Skip to content
2000
image of EWS-RNA Binding Protein 1: Structural Insights into Ewing Sarcoma by Conformational Dynamics Investigations

Abstract

Background

Prior research has demonstrated that proteins play a significant role in the prognosis and treatments of various sarcomas, including Ewing sarcoma through the interplay of downstream signaling cascades. However, there is limited understanding about the strcucture conformation of EWSR1 and its structural implication in the prognosis of Ewsing Sarcoma by interaction with RNA molecules.

Aims

The primary goal of ongoing research is to determine how EWSR1 contributes to Ewing sarcoma.

Objective

The current study explores the complexity of EWSR1 structure and its conformational interactions with RNA in relation to Ewing sarcoma.

Methods

Here, we employed a comparative modeling approach to predict EWSR1 domains separately and assembled them into one structural unit using a DEMO server. Additionally, the RNA motifs interacting with EWSR1 were predicted, and the 3D model was built using RNAComposer. Protein-RNA docking and MD simulation studies were carried out to check the intermolecular interactions and stability behavior of docked EWSR1-RNA complexes.

Results

The overall results explore the structural insights into EWSR1 and their interactions with RNA, which may play a momentous role in co- and post-transcriptional regulation to control gene expression.

Conclusion

Taken togather, our findings suggest that EWSR1 may be a useful therapeutic target for the diagnosis and management of Ewing sarcoma.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096330765250220053705
2025-03-11
2025-09-13
Loading full text...

Full text loading...

References

  1. Ordóñez J.L. Osuna D. Herrero D. Álava E. Gúrpide M.J. Advances in Ewing’s sarcoma research: Where are we now and what lies ahead? Cancer Res. 2009 69 18 7140 7150 10.1158/0008‑5472.CAN‑08‑4041 19738075
    [Google Scholar]
  2. Kauer M. Ban J. Kofler R. Walker B. Davis S. Meltzer P. Kovar H. A molecular function map of Ewing’s sarcoma. PLoS One 2009 4 4 e5415 10.1371/journal.pone.0005415 19404404
    [Google Scholar]
  3. Wen J. Wan L. Dong X. Prognostic value of PRR11 and immune cell infiltration in Ewing sarcoma. PLoS One 2024 19 3 e0299720 10.1371/journal.pone.0299720 38427643
    [Google Scholar]
  4. Bahk W-J. Ewing’s Sarcoma. 2023 10.1007/978‑981‑99‑5498‑8_25
    [Google Scholar]
  5. Chavan M. Dhakal S. Singh A. Rai V. Arora S. Mallipeddi M.C. Das A. Ewing sarcoma genomics and recent therapeutic advancements. Ped. Hemat. Oncol. J. 2023 8 1 50 65 10.1016/j.phoj.2023.02.001
    [Google Scholar]
  6. Tsokos M. Alaggio R.D. Dehner L.P. Dickman P.S. 2012
  7. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021 71 1 7 33 10.3322/caac.21654 33433946
    [Google Scholar]
  8. Burchill S.A. Ewing’s sarcoma: Diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J. Clin. Pathol. 2003 56 2 96 102 10.1136/jcp.56.2.96 12560386
    [Google Scholar]
  9. Shashaa M.N. Alkarrash M.S. Kitaz M.N. Hawash S. Otaqy M.B. Tarabishi J. Rhayim R. Alloush H. Ewing’s sarcoma in scapula, epidemiology, clinical manifestation, diagnosis and treatment: A literature review. Ann. Med. Surg. (Lond.) 2022 77 103617 10.1016/j.amsu.2022.103617 35638046
    [Google Scholar]
  10. Schwartz J.C. Cech T.R. Parker R.R. Biochemical properties and biological functions of FET proteins. Annu. Rev. Biochem. 2015 84 1 355 379 10.1146/annurev‑biochem‑060614‑034325 25494299
    [Google Scholar]
  11. John S.J. Powell K. Lacomb C.M.K. Chinni S.R. TMPRSS2-ERG fusion gene expression in prostate tumor cells and its clinical and biological significance in prostate cancer progression. J. Cancer Sci. Ther. 2012 4 4 94 101 10.4172/1948‑5956.1000119 23264855
    [Google Scholar]
  12. Lessnick S.L. Ladanyi M. Molecular pathogenesis of Ewing sarcoma: New therapeutic and transcriptional targets. Annu. Rev. Pathol. 2012 7 1 145 159 10.1146/annurev‑pathol‑011110‑130237 21942527
    [Google Scholar]
  13. Boulay G. Sandoval G. J. Riggi N. Iyer S. Buisson R. Naigles B. Awad M. E. Rengarajan S. Volorio A. McBride M. J. Cancer-specific retargeting of BAF complexes by a prion-like domain. 2017
    [Google Scholar]
  14. Marchetto A. Ohmura S. Orth M.F. Knott M.M.L. Colombo M.V. Arrigoni C. Bardinet V. Saucier D. Wehweck F.S. Li J. Stein S. Gerke J.S. Baldauf M.C. Musa J. Dallmayer M. Pérez R.L. Hölting T.L.B. Amatruda J.F. Cossarizza A. Henssen A.G. Kirchner T. Moretti M. Aranaz C.F. Sannino G. Grünewald T.G.P. Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nat. Commun. 2020 11 1 2423 10.1038/s41467‑020‑16244‑2 32415069
    [Google Scholar]
  15. Shahzadi S. Hassan M. Kloczkowski A. In structural analysis of rna-binding protein ewsr1 involved in ewing’s sarcoma through domain assembly and conformational molecular dynamics studies. 2023
    [Google Scholar]
  16. Riggi N. Knoechel B. Gillespie S.M. Rheinbay E. Boulay G. Suvà M.L. Rossetti N.E. Boonseng W.E. Oksuz O. Cook E.B. Formey A. Patel A. Gymrek M. Thapar V. Deshpande V. Ting D.T. Hornicek F.J. Nielsen G.P. Stamenkovic I. Aryee M.J. Bernstein B.E. Rivera M.N. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014 26 5 668 681 10.1016/j.ccell.2014.10.004 25453903
    [Google Scholar]
  17. Aranaz C.F. Alonso J. EWS/FLI1 target genes and therapeutic opportunities in Ewing sarcoma. Front. Oncol. 2015 5 162 10.3389/fonc.2015.00162 26258070
    [Google Scholar]
  18. Vito D.C. Riggi N. Suvà M.L. Janiszewska M. Horlbeck J. Baumer K. Provero P. Stamenkovic I. Let-7a is a direct EWS-FLI-1 target implicated in Ewing’s sarcoma development. PLoS One 2011 6 8 e23592 10.1371/journal.pone.0023592 21853155
    [Google Scholar]
  19. Caltavituro A. Buonaiuto R. Pietroluongo E. Morra R. Salomone F. Placido D.P. Pagliuca M. Vaia A. Ottaviano M. Tortora M. Placido D.S. Palmieri G. Giuliano M. Shifting from a biological-agnostic approach to a molecular-driven strategy in rare cancers: Ewing sarcoma archetype. Biomedicines 2023 11 3 874 10.3390/biomedicines11030874 36979853
