Skip to content
2000
image of Long Non-Coding RNA HCP5 Affects Ferroptosis in Lung Adenocarcinoma through miR-17-5p/HOXA7 Axis

Abstract

Background

Ferroptosis, a regulated cell death initiated by Fe-dependent lipoperoxidation, is closely linked to the development of lung adenocarcinoma (LUAD). LncRNA human leukocyte antigen complex P5 (HCP5) has been confirmed as oncogenic in LUAD, but its function in ferroptosis is unknown.

Objective

Based on the previous bioinformatics mining of the ceRNA (competitive endogenous RNA) network HCP5/miR-17-5p/ Homeobox A7 (HOXA7) related to ferroptosis in LUAD, in this study, we characterized the cell-based experiments to validate the binding between the HCP5/miR-17-5p/HOXA7 axis and ferroptosis.

Methods

The HCP5/miR-17-5p/HOXA7 linkage was identified by a two-luciferase reporter. Cell Counting Kit-8 (CCK-8) and Transwell assay were employed for the detection of viability, invasion, and migration of A549 cells, respectively. ACSL4 and SLC7A11 were associated with ferroptosis, MMP 9, vimentin, and E-cadherin, which were associated with migration and invasion and were assessed by WB and qRT-PCR. Fe2+ and malondialdehyde (MDA) were analyzed using kits.

Results

Over-expression of HCP5 enhances the growth, invasion, and migration of A549 cells by adjusting miR-17-5P to increase the expression of HOXA7. In addition, the knockdown of HCP5 elevated miR-17-5p, which inhibited HOXA7 expression and suppressed ferroptosis and EMT in A549 cells.

