
Full text loading...
The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.
To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nanomedicine, TCM, and Western medicine. The review also included an assessment of how ferroptosis influences cancer treatment, including its role in tumor drug resistance and immunotherapy, and provided a detailed analysis of pharmacological activators of ferroptosis.
The review highlights several key findings, like primary mechanisms that regulate cancer cell sensitivity to ferroptosis, and provides an overview of the latest advancements in ferroptosis drug research. The review reveals that ferroptosis has both beneficial and detrimental effects on human cancer, reflecting its complex role in cancer progression and treatment. The review also emphasizes the dual nature of ferroptosis, noting its potential as both a tumor suppressor and an oncogenic factor. Additionally, it provides a comprehensive examination of various pharmacological agents that activate ferroptosis and their potential therapeutic applications.
In conclusion, ferroptosis represents a promising target for cancer therapy, given its distinctive characteristics and significant role in tumor biology. The review underscores the need for further research to clarify the complex roles of ferroptosis in carcinogenesis and to optimize the development of novel therapeutics targeting this form of cell death. It also highlights current challenges and opportunities in the field, including the potential for overcoming cancer metastasis through ferroptosis modulation and the need for continued exploration of pharmacological activators to advance therapeutic strategies.
Article metrics loading...
Full text loading...
References
Data & Media loading...