    [Google Scholar]
  20. Huang M. Lucas K. Current therapeutic approaches in metastatic and recurrent ewing sarcoma. Sarcoma 2011 2011 1 1 5 10.1155/2011/863210 21151650
    [Google Scholar]
  21. Naumann J.A. Widen J.C. Jonart L.A. Ebadi M. Tang J. Gordon D.J. Harki D.A. Gordon P.M. SN-38 conjugated gold nanoparticles activated by ewing sarcoma specific mRNAs exhibit in vitro and in vivo efficacy. Bioconjug. Chem. 2018 29 4 1111 1118 10.1021/acs.bioconjchem.7b00774 29412642
    [Google Scholar]
  22. Amrahov N. Mammadova R. Allahverdiyeva S. Aliyev E. Alizada S.R. Aghazada G. Ojagverdiyeva S. Mammadov Z. Effect of indole-3-butyric acid on the antioxidant enzymes, no and chlorophyll content of agdash-3 and ap-317 genotypes of upland cotton (gossypium hirsutum l.). Adv. Biol. Earth Sci. 2023 8 2 147 156
    [Google Scholar]
  23. Ziarati P. Tajik S. Sawicka B. Rodriguez C.L. Vambol V. Vambol S. Detoxification of lead and cadmium in pharmaceutical effluent by home-made food wastes. Adv. Biol. Earth Sci. 2023 8 2 129 139
    [Google Scholar]
  24. Arnold K. Bordoli L. Kopp J. Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006 22 2 195 201 10.1093/bioinformatics/bti770 16301204
    [Google Scholar]
  25. Benkert P. Biasini M. Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011 27 3 343 350 10.1093/bioinformatics/btq662 21134891
    [Google Scholar]
  26. Pettersen E.F. Goddard T.D. Huang C.C. Meng E.C. Couch G.S. Croll T.I. Morris J.H. Ferrin T.E. UCSF CHIMERAX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021 30 1 70 82 10.1002/pro.3943 32881101
    [Google Scholar]
  27. Zhou X. Hu J. Zhang C. Zhang G. Zhang Y. Assembling multidomain protein structures through analogous global structural alignments. Proc. Natl. Acad. Sci. USA 2019 116 32 15930 15938 10.1073/pnas.1905068116 31341084
    [Google Scholar]
  28. Gasteiger E. Hoogland C. Gattiker A. Duvaud S. Wilkins M.R. Appel R.D. Bairoch A. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press 2005 10.1385/1‑59259‑890‑0:571
    [Google Scholar]
  29. Studio D. 2008
  30. Willard L. Ranjan A. Zhang H. Monzavi H. Boyko R.F. Sykes B.D. Wishart D.S. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003 31 13 3316 3319 10.1093/nar/gkg565 12824316
    [Google Scholar]
  31. Xie Z. Hu S. Blackshaw S. Zhu H. Qian J. hPDI: A database of experimental human protein–DNA interactions. Bioinformatics 2010 26 2 287 289 10.1093/bioinformatics/btp631 19900953
    [Google Scholar]
  32. Hassan M. Shahzadi S. Raza H. Abbasi M.A. Alashwal H. Zaki N. Moustafa A.A. Seo S.Y. Computational investigation of mechanistic insights of Aβ42 interactions against extracellular domain of nAChRα7 in Alzheimer’s disease. Int. J. Neurosci. 2019 129 7 666 680 10.1080/00207454.2018.1543670 30422726
    [Google Scholar]
  33. Hassan M. Shahzadi S. Alashwal H. Zaki N. Seo S.Y. Moustafa A.A. Exploring the mechanistic insights of Cas scaffolding protein family member 4 with protein tyrosine kinase 2 in Alzheimer’s disease by evaluating protein interactions through molecular docking and dynamic simulations. Neurol. Sci. 2018 39 8 1361 1374 10.1007/s10072‑018‑3430‑2 29789968
    [Google Scholar]
  34. Ohue M. Matsuzaki Y. Akiyama Y. Docking-calculation-based method for predicting protein-RNA interactions. Genome Inform. 2011 25 1 25 39 22230937
    [Google Scholar]
  35. He J. Tao H. Huang S.Y. Protein-ensemble–RNA docking by efficient consideration of protein flexibility through homology models. Bioinformatics 2019 35 23 4994 5002 10.1093/bioinformatics/btz388 31086984
    [Google Scholar]
  36. Chong S.H. Lee C. Kang G. Park M. Ham S. Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis. J. Am. Chem. Soc. 2011 133 18 7075 7083 10.1021/ja1116233 21500781
    [Google Scholar]
  37. Pronk S. Páll S. Schulz R. Larsson P. Bjelkmar P. Apostolov R. Shirts M.R. Smith J.C. Kasson P.M. van der Spoel D. Hess B. Lindahl E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013 29 7 845 854 10.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  38. Chiu S.W. Pandit S.A. Scott H.L. Jakobsson E. An improved united atom force field for simulation of mixed lipid bilayers. J. Phys. Chem. B 2009 113 9 2748 2763 10.1021/jp807056c 19708111
    [Google Scholar]
  39. Wang H. Dommert F. Holm C. Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. J. Chem. Phys. 2010 133 3 034117 10.1063/1.3446812 20649318
    [Google Scholar]
  40. Amiri S. Sansom M.S.P. Biggin P.C. Molecular dynamics studies of AChBP with nicotine and carbamylcholine: The role of water in the binding pocket. Protein Eng. Des. Sel. 2007 20 7 353 359 10.1093/protein/gzm029 17595341
    [Google Scholar]
  41. Grossmann L. McClements D.J. Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll. 2023 137 108416 10.1016/j.foodhyd.2022.108416
    [Google Scholar]
  42. Hassan M. Zahid S. Alashwal H. Kloczkowski A. Moustafa A.A. Mechanistic insights into TNFR1/MADD death domains in Alzheimer’s disease through conformational molecular dynamic analysis. Sci. Rep. 2021 11 1 12256 10.1038/s41598‑021‑91606‑4 34112868
    [Google Scholar]
  43. Xiong X. Huang S. Zhang H. Li J. Shen J. Xiong J. Lin Y. Jiang L. Wang X. Liang S. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions. Proteome Sci. 2009 7 1 41 10.1186/1477‑5956‑7‑41 19889238
    [Google Scholar]
  44. Kuhn L.A. Swanson C.A. Pique M.E. Tainer J.A. Getzoff E.D. Atomic and residue hydrophilicity in the context of folded protein structures. Proteins 1995 23 4 536 547 10.1002/prot.340230408 8749849
    [Google Scholar]
  45. Jésior J.C. Hydrophilic framework in proteins? J. Protein Chem. 2000 19 2 93 103 10.1023/A:1007026431524 10945433
    [Google Scholar]
  46. Panda S. Chandra G. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation 2012 8 18 891 896 10.6026/97320630008891 23144546
    [Google Scholar]
  47. Omar S. In Sequence analysis and comparative modelling of nucleocapsid protein from pseudomonas stutzeri. IOP Conference Series: Materials Science and Engineering IOP Publishing New York 2018 012025
    [Google Scholar]
  48. Messaoudi A. Belguith H. Hamida B.J. Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theor. Biol. Med. Model. 2013 10 1 22 10.1186/1742‑4682‑10‑22 23547944
    [Google Scholar]
  49. Du W.W. Fang L. Yang W. Wu N. Awan F.M. Yang Z. Yang B.B. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017 24 2 357 370 10.1038/cdd.2016.133 27886165
    [Google Scholar]
  50. Ropii B. Bethasari M. Anshori I. Koesoema A.P. Shalannanda W. Satriawan A. Setianingsih C. Akbar M.R. Aditama R. The assessment of molecular dynamics results of three-dimensional RNA aptamer structure prediction. PLoS One 2023 18 7 e0288684 10.1371/journal.pone.0288684 37498889
    [Google Scholar]
  51. Kraml J. Kamenik A.S. Waibl F. Schauperl M. Liedl K.R. Solvation free energy as a measure of hydrophobicity: Application to serine protease binding interfaces. J. Chem. Theory Comput. 2019 15 11 5872 5882 10.1021/acs.jctc.9b00742 31589427
    [Google Scholar]
  52. Kyte J. Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982 157 1 105 132 10.1016/0022‑2836(82)90515‑0 7108955
    [Google Scholar]
  53. Majumder M. Palanisamy V. Compendium of methods to uncover RNA-protein interactions in vivo. Methods Protoc. 2021 4 1 22 10.3390/mps4010022 33808611
    [Google Scholar]
  54. Lee J. Nguyen P.T. Shim H.S. Hyeon S.J. EWSR1, a multifunctional protein, regulates cellular function and aging via genetic and epigenetic pathways. Biochimica et Biophysica Acta (BBA)-. Molecular Basis of Disease 2019 1865 7 1938 1945
    [Google Scholar]
  55. Cironi L. Riggi N. Provero P. Wolf N. Suvà M.L. Suvà D. Kindler V. Stamenkovic I. IGF1 is a common target gene of Ewing’s sarcoma fusion proteins in mesenchymal progenitor cells. PLoS One 2008 3 7 e2634 10.1371/journal.pone.0002634 18648544
    [Google Scholar]
  56. Fayzullina D. Tsibulnikov S. Stempen M. Schroeder B.A. Kumar N. Kharwar R.K. Acharya A. Timashev P. Ulasov I. Novel targeted therapeutic strategies for Ewing sarcoma. Cancers (Basel) 2022 14 8 1988 10.3390/cancers14081988 35454895
    [Google Scholar]
  57. Trancău I. Chromosomal translocations highlighted in Primitive Neuroectodermal Tumors (PNET) and Ewing sarcoma. J. Med. Life, 2014, 7(Spec Iss 3), 44.
/content/journals/ccdt/10.2174/0115680096330765250220053705
Loading
/content/journals/ccdt/10.2174/0115680096330765250220053705
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: ewsr1 ; simulation ; computational modeling ; domain assembly ; Ewing sarcoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test