Conclusion

HCP5/miR-17-5p/HOXA7 can affect ferroptosis as well as the biological behavior of A549 cells.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096321714240909182553
2024-10-21
2025-09-13
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  2. Lu T. Yang X. Huang Y. Zhao M. Li M. Ma K. Yin J. Zhan C. Wang Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag. Res. 2019 11 943 953 10.2147/CMAR.S187317 30718965
    [Google Scholar]
  3. Xu B. Zeng F. Deng J. Yao L. Liu S. Hou H. Huang Y. Zhu H. Wu S. Li Q. Zhan W. Qiu H. Wang H. Li Y. Yang X. Cao Z. Zhang Y. Zhou H. A homologous and molecular dual-targeted biomimetic nanocarrier for EGFR-related non-small cell lung cancer therapy. Bioact. Mater. 2023 27 337 347 10.1016/j.bioactmat.2023.04.005 37122898
    [Google Scholar]
  4. Islam K.M.M. Jiang X. Anggondowati T. Lin G. Ganti A.K. Comorbidity and Survival in Lung Cancer Patients. Cancer Epidemiol. Biomarkers Prev. 2015 24 7 1079 1085 10.1158/1055‑9965.EPI‑15‑0036 26065838
    [Google Scholar]
  5. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. III Stockwell B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  6. Mou Y. Wang J. Wu J. He D. Zhang C. Duan C. Li B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. 2019 12 1 34 10.1186/s13045‑019‑0720‑y 30925886
    [Google Scholar]
  7. Chen Q. Pan Q. Gao H. Wang Y. Zhong X. miR-17-5p/HOXA7 Is a Potential Driver for Brain Metastasis of Lung Adenocarcinoma Related to Ferroptosis Revealed by Bioinformatic Analysis. Front. Neurol. 2022 13 878947 10.3389/fneur.2022.878947 35693013
    [Google Scholar]
  8. Lange C.M. Bibert S. Dufour J.F. Cellerai C. Cerny A. Heim M.H. Kaiser L. Malinverni R. Müllhaupt B. Negro F. Semela D. Moradpour D. Kutalik Z. Bochud P.Y. Comparative genetic analyses point to HCP5 as susceptibility locus for HCV-associated hepatocellular carcinoma. J. Hepatol. 2013 59 3 504 509 10.1016/j.jhep.2013.04.032 23665287
    [Google Scholar]
  9. Xu L. Wen B. Wu Q. Lu S. Liao J. Mo L. Li Q. Tong X. Yan H. Long non-coding RNA KB-1460A1.5 promotes ferroptosis by inhibiting mTOR/SREBP-1/SCD1-mediated polyunsaturated fatty acid desaturation in glioma. Carcinogenesis 2024 45 7 487 499 10.1093/carcin/bgae016 38422369
    [Google Scholar]
  10. Jiang L. Wang R. Fang L. Ge X. Chen L. Zhou M. Zhou Y. Xiong W. Hu Y. Tang X. Li G. Li Z. HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis. Theranostics 2019 9 9 2460 2474 10.7150/thno.31097 31131047
    [Google Scholar]
  11. Zhu T-G. Xiao X. Wei Q. Yue M. Zhang L-X. Revealing potential long non-coding RNA biomarkers in lung adenocarcinoma using long non-coding RNA-mediated competitive endogenous RNA network. Braz. J. Med. Biol. Res. 2017 50 9 e6297 10.1590/1414‑431x20176297 28793054
    [Google Scholar]
  12. Liang J. Wang D. Lin H. Chen X. Yang H. Zheng Y. Li Y. A Novel Ferroptosis-related Gene Signature for Overall Survival Prediction in Patients with Hepatocellular Carcinoma. Int. J. Biol. Sci. 2020 16 13 2430 2441 10.7150/ijbs.45050 32760210
    [Google Scholar]
  13. Wang D. Wei G. Ma J. Cheng S. Jia L. Song X. Zhang M. Ju M. Wang L. Zhao L. Xin S. Identification of the prognostic value of ferroptosis-related gene signature in breast cancer patients. BMC Cancer 2021 21 1 645 10.1186/s12885‑021‑08341‑2 34059009
    [Google Scholar]
  14. Wang M. Mao C. Ouyang L. Liu Y. Lai W. Liu N. Shi Y. Chen L. Xiao D. Yu F. Wang X. Zhou H. Cao Y. Liu S. Yan Q. Tao Y. Zhang B. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 2019 26 11 2329 2343 10.1038/s41418‑019‑0304‑y 30787392
    [Google Scholar]
  15. Xu X. Cui J. Wang H. Ma L. Zhang X. Guo W. Xue X. Wang Y. Qiu S. Tian X. Miao Y. Wu M. Yu Y. Xu Y. Wang J. Qiao Y. IGF2BP3 is an essential N6-methyladenosine biotarget for suppressing ferroptosis in lung adenocarcinoma cells. Mater. Today Bio 2022 17 100503 10.1016/j.mtbio.2022.100503 36457846
    [Google Scholar]
  16. Hussain S. Gupta G. Shahwan M. Bansal P. Kaur H. Deorari M. Pant K. Ali H. Singh S.K. Rama Raju Allam V.S. Paudel K.R. Dua K. Kumarasamy V. Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res. 2024 9 4 1222 1234 10.1016/j.ncrna.2024.05.007 39036600
    [Google Scholar]
  17. Peng X. Yang R. Peng W. Zhao Z. Tu G. He B. Cai Q. Shi S. Yin W. Yu F. Tao Y. Wang X. Overexpression of LINC00551 promotes autophagy-dependent ferroptosis of lung adenocarcinoma via upregulating DDIT4 by sponging miR-4328. PeerJ 2022 10 e14180 10.7717/peerj.14180 36570007
    [Google Scholar]
  18. Gao G.B. Chen L. Pan J.F. Lei T. Cai X. Hao Z. Wang Q. Shan G. Li J. LncRNA RGMB-AS1 inhibits HMOX1 ubiquitination and NAA10 activation to induce ferroptosis in non-small cell lung cancer. Cancer Lett. 2024 590 216826 10.1016/j.canlet.2024.216826 38574881
    [Google Scholar]
  19. Yu Y. Shen H.M. Fang D.M. Meng Q.J. Xin Y.H. LncRNA HCP5 promotes the development of cervical cancer by regulating MACC1 via suppression of microRNA-15a. Eur. Rev. Med. Pharmacol. Sci. 2018 22 15 4812 4819 30070314
    [Google Scholar]
  20. Yang C. Sun J. Liu W. Yang Y. Chu Z. Yang T. Gui Y. Wang D. Long noncoding RNA HCP5 contributes to epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation and interacting with miR-139-5p. Am. J. Transl. Res. 2019 11 2 953 963 30899394
    [Google Scholar]
  21. Tong X. Yu Z. Xing J. Liu H. Zhou S. Huang Y. Lin J. Jiang W. Wang L. LncRNA HCP5-Encoded Protein Regulates Ferroptosis to Promote the Progression of Triple-Negative Breast Cancer. Cancers (Basel) 2023 15 6 1880 10.3390/cancers15061880 36980766
    [Google Scholar]
  22. Ma X. Fu T. Ke Z.Y. Du S.L. Wang X.C. Zhou N. Zhong M.Y. Liu Y.J. Liang A.L. MiR-17- 5p/RRM2 regulated gemcitabine resistance in lung cancer A549 cells. Cell Cycle 2023 22 11 1367 1379 10.1080/15384101.2023.2207247 37115505
    [Google Scholar]
  23. Gong A.Y. Eischeid A.N. Xiao J. Zhao J. Chen D. Wang Z.Y. Young C.Y.F. Chen X.M. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 2012 12 1 492 10.1186/1471‑2407‑12‑492 23095762
    [Google Scholar]
  24. Yang X. Wei X. Yi C. Yang Y. Fang Z. Dai Y. Guo Y. Song D. Long Noncoding RNA HAND2-AS1 Suppresses Cell Proliferation, Migration, and Invasion of Bladder Cancer viamiR-17-5p/KLF9 Axis. DNA Cell Biol. 2022 41 2 179 189 10.1089/dna.2021.0637 35007433
    [Google Scholar]
  25. Expression of Concern: miRNA 17 Family Regulates Cisplatin-Resistant and Metastasis by Targeting TGFbetaR2 in NSCLC. PLoS One 2019 14 9 e0222896 10.1371/journal.pone.0222896 31536592
    [Google Scholar]
  26. Hao J. Shen Z. A systematic review and meta-analysis of the diagnostic value of circulating microRNA-17-5p in patients with non-small cell lung cancer. Medicine 2023 102 8 e33070 10.1097/MD.0000000000033070 36827064
    [Google Scholar]
  27. Cheng G. Li Y. Liu Z. Song X. lncRNA PSMA3-AS1 promotes the progression of non-small cell lung cancer through targeting miR-17-5p/PD-L1. Adv. Clin. Exp. Med. 2021 30 10 1043 1050
    [Google Scholar]
  28. Chen Y. Zhou X. Huang C. Li L. Qin Y. Tian Z. He J. Liu H. LncRNA PART1 promotes cell proliferation and progression in non‐small‐cell lung cancer cells via sponging miR‐17‐5p. J. Cell. Biochem. 2021 122 3-4 315 325 10.1002/jcb.29714 33368623
    [Google Scholar]
  29. Chen Y. Shen T. Ding X. Ma C. Cheng L. Sheng L. Du X. [Retracted] lncRNA MRUL Suppressed Non‐Small Cell Lung Cancer Cells Proliferation and Invasion by Targeting miR‐17‐5p/SRSF2 Axis. BioMed Res. Int. 2020 2020 1 9567846 10.1155/2020/9567846 33123591
