Skip to content
2000
image of Phytomolecules, Pharmacology, and Medicinal Values of the Butea Monosperma (Palash) Flower

Abstract

Introduction

, or or Flame of the Forest, is a plant with medicinal versatility. Every morphological structure of the plant has a unique medicinal value. The stems, bark, roots, leaves, and flowers all contain distinct compositions of phytoconstituents with varying pharmacological activities and medicinal uses. The flowers of , commonly known as “tesu ka phool” or “palash flowers,” possess many unambiguous phytoconstituents with superior medicinal values. The flowers consist of numerous phytoconstituents, among which Butrin, Isobutrin, Butein, Formononetin, Isoliquiritigenin, Liquiritigenin, and Flavone glycoside are the most prominent.

Methods

Review articles and research papers from reputable journals regarding flowers have been thoroughly analyzed. Extensive readings and discussions were conducted to summarize researchers' findings concerning the pharmacology and medicinal properties of the phytoconstituents present in palash flowers.

Results

This review examines various types of research that discuss the ethnomedicinal uses of flowers. Additionally, the pharmacology and medical applications of its phytoconstituents are addressed. Furthermore, the chemical structures and classifications of the phytoconstituents are examined.

Discussion

Among several phytoconstituents, Butrin, Isobutrin, Butein, Formononetin, Isoliquiritigenin, Liquiritigenin, and Flavone glycoside were prominently studied, highlighting the medicinal values of the palash flowers. Various researchers have concluded that these phytoconstituents are responsible for the flower’s anti-inflammatory, antioxidant, anti-dopaminergic, anti-neoplastic, and antifungal activities. Despite a long list of pharmacological activities and medicinal properties, the flower has been minimally explored for treating various health issues.

Conclusion

The review examined the various active phytoconstituents of palash flowers and their associated medicinal properties. They provide benefits for ailments such as vitiligo and psoriasis, possess anti-cancer properties, exhibit neuroprotective effects, and address reproductive issues. However, the accurate interpretation of the mechanism of the plash flower extract and its phytoconstituents is limited by the absence of pharmacokinetic and pharmacodynamic research. The review directs the formulation of phytopharmaceuticals.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968386977250811094211
2025-08-21
2025-12-14
Loading full text...

Full text loading...

References

  1. Surguchov A. Bernal L. Surguchev A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021 11 5 624 10.3390/biom11050624 33922207
    [Google Scholar]
  2. Butea monosperma (Lam.)Taub. | Species. 2014 Available from: https://indiabiodiversity.org/species/show/31135?lang=en
  3. Sindhia V.R. Bairwa R. Plant review: Butea monosperma. Int J Pharm Clin Res 2010 d 90 94
    [Google Scholar]
  4. Butea monosperma. 2024 Available from: https://efloraofindia.com/2011/02/11/butea-monosperma/
  5. Anuragi H. Ramanan S.S. Arunachalam A. Rajarajan K. Palash (Butea monosperma): A Monograph. ICAR-CAFRI Publication Jhansi 284003, Uttar Pradesh, India 2023 1 28
    [Google Scholar]
  6. Rijal A. Smith-Hall C. Helles F. Non-timber forest product dependency in the Central Himalayan foot hills. Environ. Dev. Sustain. 2011 13 1 121 140 10.1007/s10668‑010‑9252‑x
    [Google Scholar]
  7. Rai A. Singh A.K. Mehrotra S. Multifunctional tropical dry forest systems of India: Current need and future directions. Innovations in Life Science Research NOVA Publisher 2019
    [Google Scholar]
  8. Rai A. Pandey V.C. Singh A.K. Ghoshal N. Singh N. Butea monosperma: A leguminous species for sustainable forestry programmes. Environ. Dev. Sustain. 2021 23 6 8492 8505 10.1007/s10668‑020‑00977‑7
    [Google Scholar]
  9. Gazel M. Hemmati C. Bhat A.I. Rao G.P. Update on phytoplasma diseases associated with medicinal plants and spices in Asian Countries. Phytoplasma Diseases of Major Crops, Trees, and Weeds Academic Press Cambridge, Massachusetts 2023 233 263 10.1016/B978‑0‑323‑91897‑8.00012‑5
    [Google Scholar]
  10. Kumar Das M. Mazumder M. Das S. Das S. Butea monosperma (LAM.) kuntze-A comprehensive review. Int Res J Plant Sci 2011 2 215 219
    [Google Scholar]
  11. Sharma G. The glucosides of Butea monosperma. Phytochemistry 1970 9 10 2231 2235 10.1016/S0031‑9422(00)85390‑X
    [Google Scholar]
  12. Agrawal A.K. Tripathi D.M. Sahai R. Gupta N. Saxena R.P. Puri A. Singh M. Misra R.N. Dubey C.B. Saxena K.C. Management of Giardiasis by a herbal drug ‘Pippali Rasayana’: A clinical study. J. Ethnopharmacol. 1997 56 3 233 236 10.1016/S0378‑8741(97)00037‑8 9201614
    [Google Scholar]
  13. Wagner H. Geyer B. Fiebig M. Isobutrin and butrin, the antihepatotoxic principles of Butea monosperma flowers. Planta Med 1986 2 77 79 3725938
    [Google Scholar]
  14. Mishra M. Shukla Y.N. Kumar S. Euphane triterpenoid and lipid constituents from Butea monosperma. Phytochemistry 2000 54 8 835 838 10.1016/S0031‑9422(00)00136‑9 11014275
    [Google Scholar]
  15. Yerragunta V. Saba A. Sadia A. Begam A. Fatima S.K. Nausheen H. Reddy E.S. Evaluation of in-vitro anti-inflammatory activity of petroleum ether extract of butea monosperma flowers. Res. J. Pharm. Technol. 2016 9 6 755 758 10.5958/0974‑360X.2016.00143.8
    [Google Scholar]
  16. Pal P. Bose S. Phytopharmacological and phytochemical review of Butea monosperma. Int J Res Pharm Biomed Sci 2011 2 3 1374 1378 Available from: https://www.researchgate.net/ publication/268006631_Phytopharmacological_and_Phytochemical_ Review_of_Butea_monosperma
    [Google Scholar]
  17. ] Government of India. The Ayurvedic Pharmacopoeia of India, Part I (Single Drugs), Volume II; Central Council for Research in Ayurvedic Sciences: New Delhi, 1999
    [Google Scholar]
  18. Mazumder P.M. Das M.K. Das S. Butea monosperma (LAM.) Kuntze – A comprehensive review. Int. J. Pharm. Sci. Nanotechnol. 2011 4 2 1390 1393 10.37285/ijpsn.2011.4.2.2
    [Google Scholar]
  19. Muthuswamy R. Senthamarai R. Anatomical investigation of flower of Butea monosperma Lam. Anc. Sci. Life 2014 34 2 73 79 10.4103/0257‑7941.153461 25861140
    [Google Scholar]
  20. Floral Formula Of Fabaceae. Available from: https://sathee.prutor.ai/neet-biology/floral-formula-of-fabaceae/
  21. Chokchaisiri R. Suaisom C. Sriphota S. Chindaduang A. Chuprajob T. Suksamrarn A. Bioactive flavonoids of the flowers of Butea monosperma. Chem. Pharm. Bull. 2009 57 4 428 432 10.1248/cpb.57.428 19336944
    [Google Scholar]
  22. Jhade D. Butea monosperma (Lam.) Taubert: A review. J Pharm Res 2009 2 7 1181 1183
    [Google Scholar]
  23. Thooyavan G. Phytochemical profiling and GC-MS analysis of Butea monosperma seed methanol extract. J. Pharmacogn. Phytochem. 2 5 5 152 157
    [Google Scholar]
  24. Rasheed Z. Akhtar N. Khan A. Khan K.A. Haqqi T.M. Butrin, isobutrin, and butein from medicinal plant Butea monosperma selectively inhibit nuclear factor-kappaB in activated human mast cells: Suppression of tumor necrosis factor-α, interleukin (IL)-6, and IL-8. J. Pharmacol. Exp. Ther. 2010 333 2 354 363 10.1124/jpet.109.165209 20164300
    [Google Scholar]
  25. Wu Y. Chen X. Ge X. Xia H. Wang Y. Su S. Li W. Yang T. Wei M. Zhang H. Gou L. Li J. Jiang X. Yang J. Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines. J. Mol. Med. 2016 94 2 195 206 10.1007/s00109‑015‑1338‑3 26383911
    [Google Scholar]
  26. Xu H. Zheng Q. Tai Z. Jiang W. Xie S. Luo Y. Fei X. Luo Y. Ma X. Kuai L. Zhang Y. Wang R. Li B. Zhu Q. Song J. Formononetin attenuates psoriasiform inflammation by regulating interferon signaling pathway. Phytomedicine 2024 128 155412 10.1016/j.phymed.2024.155412 38579666
    [Google Scholar]
  27. Yadava R.N. Tiwari L. New antifungal flavone glycoside from Butea monosperma O. Kuntze. J. Enzyme Inhib. Med. Chem. 2007 22 4 497 500 10.1080/14756360701211257 17847718
    [Google Scholar]
  28. Maurya R. Yadav D.K. Singh G. Bhargavan B. Narayana Murthy P.S. Sahai M. Singh M.M. Osteogenic activity of constituents from Butea monosperma. Bioorg. Med. Chem. Lett. 2009 19 3 610 613 10.1016/j.bmcl.2008.12.064 19124244
    [Google Scholar]
  29. Proceedings – Section A. 2024 Available from: https://tstwww.ias.ac.in/listing/bibliography/seca/H._Krishnaswamy
  30. Chauhan S.S. Mahish P.K. Flavonoids of the flame of forest- Butea monosperma. Res J Pharm Technol 2020 13 5647 5653 10.5958/0974‑360X.2020.00984.1
    [Google Scholar]
  31. Yadav S. Patgiri B.J. Prajapati P.K. Review of Bio-active Principle of Butea monosperma (Lam.) Kuntze. Ijepp 2016 2015 45 51
    [Google Scholar]
  32. Tiwari P. Jena S. Kumar Sahu P. Acta scientific pharmaceutical sciences butea monosperma: Phytochemistry and pharmacology. phytochemistry and pharmacology. 2019 3 19 26
    [Google Scholar]
  33. Dihydrochalcone. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/64802
  34. Butein. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Butein#section=3D-Conformer
  35. Trihydroxychalcone. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Trihydroxychalcone
  36. Monospermoside. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Monospermoside
  37. Coreopsin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Coreopsin
  38. Isocoreopsin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Isocoreopsin
  39. 7,3’,4’-Trihydroxyflavone. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/7_3_4_-Trihydroxyflavone#section=InChIKey
  40. Butin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Butin#section=2D-Structure
  41. Butrin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Butrin
  42. Isobutrin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Isobutrin#section=InChI
  43. Isomonospermoside. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Isomonospermoside
  44. Liquiritigenin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/114829#section=IUPAC-Name
  45. Formononetin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Formononetin#section=Canonical-SMILES
  46. Afrormosin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Afrormosin#section=IUPAC-Name
  47. Ononin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/442813#section=InChI
  48. Sulfurein. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Sulfurein#section=Structures
  49. Pelargonidin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Pelargonidin
  50. Cyanidin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cyanidin
  51. Lutein. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Lutein
  52. Zeaxanthin. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Zeaxanthin
  53. Chauhan S.S. Mahish P.K. Flavonoids of the flame of forest-butea monosperma. Res J Pharm Technol 2020 13 5647 5653 10.5958/0974‑360X.2020.00984.1
    [Google Scholar]
  54. Burli D. Khade A. Khade A. Khade A. A comprehensive review on Butea monosperma (Lam.) Kuntze. Pharmacogn. Rev. 2007 1
    [Google Scholar]
  55. Gaikwad H.K. Kapare H.S. Gadge S.K. Butea spermatica: Overview. Pharm. Reson. 2022 4 2 53 59
    [Google Scholar]
  56. Singh Rohit Y. Sonali S. Anil Kumar P. Shubham P. Butea monosperma (PALASH): Plant Review with Their Phytoconstituents and Pharmacological applications. IOSR J. Pharm. Biol. Sci. 15 2319 7676
    [Google Scholar]
  57. Sehrawat A. Butein imparts free radical scavenging, anti-oxidative and proapoptotic properties in the flower extracts of Butea monosperma. Biocell 2012 36 2 63 71 23185781
    [Google Scholar]
  58. Sehrawat A. Chemoprevention by Butea monosperma of hepatic carcinogenesis and oxidative damage in male Wistar rats. Asian Pac J Cancer Prev 2006 7 1 140 148 16629533
    [Google Scholar]
  59. Fu N. Liu Z. Antipromoting, antimutagenic and antioxidant action of glycyrrhizae flavonoids. Chin. J. Cancer Res. 1995 7 3 163 167 10.1007/BF03023467
    [Google Scholar]
  60. Yu J.Y. Ha J.Y. Kim K.M. Jung Y.S. Jung J.C. Oh S. Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 2015 20 7 13041 13054 10.3390/molecules200713041 26205049
    [Google Scholar]
  61. Wang A. Lu Y. Shi P. Zhang H. Hydroxyl and hydroperoxyl radicals scavenging by isoliquiritigenin and liquiritigenin: A quantum chemical study. Struct. Chem. 2017 28 4 1181 1186 10.1007/s11224‑017‑0924‑0
    [Google Scholar]
  62. Guo P. Chen W. Song J. Cao W. Tian C. A DFT study of the interaction between butein anion and metal cations (M=Mg2+, Cr2+, Fe2+, and Cu2+): Taking an insight into its chelating property. J. Mol. Struct. THEOCHEM 2008 849 1-3 33 36 10.1016/j.theochem.2007.10.017
    [Google Scholar]
  63. Iontcheva I. Amar S. Zawawi K.H. Kantarci A. Van Dyke T.E. Role for moesin in lipopolysaccharide-stimulated signal transduction. Infect. Immun. 2004 72 4 2312 2320 10.1128/IAI.72.4.2312‑2320.2004 15039356
    [Google Scholar]
  64. Kim Y.W. Zhao R.J. Park S.J. Lee J.R. Cho I.J. Yang C.H. Kim S.G. Kim S.C. Anti‐inflammatory effects of liquiritigenin as a consequence of the inhibition of NF‐κB‐dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 2008 154 1 165 173 10.1038/bjp.2008.79 18332856
    [Google Scholar]
  65. Kim J.Y. Park S.J. Yun K.J. Cho Y.W. Park H.J. Lee K.T. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-κB in RAW 264.7 macrophages. Eur. J. Pharmacol. 2008 584 1 175 184 10.1016/j.ejphar.2008.01.032 18295200
    [Google Scholar]
  66. Li H. Jiang R. Lou L. Jia C. Zou L. Chen M. Formononetin improves the survival of random skin flaps through PI3K/Akt-mediated Nrf2 antioxidant defense system. Front. Pharmacol. 2022 13 901498 10.3389/fphar.2022.901498 35662691
    [Google Scholar]
  67. Ding M. Bao Y. Liang H. Zhang X. Li B. Yang R. Zeng N. Potential mechanisms of formononetin against inflammation and oxidative stress: A review. Front. Pharmacol. 2024 15 1368765 10.3389/fphar.2024.1368765 38799172
    [Google Scholar]
  68. Seo W.Y. Youn G.S. Choi S.Y. Park J. Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes. BMB Rep. 2015 48 9 495 500 10.5483/BMBRep.2015.48.9.259 25541056
    [Google Scholar]
  69. Claassens D.M.F. Vos G.J.A. Bergmeijer T.O. Hermanides R.S. van ’t Hof A.W.J. van der Harst P. Barbato E. Morisco C. Tjon Joe Gin R.M. Asselbergs F.W. Mosterd A. Herrman J.P.R. Dewilde W.J.M. Janssen P.W.A. Kelder J.C. Postma M.J. de Boer A. Boersma C. Deneer V.H.M. ten Berg J.M. A genotype-guided strategy for oral P2Y 12 inhibitors in primary PCI. N. Engl. J. Med. 2019 381 17 1621 1631 10.1056/NEJMoa1907096 31479209
    [Google Scholar]
  70. Krolikiewicz-Renimel I. Michel T. Destandau E. Reddy M. André P. Elfakir C. Pichon C. Protective effect of a Butea monosperma (Lam.) Taub. flowers extract against skin inflammation: Antioxidant, anti-inflammatory and matrix metalloproteinases inhibitory activities. J. Ethnopharmacol. 2013 148 2 537 543 10.1016/j.jep.2013.05.001 23680157
    [Google Scholar]
  71. Ansari M.Y. Khan N.M. Haqqi T.M. A standardized extract of Butea monosperma (Lam.) flowers suppresses the IL-1β-induced expression of IL-6 and matrix-metalloproteases by activating autophagy in human osteoarthritis chondrocytes. Biomed. Pharmacother. 2017 96 198 207 10.1016/j.biopha.2017.09.140 28987943
    [Google Scholar]
  72. Choedon T. Shukla S.K. Kumar V. Chemopreventive and anti-cancer properties of the aqueous extract of flowers of Butea monosperma. J. Ethnopharmacol. 2010 129 2 208 213 10.1016/j.jep.2010.03.011 20307637
    [Google Scholar]
  73. Dwivedi N. Flora G. Kushwaha P. Flora S.J.S. Alpha-lipoic acid protects oxidative stress, changes in cholinergic system and tissue histopathology during co-exposure to arsenic-dichlorvos in rats. Environ. Toxicol. Pharmacol. 2014 37 1 7 23 10.1016/j.etap.2013.10.010 24291368
    [Google Scholar]
  74. Subramaniyan B. Kumar V. Mathan G. Effect of sodium salt of Butrin, a novel compound isolated from Butea monosperma flowers on suppressing the expression of SIRT1 and Aurora B kinase-mediated apoptosis in colorectal cancer cells. Biomed. Pharmacother. 2017 90 402 413 10.1016/j.biopha.2017.03.086 28390310
    [Google Scholar]
  75. Ong SKL Shanmugam MK Fan L Fraser SE Arfuso F Ahn KS Focus on formononetin: Anticancer potential and molecular targets. