.S. Chan A.Y. Peguero-Pereira E. Fomich M.A. Daniels J.D. Bekish A.V. Shmanai V.V. Kagan V.E. Mahal L.K. Woerpel K.A. Stockwell B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 2018 14 5 507 515 10.1038/s41589‑018‑0031‑6 29610484
    [Google Scholar]
  83. Shimada K. Skouta R. Kaplan A. Yang W.S. Hayano M. Dixon S.J. Brown L.M. Valenzuela C.A. Wolpaw A.J. Stockwell B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 2016 12 7 497 503 10.1038/nchembio.2079 27159577
    [Google Scholar]
  84. Yoshida M. Minagawa S. Araya J. Sakamoto T. Hara H. Tsubouchi K. Hosaka Y. Ichikawa A. Saito N. Kadota T. Sato N. Kurita Y. Kobayashi K. Ito S. Utsumi H. Wakui H. Numata T. Kaneko Y. Mori S. Asano H. Yamashita M. Odaka M. Morikawa T. Nakayama K. Iwamoto T. Imai H. Kuwano K. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat. Commun. 2019 10 1 3145 10.1038/s41467‑019‑10991‑7 31316058
    [Google Scholar]
  85. Mai T.T. Hamaï A. Hienzsch A. Cañeque T. Müller S. Wicinski J. Cabaud O. Leroy C. David A. Acevedo V. Ryo A. Ginestier C. Birnbaum D. Charafe-Jauffret E. Codogno P. Mehrpour M. Rodriguez R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 2017 9 10 1025 1033 10.1038/nchem.2778 28937680
    [Google Scholar]
  86. Hasan M. Reddy S.M. Das N.K. Ferritinophagy is not required for colon cancer cell growth. Cell Biol. Int. 2020 44 11 2307 2314 10.1002/cbin.11439 32767706
    [Google Scholar]
  87. Li C. Zhang Y. Liu J. Kang R. Klionsky D.J. Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 2020 ••• 1 13 32186434
    [Google Scholar]
  88. Zhou M. Liao J. Lai W. Xu R. Liu W. Xie D. Wang F. Zhang Z. Huang J. Zhang R. Li G. A celastrol-based nanodrug with reduced hepatotoxicity for primary and metastatic cancer treatment. EBioMedicine 2023 94 104724 10.1016/j.ebiom.2023.104724 37480625
    [Google Scholar]
  89. Friedmann Angeli J.P. Schneider M. Proneth B. Tyurina Y.Y. Tyurin V.A. Hammond V.J. Herbach N. Aichler M. Walch A. Eggenhofer E. Basavarajappa D. Rådmark O. Kobayashi S. Seibt T. Beck H. Neff F. Esposito I. Wanke R. Förster H. Yefremova O. Heinrichmeyer M. Bornkamm G.W. Geissler E.K. Thomas S.B. Stockwell B.R. O’Donnell V.B. Kagan V.E. Schick J.A. Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014 16 12 1180 1191 10.1038/ncb3064 25402683
    [Google Scholar]
  90. Shah R. Margison K. Pratt D.A. The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death. ACS Chem. Biol. 2017 12 10 2538 2545 10.1021/acschembio.7b00730 28837769
    [Google Scholar]
  91. Griesser M. Shah R. Van Kessel A.T. Zilka O. Haidasz E.A. Pratt D.A. The catalytic reaction of nitroxides with peroxyl radicals and its relevance to their cytoprotective properties. J. Am. Chem. Soc. 2018 140 10 3798 3808 10.1021/jacs.8b00998 29451786
    [Google Scholar]
  92. Krainz T. Gaschler M.M. Lim C. Sacher J.R. Stockwell B.R. Wipf P. A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis. ACS Cent. Sci. 2016 2 9 653 659 10.1021/acscentsci.6b00199 27725964
    [Google Scholar]
  93. Kagan V.E. Mao G. Qu F. Angeli J.P.F. Doll S. Croix C.S. Dar H.H. Liu B. Tyurin V.A. Ritov V.B. Kapralov A.A. Amoscato A.A. Jiang J. Anthonymuthu T. Mohammadyani D. Yang Q. Proneth B. Klein-Seetharaman J. Watkins S. Bahar I. Greenberger J. Mallampalli R.K. Stockwell B.R. Tyurina Y.Y. Conrad M. Bayır H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 2017 13 1 81 90 10.1038/nchembio.2238 27842066
    [Google Scholar]
  94. Yang W.S. Kim K.J. Gaschler M.M. Patel M. Shchepinov M.S. Stockwell B.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 2016 113 34 E4966 E4975 10.1073/pnas.1603244113 27506793
    [Google Scholar]
  95. Xie Y. Zhu S. Song X. Sun X. Fan Y. Liu J. Zhong M. Yuan H. Zhang L. Billiar T.R. Lotze M.T. Zeh H.J. III Kang R. Kroemer G. Tang D. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017 20 7 1692 1704 10.1016/j.celrep.2017.07.055 28813679
    [Google Scholar]
  96. Zhou B. Liu J. Kang R. Klionsky D.J. Kroemer G. Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin. Cancer Biol. 2020 66 89 100 10.1016/j.semcancer.2019.03.002 30880243
    [Google Scholar]
  97. Wang D. Peng Y. Xie Y. Zhou B. Sun X. Kang R. Tang D. Antiferroptotic activity of non-oxidative dopamine. Biochem. Biophys. Res. Commun. 2016 480 4 602 607 10.1016/j.bbrc.2016.10.099 27793671
    [Google Scholar]
  98. Doll S. Freitas F.P. Shah R. Aldrovandi M. da Silva M.C. Ingold I. Goya Grocin A. Xavier da Silva T.N. Panzilius E. Scheel C.H. Mourão A. Buday K. Sato M. Wanninger J. Vignane T. Mohana V. Rehberg M. Flatley A. Schepers A. Kurz A. White D. Sauer M. Sattler M. Tate E.W. Schmitz W. Schulze A. O’Donnell V. Proneth B. Popowicz G.M. Pratt D.A. Angeli J.P.F. Conrad M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019 575 7784 693 698 10.1038/s41586‑019‑1707‑0 31634899
    [Google Scholar]
  99. Wu W. Zhao Y. Qin B. Jiang X. Wang C. Hu R. Ma R. Lee M.H. Liu H. Li K. Yuan P. Non-canonical role of UCKL1 on ferroptosis defence in colorectal cancer. EBioMedicine 2023 93 104650 10.1016/j.ebiom.2023.104650 37343364
    [Google Scholar]
  100. Liu X. Peng S. Tang G. Xu G. Xie Y. Shen D. Zhu M. Huang Y. Wang X. Yu H. Huang M. Luo Y. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells. EBioMedicine 2023 90 104496 10.1016/j.ebiom.2023.104496 36863257
    [Google Scholar]
  101. Liu X. Peng X. Cen S. Yang C. Ma Z. Shi X. Wogonin induces ferroptosis in pancreatic cancer cells by inhibiting the Nrf2/GPX4 axis. Front. Pharmacol. 2023 14 1129662 10.3389/fphar.2023.1129662 36909174
    [Google Scholar]
  102. Jain P. Pandey R. Shukla S.S. Jain P. Pandey R. Shukla S.S. Natural Sources of Anti-inflammation. Inflammation: Natural Resources and Its Applications. Springer New Delhi, India 2015 25 133 10.1007/978‑81‑322‑2163‑0_4
    [Google Scholar]
  103. Gao G. Shen S. Zhang T. Zhang J. Huang S. Sun Z. Zhang H. Lacticaseibacillus rhamnosus Probio-M9 enhanced the antitumor response to anti-PD-1 therapy by modulating intestinal metabolites. EBioMedicine 2023 91 104533 10.1016/j.ebiom.2023.104533 37027929
    [Google Scholar]
  104. Chen H.F. Wu L.X. Li X.F. Zhu Y.C. Wang W.X. Xu C.W. Xie D.F. Huang J.H. Du K.Q. A meta-analysis of association between serum iron levels and lung cancer risk. Cell. Mol. Biol. 2018 64 13 33 37 10.14715/cmb/2018.64.13.7 30403607
    [Google Scholar]
  105. Weïwer M. Bittker J.A. Lewis T.A. Shimada K. Yang W.S. MacPherson L. Dandapani S. Palmer M. Stockwell B.R. Schreiber S.L. Munoz B. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett. 2012 22 4 1822 1826 10.1016/j.bmcl.2011.09.047 22297109
    [Google Scholar]
  106. Ma S. Henson E.S. Chen Y. Gibson S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016 7 7 e2307 10.1038/cddis.2016.208 27441659
    [Google Scholar]
  107. Xia Y. Cai X.Y. Fan J.Q. Zhang L.L. Ren J.H. Chen J. Li Z.Y. Zhang R.G. Zhu F. Wu G. Rho kinase inhibitor fasudil suppresses the vasculogenic mimicry of B16 mouse melanoma cells both in vitro and in vivo. Mol. Cancer Ther. 2015 14 7 1582 1590 10.1158/1535‑7163.MCT‑14‑0523 25934709
    [Google Scholar]
  108. Gao M. Monian P. Quadri N. Ramasamy R. Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 2015 59 2 298 308 10.1016/j.molcel.2015.06.011 26166707
    [Google Scholar]
  109. Guo J. Xu B. Han Q. Zhou H. Xia Y. Gong C. Dai X. Li Z. Wu G. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res. Treat. 2018 50 2 445 460 10.4143/crt.2016.572 28494534
    [Google Scholar]
  110. Xu C. Chen Y. Yu Q. Song J. Jin Y. Gao X. Compounds targeting ferroptosis in breast cancer: Progress and their therapeutic potential. Front. Pharmacol. 2023 14 1243286 10.3389/fphar.2023.1243286 37920209
    [Google Scholar]
  111. Liu Y. Wang W. Li Y. Xiao Y. Cheng J. Jia J. The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol. Pharm. Bull. 2015 38 8 1234 1239 10.1248/bpb.b15‑00048 26235588
    [Google Scholar]
  112. Yokoi E. Mabuchi S. Komura N. Shimura K. Kuroda H. Kozasa K. Takahashi R. Sasano T. Kawano M. Matsumoto Y. Kodama M. Hashimoto K. Sawada K. Kimura T. The role of myeloid-derived suppressor cells in endometrial cancer displaying systemic inflammatory response: Clinical and preclinical investigations. OncoImmunology 2019 8 12 e1662708 10.1080/2162402X.2019.1662708 31741758
    [Google Scholar]
  113. Bieging K.T. Attardi L.D. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol. 2012 22 2 97 106 10.1016/j.tcb.2011.10.006 22154076
    [Google Scholar]
  114. Kaiser A.M. Attardi L.D. Deconstructing networks of p53-mediated tumor suppression in vivo. Cell Death Differ. 2018 25 1 93 103 10.1038/cdd.2017.171 29099489
    [Google Scholar]
  115. Proneth B. Conrad M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 2019 26 1 14 24 10.1038/s41418‑018‑0173‑9 30082768
    [Google Scholar]
  116. Garg A.D. Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev. 2017 280 1 126 148 10.1111/imr.12574 29027218
    [Google Scholar]
  117. Sahu B. Comprehensive review on non-alcoholic fatty liver disease (NAFLD). Clinical Advancement and Drug Treatments. Prob. Sci. 2024 1 1 1 7
    [Google Scholar]
  118. Hinman A. Holst C.R. Latham J.C. Bruegger J.J. Ulas G. McCusker K.P. Amagata A. Davis D. Hoff K.G. Kahn-Kirby A.H. Kim V. Kosaka Y. Lee E. Malone S.A. Mei J.J. Richards S.J. Rivera V. Miller G. Trimmer J.K. Shrader W.D. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One 2018 13 8 e0201369 10.1371/journal.pone.0201369 30110365
    [Google Scholar]
  119. Sehm T. Rauh M. Wiendieck K. Buchfelder M. Eyüpoglu I.I.Y. Savaskan N.E. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget 2016 7 46 74630 74647 10.18632/oncotarget.11858 27612422
    [Google Scholar]
  120. Chen L. Li X. Liu L. Yu B. Xue Y. Liu Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol. Rep. 2015 33 3 1465 1474 10.3892/or.2015.3712 25585997
    [Google Scholar]
  121. Park S. Oh J. Kim M. Jin E.J. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis. Anim. Cells Syst. 2018 22 5 334 340 10.1080/19768354.2018.1512521 30460115
    [Google Scholar]
  122. Singh B. Ronghe A.M. Chatterjee A. Bhat N.K. Bhat H.K. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 2013 34 5 1165 1172 10.1093/carcin/bgt026 23492819
    [Google Scholar]
  123. Buccarelli M. Marconi M. Pacioni S. De Pascalis I. D’Alessandris Q.G. Martini M. Ascione B. Malorni W. Larocca L.M. Pallini R. Ricci-Vitiani L. Matarrese P. Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis. Cell Death Dis. 2018 9 8 841 10.1038/s41419‑018‑0864‑7 30082680
    [Google Scholar]
  124. Jiang Y. Mao C. Yang R. Yan B. Shi Y. Liu X. Lai W. Liu Y. Wang X. Xiao D. Zhou H. Cheng Y. Yu F. Cao Y. Liu S. Yan Q. Tao Y. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics 2017 7 13 3293 3305 10.7150/thno.19988 28900510
    [Google Scholar]
  125. Ye J. Zhang R. Wu F. Zhai L. Wang K. Xiao M. Xie T. Sui X. Non-apoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett. 2018 420 210 227 10.1016/j.canlet.2018.01.061 29410006
    [Google Scholar]
  126. Sun X. Ou Z. Chen R. Niu X. Chen D. Kang R. Tang D. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016 63 1 173 184 10.1002/hep.28251 26403645
    [Google Scholar]
  127. Shan X. Li S. Sun B. Chen Q. Sun J. He Z. Luo C. Ferroptosis-driven nanotherapeutics for cancer treatment. J. Control. Release 2020 319 322 332 10.1016/j.jconrel.2020.01.008 31917296
    [Google Scholar]
  128. Qian X. Zhang J. Gu Z. Chen Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 2019 211 1 13 10.1016/j.biomaterials.2019.04.023 31075521
    [Google Scholar]
  129. Zhou Z. Song J. Tian R. Yang Z. Yu G. Lin L. Zhang G. Fan W. Zhang F. Niu G. Nie L. Chen X. Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew. Chem. Int. Ed. 2017 56 23 6492 6496 10.1002/anie.201701181 28470979
    [Google Scholar]
  130. Ou W. Mulik R.S. Anwar A. McDonald J.G. He X. Corbin I.R. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic. Biol. Med. 2017 112 597 607 10.1016/j.freeradbiomed.2017.09.002 28893626
    [Google Scholar]
  131. Huo M. Wang L. Wang Y. Chen Y. Shi J. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019 13 2 2643 2653 30753056
    [Google Scholar]
  132. Shen Z. Song J. Yung B.C. Zhou Z. Wu A. Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater. 2018 30 12 1704007 10.1002/adma.201704007 29356212
    [Google Scholar]
  133. Ma P. Xiao H. Yu C. Liu J. Cheng Z. Song H. Zhang X. Li C. Wang J. Gu Z. Lin J. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017 17 2 928 937 10.1021/acs.nanolett.6b04269 28139118
    [Google Scholar]
  134. Li W.P. Su C.H. Chang Y.C. Lin Y.J. Yeh C.S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 2016 10 2 2017 2027 10.1021/acsnano.5b06175 26720714
    [Google Scholar]
  135. Zhang C. Bu W. Ni D. Zhang S. Li Q. Yao Z. Zhang J. Yao H. Wang Z. Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem. Int. Ed. 2016 55 6 2101 2106 10.1002/anie.201510031 26836344
    [Google Scholar]
  136. Yue L. Wang J. Dai Z. Hu Z. Chen X. Qi Y. Zheng X. Yu D. pH-responsive, selfsacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy. Bioconjug. Chem. 2017 28 2 400 409 10.1021/acs.bioconjchem.6b00562 28042941
    [Google Scholar]
  137. Chen J. Wang X. Zhang Y. Zhang S. Liu H. Zhang J. Feng H. Li B. Wu X. Gao Y. Yang B. A redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy. Biomaterials 2021 266 120457 10.1016/j.biomaterials.2020.120457 33096377
    [Google Scholar]
  138. Huang K.J. Wei Y.H. Chiu Y.C. Wu S.R. Shieh D.B. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater. Sci. 2019 7 4 1311 1322 10.1039/C8BM01525B 30734774
    [Google Scholar]
  139. Zhang F. Li F. Lu G.H. Nie W. Zhang L. Lv Y. Bao W. Gao X. Wei W. Pu K. Xie H.Y. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 2019 13 5 5662 5673 10.1021/acsnano.9b00892 31046234
    [Google Scholar]
  140. Yao X. Yang P. Jin Z. Jiang Q. Guo R. Xie R. He Q. Yang W. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Biomaterials 2019 197 268 283 10.1016/j.biomaterials.2019.01.026 30677556
    [Google Scholar]
  141. Bao W. Liu X. Lv Y. Lu G.H. Li F. Zhang F. Liu B. Li D. Wei W. Li Y. Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy. ACS Nano 2019 13 1 260 273 10.1021/acsnano.8b05602 30616348
    [Google Scholar]
  142. Wang S. Li F. Qiao R. Hu X. Liao H. Chen L. Wu J. Wu H. Zhao M. Liu J. Chen R. Ma X. Kim D. Sun J. Davis T.P. Chen C. Tian J. Hyeon T. Ling D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano 2018 12 12 12380 12392 10.1021/acsnano.8b06399 30495919
    [Google Scholar]
  143. Shen Z. Liu T. Li Y. Lau J. Yang Z. Fan W. Zhou Z. Shi C. Ke C. Bregadze V.I. Mandal S.K. Liu Y. Li Z. Xue T. Zhu G. Munasinghe J. Niu G. Wu A. Chen X. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano 2018 12 11 11355 11365 10.1021/acsnano.8b06201 30375848
    [Google Scholar]
  144. He S. Jiang Y. Li J. Pu K. Semiconducting polycomplex nanoparticles for photothermal ferrotherapy of cancer. Angew. Chem. Int. Ed. 2020 59 26 10633 10638 10.1002/anie.202003004 32207214
    [Google Scholar]
  145. Gao M. Deng J. Liu F. Fan A. Wang Y. Wu H. Ding D. Kong D. Wang Z. Peer D. Zhao Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019 223 119486 10.1016/j.biomaterials.2019.119486 31520887
    [Google Scholar]
  146. Friedmann Angeli J.P. Krysko D.V. Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 2019 19 7 405 414 10.1038/s41568‑019‑0149‑1 31101865
    [Google Scholar]
  147. Li J. Zhang W. Ma X. Wei Y. Zhou F. Li J. Zhang C. Yang Z. Cuproptosis/ferroptosis-related gene signature is correlated with immune infiltration and predict the prognosis for patients with breast cancer. Front. Pharmacol. 2023 14 1192434 10.3389/fphar.2023.1192434 37521466
    [Google Scholar]
  148. Wang Y.J. Zhao H.D. Zhu C.F. Li J. Xie H.J. Chen Y.X. Tuberostemonine reverses multidrug resistance in chronic myelogenous leukemia cells K562/ADR. J. Cancer 2017 8 6 1103 1112 10.7150/jca.17688 28529625
    [Google Scholar]
  149. Lim J. Lam Y.C. Kistler J. Donaldson P.J. Molecular characterization of the cystine/glutamate exchanger and the excitatory amino acid transporters in the rat lens. Invest. Ophthalmol. Vis. Sci. 2005 46 8 2869 2877 10.1167/iovs.05‑0156 16043861
    [Google Scholar]
  150. Yan H. Zou T. Tuo Q. Xu S. Li H. Belaidi A.A. Lei P. Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target. Ther. 2021 6 1 49 10.1038/s41392‑020‑00428‑9 33536413
    [Google Scholar]
  151. Sato M. Kusumi R. Hamashima S. Kobayashi S. Sasaki S. Komiyama Y. Izumikawa T. Conrad M. Bannai S. Sato H. The ferroptosis inducer erastin irreversibly inhibits system xc− and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep. 2018 8 1 968 10.1038/s41598‑018‑19213‑4 29343855
    [Google Scholar]
  152. Chen T.C. Chuang J.Y. Ko C.Y. Kao T.J. Yang P.Y. Yu C.H. Liu M.S. Hu S.L. Tsai Y.T. Chan H. Chang W.C. Hsu T.I. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol. 2020 30 101413 10.1016/j.redox.2019.101413 31896509
    [Google Scholar]
  153. Yang C. Zhang Y. Lin S. Liu Y. Li W. Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging 2021 13 10 13515 13534 10.18632/aging.202774 33819186
    [Google Scholar]
  154. Sun Y. Qiao Y. Liu Y. Zhou J. Wang X. Zheng H. Xu Z. Zhang J. Zhou Y. Qian L. Zhang C. Lou H. ent-Kaurane diterpenoids induce apoptosis and ferroptosis through targeting redox resetting to overcome cisplatin resistance. Redox Biol. 2021 43 101977 10.1016/j.redox.2021.101977 33905957
    [Google Scholar]
  155. Roh J.L. Kim E.H. Jang H.J. Park J.Y. Shin D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 2016 381 1 96 103 10.1016/j.canlet.2016.07.035 27477897
    [Google Scholar]
  156. Fu D. Wang C. Yu L. Yu R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell. Mol. Biol. Lett. 2021 26 1 26 10.1186/s11658‑021‑00271‑y 34098867
    [Google Scholar]
  157. Du J. Wang X. Li Y. Ren X. Zhou Y. Hu W. Zhou C. Jing Q. Yang C. Wang L. Li H. Fang L. Zhou Y. Tong X. Wang Y. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis. 2021 12 7 705 10.1038/s41419‑021‑03996‑y 34262021
    [Google Scholar]
  158. Chakraborty S. Kaur S. Guha S. Batra S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta 2012 1826 1 129 169 22513004
    [Google Scholar]
  159. Chaudhary N. Choudhary B.S. Shah S.G. Khapare N. Dwivedi N. Gaikwad A. Joshi N. Raichanna J. Basu S. Gurjar M. P K S. Saklani A. Gera P. Ramadwar M. Patil P. Thorat R. Gota V. Dhar S.K. Gupta S. Das M. Dalal S.N. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int. J. Cancer 2021 149 7 1495 1511 10.1002/ijc.33711 34146401