    [Google Scholar]
  30. Wang Z. Zhang Q. Sun Y. Shao F. Long Non-Coding RNA PVT1 Regulates BAMBI to Promote Tumor Progression in Non-Small Cell Lung Cancer by Sponging miR-17-5p Corrigendum. OncoTargets Ther. 2020 13 2911 2912 [ 10.2147/OTT.S252284 32308423
    [Google Scholar]
  31. Ji F. Du R. Chen T. Zhang M. Zhu Y. Luo X. Ding Y. Circular RNA circSLC26A4 Accelerates Cervical Cancer Progression via miR-1287-5p/HOXA7 Axis. Mol. Ther. Nucleic Acids 2020 19 413 420 10.1016/j.omtn.2019.11.032 31896069
    [Google Scholar]
  32. Luo H. Wang F. Zha J. Li H. Yan B. Du Q. Yang F. Sobh A. Vulpe C. Drusbosky L. Cogle C. Chepelev I. Xu B. Nimer S.D. Licht J. Qiu Y. Chen B. Xu M. Huang S. CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia. Blood 2018 132 8 837 848 10.1182/blood‑2017‑11‑814319 29760161
    [Google Scholar]
  33. Tang B. Qi G. Sun X. Tang F. Yuan S. Wang Z. Liang X. Li B. Yu S. Liu J. Huang Q. Wei Y. Zhai R. Lei B. Guo X. He S. RETRACTED ARTICLE: HOXA7 plays a critical role in metastasis of liver cancer associated with activation of Snail. Mol. Cancer 2016 15 1 57 10.1186/s12943‑016‑0540‑4 27600149
    [Google Scholar]
  34. Li Z. Huang H. Li Y. Jiang X. Chen P. Arnovitz S. Radmacher M.D. Maharry K. Elkahloun A. Yang X. He C. He M. Zhang Z. Dohner K. Neilly M.B. Price C. Lussier Y.A. Zhang Y. Larson R.A. Le Beau M.M. Caligiuri M.A. Bullinger L. Valk P.J.M. Delwel R. Lowenberg B. Liu P.P. Marcucci G. Bloomfield C.D. Rowley J.D. Chen J. Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 2012 119 10 2314 2324 10.1182/blood‑2011‑10‑386235 22251480
    [Google Scholar]
  35. Rauch T. Wang Z. Zhang X. Zhong X. Wu X. Lau S.K. Kernstine K.H. Riggs A.D. Pfeifer G.P. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc. Natl. Acad. Sci. USA 2007 104 13 5527 5532 10.1073/pnas.0701059104 17369352
    [Google Scholar]
  36. Hu S. Tao J. Peng M. Ye Z. Chen Z. Chen H. Yu H. Wang B. Fan J.B. Ni B. Accurate detection of early-stage lung cancer using a panel of circulating cell-free DNA methylation biomarkers. Biomark. Res. 2023 11 1 45 10.1186/s40364‑023‑00486‑5 37101220
    [Google Scholar]
  37. Liu B. Ricarte Filho J. Mallisetty A. Villani C. Kottorou A. Rodgers K. Chen C. Ito T. Holmes K. Gastala N. Valyi-Nagy K. David O. Gaba R.C. Ascoli C. Pasquinelli M. Feldman L.E. Massad M.G. Wang T.H. Jusue-Torres I. Benedetti E. Winn R.A. Brock M.V. Herman J.G. Hulbert A. Detection of Promoter DNA Methylation in Urine and Plasma Aids the Detection of Non–Small Cell Lung Cancer. Clin. Cancer Res. 2020 26 16 4339 4348 10.1158/1078‑0432.CCR‑19‑2896 32430478
    [Google Scholar]
  38. Chen C. Huang X. Yin W. Peng M. Wu F. Wu X. Tang J. Chen M. Wang X. Hulbert A. Brock M.V. Liu W. Herman J.G. Yu F. Ultrasensitive DNA hypermethylation detection using plasma for early detection of NSCLC: a study in Chinese patients with very small nodules. Clin. Epigenetics 2020 12 1 39 10.1186/s13148‑020‑00828‑2 32138766
    [Google Scholar]
  39. Liu H. Zhang T. Zhang W.Y. Huang S.R. Hu Y. Sun J. Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway. Exp. Neurol. 2023 369 114541 10.1016/j.expneurol.2023.114541 37714424
    [Google Scholar]
  40. Fu C. Wu Y. Liu S. Luo C. Lu Y. Liu M. Wang L. Zhang Y. Liu X. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J. Ethnopharmacol. 2022 289 115021 10.1016/j.jep.2022.115021 35091012
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096321714240909182553
Loading
/content/journals/ccdt/10.2174/0115680096321714240909182553
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hoxa7 ; miR-17-5p ; ferroptosis ; therapeutic targets ; Lung adenocarcinoma ; hcp5
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test