Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

The Chinese chaste tree (VN) is a popular herb in South and Southeast Asia that has several health benefits, including the ability to inhibit tumor growth and induce apoptosis in multiple tumors. Literature revealed scanty research on breast cancer, with little focus on the molecular mechanism of the disease and an emphasis on targets, biological networks, and active components. Exploring natural compounds as possible therapeutic options is an old but still promising approach for drug discovery and development. This study used a thorough computational and statistical method to screen potential drug candidates.

Methods

The active ingredients and targets of VN were identified using SwissADME, SwissTargetPrediction, STITCH, IMPPAT database, KNapSAcK database, and literature. The OMIM and GeneCards databases were searched for possible targets related to breast cancer. The PASS online server was used to check the probability of active metabolite (Pa) against breast cancer. To build protein-protein interactions (PPI) networking, the intersection of disease and drug targets was uploaded to the STITCH database. Cytoscape software was used to analyze the topology parameters of networking to identify hub targets. Gene Ontology (GO) was analyzed using Metascape and ShinyGO, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed using the David database and SR plot, and the site of expression and protein domain were studied using FunRich. We employed AutoDockvina, Discovery Studio, and UCSF ChimeraX software and auxiliary tools for molecular docking and analysis. Zincpharmer was used for pharmacophore mapping. ADMET analysis was conducted using ADMETsar, Swiss ADME, ADMETLab servers, and mypresto using GROMACS for molecular dynamics simulation (MDS).

Results

A total of 65 targets and 21 active ingredients were identified. Further investigation was conducted on 20 hub targets selected through PPI networking construction. The enrichment analysis results indicated that the key factors were P, amyloid-beta response, cellular response to amyloid-beta, Pos. reg. of G2/M transition of the mitotic cell cycle, and response to a toxic substance. The molecular docking, pharmacophore mapping, and MD simulation results indicated that apigenin, kaempferol, and luteolin positively interacted with CDK1 and CDK6 proteins.

Conclusion

This study is the first to use network pharmacology, molecular docking, pharmacophore mapping, and MD simulation to identify the active ingredients, molecular targets, and critical biological pathways responsible for VN anti-breast cancer. The study provides a theoretical basis for further research in this area.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096316247240715064729
2024-07-23
2025-10-11
Loading full text...

Full text loading...