    [Google Scholar]
  160. Turcu A.L. Versini A. Khene N. Gaillet C. Cañeque T. Müller S. Rodriguez R. DMT1 inhibitors kill Cancer stem cells by blocking lysosomal Iron translocation. Chemistry 2020 26 33 7369 7373 10.1002/chem.202000159 32083771
    [Google Scholar]
  161. Hong T. Lei G. Chen X. Li H. Zhang X. Wu N. Zhao Y. Zhang Y. Wang J. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 2021 42 101928 10.1016/j.redox.2021.101928 33722571
    [Google Scholar]
  162. Chen P. Li X. Zhang R. Liu S. Xiang Y. Zhang M. Chen X. Pan T. Yan L. Feng J. Duan T. Wang D. Chen B. Jin T. Wang W. Chen L. Huang X. Zhang W. Sun Y. Li G. Kong L. Chen X. Li Y. Yang Z. Zhang Q. Zhuo L. Sui X. Xie T. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics 2020 10 11 5107 5119 10.7150/thno.44705 32308771
    [Google Scholar]
  163. Song X. Wang X. Liu Z. Yu Z. Role of GPX4-mediated Ferroptosis in the sensitivity of triple negative breast Cancer cells to Geftinib. Front. Oncol. 2020 10 597434 10.3389/fonc.2020.597434 33425751
    [Google Scholar]
  164. Sun X. Niu X. Chen R. He W. Chen D. Kang R. Tang D. Metallothionein‐1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 2016 64 2 488 500 10.1002/hep.28574 27015352
    [Google Scholar]
  165. Zhang T. Sun B. Zhong C. Xu K. Wang Z. Hofman P. Nagano T. Legras A. Breadner D. Ricciuti B. Divisi D. Schmid R.A. Peng R.W. Yang H. Yao F. Targeting histone deacetylase enhances the therapeutic effect of Erastin-induced ferroptosis in EGFR-activating mutant lung adenocarcinoma. Transl. Lung Cancer Res. 2021 10 4 1857 1872 10.21037/tlcr‑21‑303 34012798
    [Google Scholar]
  166. Markowitsch S.D. Schupp P. Lauckner J. Vakhrusheva O. Slade K.S. Mager R. Efferth T. Haferkamp A. Juengel E. Artesunate inhibits growth of Sunitinib-resistant renal cell carcinoma cells through cell cycle arrest and induction of Ferroptosis. Cancers 2020 12 11 3150 10.3390/cancers12113150 33121039
    [Google Scholar]
  167. Kang R. Kroemer G. Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med. 2019 133 162 168 10.1016/j.freeradbiomed.2018.05.074 29800655
    [Google Scholar]
  168. Tang R. Xu J. Zhang B. Liu J. Liang C. Hua J. Meng Q. Yu X. Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 2020 13 1 110 10.1186/s13045‑020‑00946‑7 32778143
    [Google Scholar]
  169. Matsushita M. Freigang S. Schneider C. Conrad M. Bornkamm G.W. Kopf M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 2015 212 4 555 568 10.1084/jem.20140857 25824823
    [Google Scholar]
  170. Tang D. Chen X. Kang R. Kroemer G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2020 33268902
    [Google Scholar]
  171. Wen Q. Liu J. Kang R. Zhou B. Tang D. The release and activity of HMGB1 in ferroptosis. Biochem. Biophys. Res. Commun. 2019 510 2 278 283 10.1016/j.bbrc.2019.01.090 30686534
    [Google Scholar]
  172. Yu Y. Xie Y. Cao L. Yang L. Yang M. Lotze M.T. Zeh H.J. Kang R. Tang D. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol. Cell. Oncol. 2015 2 4 e1054549 10.1080/23723556.2015.1054549 27308510
    [Google Scholar]
  173. Strati A. Koutsodontis G. Papaxoinis G. Angelidis I. Zavridou M. Economopoulou P. Kotsantis I. Avgeris M. Mazel M. Perisanidis C. Sasaki C. Alix-Panabières C. Lianidou E. Psyrri A. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann. Oncol. 2017 28 8 1923 1933 10.1093/annonc/mdx206 28838214
    [Google Scholar]
  174. Wang S. Chen S. Ying Y. Ma X. Shen H. Li J. Wang X. Lin Y. Liu B. Zheng X. Xie L. Comprehensive analysis of ferroptosis regulators with regard to PD-L1 and immune infiltration in clear cell renal cell carcinoma. Front. Cell Dev. Biol. 2021 9 676142 10.3389/fcell.2021.676142 34291048
    [Google Scholar]
  175. Liao P. Wang W. Wang W. Kryczek I. Li X. Bian Y. Sell A. Wei S. Grove S. Johnson J.K. Kennedy P.D. Gijón M. Shah Y.M. Zou W. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 2022 40 4 365 378.e6 10.1016/j.ccell.2022.02.003 35216678
    [Google Scholar]
  176. Shanmugam M.K. Warrier S. Kumar A.P. Sethi G. Arfuso F. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr. Vasc. Pharmacol. 2017 15 6 503 519 28707601
    [Google Scholar]
  177. Koch W. Kukula-Koch W. Marzec Z. Kasperek E. Wyszogrodzka-Koma L. Szwerc W. Asakawa Y. Application of chromatographic and spectroscopic methods towards the quality assessment of ginger (Zingiber officinale) rhizomes from ecological plantations. Int. J. Mol. Sci. 2017 18 2 452 10.3390/ijms18020452 28230740
    [Google Scholar]
  178. Zhang F. Ma N. Gao Y.F. Sun L.L. Zhang J.G. Therapeutic effects of 6-Gingerol, 8- Gingerol, and 10-Gingerol on dextran sulfate sodium-induced acute ulcerative colitis in rats. Phytother. Res. 2017 31 9 1427 1432 10.1002/ptr.5871 28762585
    [Google Scholar]
  179. de Lima R.M.T. dos Reis A.C. de Menezes A.A.P.M. Santos J.V.O. Filho J.W.G.O. Ferreira J.R.O. de Alencar M.V.O.B. da Mata A.M.O.F. Khan I.N. Islam A. Uddin S.J. Ali E.S. Islam M.T. Tripathi S. Mishra S.K. Mubarak M.S. Melo-Cavalcante A.A.C. Protective and therapeutic potential of ginger (Zingiber officinale ) extract and [6]‐gingerol in cancer: A comprehensive review. Phytother. Res. 2018 32 10 1885 1907 10.1002/ptr.6134 30009484
    [Google Scholar]
  180. Tsai Y. Xia C. Sun Z. The Inhibitory Effect of 6-Gingerol on ubiquitin-specific peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro. Front. Pharmacol. 2020 11 598555 10.3389/fphar.2020.598555 33281606
    [Google Scholar]
  181. Lang X. Green M.D. Wang W. Yu J. Choi J.E. Jiang L. Liao P. Zhou J. Zhang Q. Dow A. Saripalli A.L. Kryczek I. Wei S. Szeliga W. Vatan L. Stone E.M. Georgiou G. Cieslik M. Wahl D.R. Morgan M.A. Chinnaiyan A.M. Lawrence T.S. Zou W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019 9 12 1673 1685 10.1158/2159‑8290.CD‑19‑0338 31554642
    [Google Scholar]
  182. Ye L.F. Chaudhary K.R. Zandkarimi F. Harken A.D. Kinslow C.J. Upadhyayula P.S. Dovas A. Higgins D.M. Tan H. Zhang Y. Buonanno M. Wang T.J.C. Hei T.K. Bruce J.N. Canoll P.D. Cheng S.K. Stockwell B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol. 2020 15 2 469 484 10.1021/acschembio.9b00939 31899616
    [Google Scholar]
  183. Kim S.E. Zhang L. Ma K. Riegman M. Chen F. Ingold I. Conrad M. Turker M.Z. Gao M. Jiang X. Monette S. Pauliah M. Gonen M. Zanzonico P. Quinn T. Wiesner U. Bradbury M.S. Overholtzer M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 2016 11 11 977 985 10.1038/nnano.2016.164 27668796
    [Google Scholar]
  184. Gabizon A. Bradbury M. Prabhakar U. Zamboni W. Libutti S. Grodzinski P. Cancer nanomedicines: closing the translational gap. Lancet 2014 384 9961 2175 2176 10.1016/S0140‑6736(14)61457‑4 25625382
    [Google Scholar]
  185. Hu Z. Song X. Ding L. Cai Y. Yu L. Zhang L. Zhou Y. Chen Y. Engineering Fe/Mn-doped zinc oxide nanosonosensitizers for ultrasound-activated and multiple ferroptosis-augmented nanodynamic tumor suppression. Mater. Today Bio 2022 16 100452 10.1016/j.mtbio.2022.100452 36245834
    [Google Scholar]
  186. Zhu M. Wu P. Li Y. Zhang L. Zong Y. Wan M. Synergistic therapy for orthotopic gliomas via biomimetic nanosonosensitizer-mediated sonodynamic therapy and ferroptosis. Biomater. Sci. 2022 10 14 3911 3923 10.1039/D2BM00562J 35699471
    [Google Scholar]
  187. Xu T. Ma Y. Yuan Q. Hu H. Hu X. Qian Z. Enhanced ferroptosis by oxygenboosted phototherapy based on 2- in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. Theranostics 2019 18 3293 3307
    [Google Scholar]
  188. Li L. Song D. Qi L. Jiang M. Wu Y. Gan J. Cao K. Li Y. Bai Y. Zheng T. Photodynamic therapy induces human esophageal carcinoma cell pyroptosis by targeting the PKM2/caspase-8/caspase-3/GSDME axis. Cancer Lett. 2021 520 143 159 10.1016/j.canlet.2021.07.014 34256094
    [Google Scholar]
  189. Moghissi K. Dixon K. Update on the current indications, practice and results of photodynamic therapy (PDT) in early central lung cancer (ECLC). Photodiagn. Photodyn. Ther. 2008 5 1 10 18 10.1016/j.pdpdt.2007.11.001 19356631
    [Google Scholar]
  190. Hamdoon Z. Jerjes W. Rashed D. Kawas S. Samsudin R. Hopper C. Photodiagnosis and photodynamic therapy in vivo optical coherence tomographyguided photodynamic therapy for skin pre-cancer and cancer. Photodiagn. Photodyn. Ther. 2021 12 102520 10.1016/j.pdpdt.2021.102520
    [Google Scholar]
  191. Yagoda N. von Rechenberg M. Zaganjor E. Bauer A.J. Yang W.S. Fridman D.J. Wolpaw A.J. Smukste I. Peltier J.M. Boniface J.J. Smith R. Lessnick S.L. Sahasrabudhe S. Stockwell B.R. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007 447 7146 865 869 10.1038/nature05859 17568748
    [Google Scholar]
  192. Yang W.S. Stockwell B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008 15 3 234 245 10.1016/j.chembiol.2008.02.010 18355723
    [Google Scholar]
  193. Cheah J.H. Kim S.F. Hester L.D. Clancy K.W. Patterson S.E. III Papadopoulos V. Snyder S.H. NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 2006 51 4 431 440 10.1016/j.neuron.2006.07.011 16908409
    [Google Scholar]
  194. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. III Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  195. Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002 82 1 47 95 10.1152/physrev.00018.2001 11773609
    [Google Scholar]
  196. Yang W.S. SriRamaratnam R. Welsch M.E. Shimada K. Skouta R. Viswanathan V.S. Cheah J.H. Clemons P.A. Shamji A.F. Clish C.B. Brown L.M. Girotti A.W. Cornish V.W. Schreiber S.L. Stockwell B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 156 1-2 317 331 10.1016/j.cell.2013.12.010 24439385
    [Google Scholar]
  197. Brigelius-Flohé R. Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 5 3289 3303 10.1016/j.bbagen.2012.11.020 23201771
    [Google Scholar]
  198. Jiang L. Kon N. Li T. Wang S.J. Su T. Hibshoosh H. Baer R. Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015 520 7545 57 62 10.1038/nature14344 25799988
    [Google Scholar]
  199. Alvarez S.W. Sviderskiy V.O. Terzi E.M. Papagiannakopoulos T. Moreira A.L. Adams S. Sabatini D.M. Birsoy K. Possemato R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017 551 7682 639 643 10.1038/nature24637 29168506
    [Google Scholar]
  200. Jain P. Satapathy T. Pandey R.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil ( Gossypium Sp.). Int. J. Acarol. 2020 46 4 263 267 [Taylor n Francis]. 10.1080/01647954.2020.1767203
    [Google Scholar]
  201. Rathore P. Rao S.P. Roy A. Satapathy T. Singh V. Jain P. Hepatoprotective activity of isolated herbal compounds. Research. J. Pharm. Technol. 2014 7 2
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096337123241217070834
Loading
/content/journals/ccdt/10.2174/0115680096337123241217070834
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chemotherapy ; Ferroptosis ; targeted therapy ; metastasis ; cancer ; drug resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test