References

  1. WilkinsonL. GathaniT. Understanding breast cancer as a global health concern.Br. J. Radiol.20229511302021103310.1259/bjr.2021103334905391
    [Google Scholar]
  2. TaylorC. McGaleP. ProbertJ. BroggioJ. CharmanJ. DarbyS.C. KerrA.J. WhelanT. CutterD.J. MannuG. Breast cancer mortality in 500 000 women with early invasive breast cancer diagnosed in England, 1993-2015: population based observational cohort study.BMJ2023381e074684
    [Google Scholar]
  3. Brownson-SmithR. OrangeS.T. CrestiN. HuntK. SaxtonJ. TemesiJ. Effect of exercise before and/or during taxane-containing chemotherapy treatment on chemotherapy-induced peripheral neuropathy symptoms in women with breast cancer: Systematic review and meta-analysis.J. Cancer Surviv.2023202311910.1007/s11764‑023‑01450‑w37615928
    [Google Scholar]
  4. VagiaE. CristofanilliM. New treatment strategies for the inflammatory breast cancer.Curr. Treat. Options Oncol.20212265010.1007/s11864‑021‑00843‑233893888
    [Google Scholar]
  5. ArenaA. RomeoM.A. BenedettiR. MasuelliL. BeiR. Gilardini MontaniM.S. CironeM. New insights into curcumin-and resveratrol-mediated anti-cancer effects.Pharmaceuticals20211411106810.3390/ph1411106834832850
    [Google Scholar]
  6. RudzińskaA. JuchaniukP. OberdaJ. WiśniewskaJ. WojdanW. SzklenerK. MańdziukS. Phytochemicals in cancer treatment and cancer prevention : Review on epidemiological data and clinical trials.Nutrients2023158189610.3390/nu1508189637111115
    [Google Scholar]
  7. ČižmárováB. HubkováB. TomečkováV. BirkováA. Flavonoids as promising natural compounds in the prevention and treatment of selected skin diseases.Int. J. Mol. Sci.2023247632410.3390/ijms2407632437047297
    [Google Scholar]
  8. JiangH. LiM. DuK. MaC. ChengY. WangS. NieX. FuC. HeY. Traditional Chinese Medicine for adjuvant treatment of breast cancer: Taohong Siwu Decoction.Chin. Med.202116112910.1186/s13020‑021‑00539‑734857023
    [Google Scholar]
  9. GillB.S. MehraR. Navgeet KumarS. Vitex negundo and its medicinal value.Mol. Biol. Rep.20184562925293410.1007/s11033‑018‑4421‑330311123
    [Google Scholar]
  10. MengX. MuF. ZhangZ. WuX. GaoT. ZhaoF. XueJ. DuanY. ZhangH. Cytotoxic, clonal fidelity, and antioxidant evaluation of in vitro propagated Vitex negundo var. cannabifolia.Plant Cell Tissue Organ Cult.2021146347348210.1007/s11240‑021‑02080‑9
    [Google Scholar]
  11. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  12. AtharM. SonaA.N. BekonoB.D. Ntie-KangF. Fundamental physical and chemical concepts behind “drug-likeness” and “natural product-likeness”.Phys. Sci. Rev.20194122018010110.1515/psr‑2018‑0101
    [Google Scholar]
  13. UrsuO. RayanA. GoldblumA. OpreaT.I. Understanding drug‐likeness.Wiley Interdiscip. Rev. Comput. Mol. Sci.20111576078110.1002/wcms.52
    [Google Scholar]
  14. AbdullahiM. AdenijiS.E. In-silico molecular docking and ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents.Chemistry Africa202034989100010.1007/s42250‑020‑00162‑3
    [Google Scholar]
  15. WuF. ZhouY. LiL. ShenX. ChenG. WangX. LiangX. TanM. HuangZ. Computational approaches in preclinical studies on drug discovery and development.Front Chem.2020872610.3389/fchem.2020.0072633062633
    [Google Scholar]
  16. HuangM. LuJ.J. DingJ. Natural products in cancer therapy: Past, present and future.Nat. Prod. Bioprospect.202111151310.1007/s13659‑020‑00293‑733389713
    [Google Scholar]
  17. SongY. SakharkarM.K. YangJ. Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking.SN Appl. Sci.20235513310.1007/s42452‑023‑05356‑1
    [Google Scholar]
  18. RizzoA. CusmaiA. AcquafreddaS. RinaldiL. PalmiottiG. Ladiratuzumab vedotin for metastatic triple negative cancer: preliminary results, key challenges, and clinical potential.Expert Opin. Investig. Drugs202231649549810.1080/13543784.2022.204225235171746
    [Google Scholar]
  19. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.103912136533070
    [Google Scholar]
  20. FilimonovD.A. LaguninA.A. GloriozovaT.A. RudikA.V. DruzhilovskiiD.S. PogodinP.V. PoroikovV.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource.Chem. Heterocycl. Compd.201450344445710.1007/s10593‑014‑1496‑1
    [Google Scholar]
  21. BanC. YangF. WeiM. LiuQ. WangJ. ChenL. LuL. XieD. LiuL. HuangJ. Integrative analysis of gene expression through one-class logistic regression machine learning identifies stemness features in multiple myeloma.Front. Genet.20211266656110.3389/fgene.2021.66656134484287
    [Google Scholar]
  22. ChenL. ChuC. LuJ. KongX. HuangT. CaiY.D. Gene ontology and KEGG pathway enrichment analysis of a drug target-based classification system.PLoS One2015105e012649210.1371/journal.pone.012649225951454
    [Google Scholar]
  23. JejurikarB.L. RohaneS.H. Drug designing in discovery studio.J. Research Chem.2021142135138
    [Google Scholar]
  24. HueyR. MorrisG.M. ForliS. Using autodock 4 and autodock vina with autodocktools: a tutorial.Scrip. Res. Inst. Molec. Graph. Labora.201210550920371000
    [Google Scholar]
  25. PettersenE.F. GoddardT.D. HuangC.C. MengE.C. CouchG.S. CrollT.I. MorrisJ.H. FerrinT.E. UCSF ChimeraX : Structure visualization for researchers, educators, and developers.Protein Sci.2021301708210.1002/pro.394332881101
    [Google Scholar]
  26. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  27. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  28. ChengF. LiW. ZhouY. ShenJ. WuZ. LiuG. LeeP.W. TangY. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.2012521130993105
    [Google Scholar]
  29. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  30. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  31. FukunishiY. MikamiY. NakamuraH. The filling potential method: A method for estimating the free energy surface for protein− ligand docking.J. Phys. Chem. B200310747132011321010.1021/jp035478e
    [Google Scholar]
  32. WangX. HuY. ZhouX. LiS. Editorial: Network pharmacology and traditional medicine: Setting the new standards by combining In silico and experimental work.Front. Pharmacol.202213100253710.3389/fphar.2022.100253736339546
    [Google Scholar]
  33. GleesonM.P. HerseyA. MontanariD. OveringtonJ. Probing the links between in vitro potency, ADMET and physicochemical parameters.Nat. Rev. Drug Discov.201110319720810.1038/nrd336721358739
    [Google Scholar]
  34. ZhouW. ChenZ. WangY. LiX. LuA. SunX. LiuZ. Systems pharmacology-based method to assess the mechanism of action of weight-loss herbal intervention therapy for obesity.Front. Pharmacol.201910116510.3389/fphar.2019.0116531680953
    [Google Scholar]
  35. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  36. NebenfuehrS. KollmannK. SexlV. The role of CDK6 in cancer.Int. J. Cancer2020147112988299510.1002/ijc.3305432406095
    [Google Scholar]
  37. ZhaoR. ChenS. CuiW. XieC. ZhangA. YangL. DongH. PTPN1 is a prognostic biomarker related to cancer immunity and drug sensitivity: from pan-cancer analysis to validation in breast cancer.Front. Immunol.202314123204710.3389/fimmu.2023.123204737936713
    [Google Scholar]
  38. CairnsJ. LyR.C. NiuN. KalariK.R. CarlsonE.E. WangL. CDC25B partners with PP2A to induce AMPK activation and tumor suppression in triple negative breast cancer.NAR cancer202024zcaa039
    [Google Scholar]
  39. QingX. LeeY. Pharmacophore modeling: advances, limitations, and current utility in drug discovery.J. Receptor Ligand Channel Res.201420148192
    [Google Scholar]
  40. KoesD.R. CamachoC.J. ZINCPharmer: pharmacophore search of the ZINC database.Nucleic Acids Res.201240W1W409W41410.1093/nar/gks37822553363
    [Google Scholar]
  41. ZhongH.A. ADMET Properties: Overview and current topics. GroverA. Drug Design: Principles and Applications.SpringerSingapore2017113133
    [Google Scholar]
  42. BittermannK. GossK.U. Predicting apparent passive permeability of Caco-2 and MDCK cell-monolayers: A mechanistic model.PLoS One20171212e019031910.1371/journal.pone.019031929281711
    [Google Scholar]
  43. FaléP.L. AscensãoL. SerralheiroM.L.M. Effect of luteolin and apigenin on rosmarinic acid bioavailability in Caco-2 cell monolayers.Food Funct.20134342643110.1039/C2FO30318C23223784
    [Google Scholar]
  44. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  45. SaurabhS. SivakumarP.M. PerumalV. KhosraviA. SugumaranA. PrabhawathiV. Molecular dynamics simulations in drug discovery and drug delivery.Integrative Nanomedicine for New TherapiesSpringer202027530110.1007/978‑3‑030‑36260‑7_10
    [Google Scholar]
  46. DurrantJ.D. McCammonJ.A. Molecular dynamics simulations and drug discovery.BMC Biol.2011917110.1186/1741‑7007‑9‑7122035460
    [Google Scholar]
  47. SanapalliB.K.R. YeleV. JupudiS. KarriV.V.S.R. Ligand-based pharmacophore modeling and molecular dynamic simulation approaches to identify putative MMP-9 inhibitors.RSC Adv.20211143268202683110.1039/D1RA03891E35480006
    [Google Scholar]
  48. CaoC. WangL. ChenX. ZouS. WangG. XuS. Amino acids in nine ligand-prefer Ramachandran regions.Biomed Res Int2015201575749510.1155/2015/757495
    [Google Scholar]
  49. ZhengY.Z. ZhouY. LiangQ. ChenD.F. GuoR. Theoretical studies on the hydrogen-bonding interactions between luteolin and water: a DFT approach.J. Mol. Model.2016221125710.1007/s00894‑016‑3128‑427709439
    [Google Scholar]
  50. AmjadE. SokoutiB. AsnaashariS. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound.Cancer Cell Int.202222126010.1186/s12935‑022‑02673‑035986346
    [Google Scholar]
  51. ShahbazM. ImranM. AlsagabyS.A. NaeemH. Al AbdulmonemW. HussainM. AbdelgawadM.A. El-GhorabA.H. GhoneimM.M. El-SherbinyM. AtokiA.V. AwuchiC.G. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol.Int. J. Food Prop.20232611140116610.1080/10942912.2023.2205040
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096316247240715064729
Loading
/content/journals/ccdt/10.2174/0115680096316247240715064729
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test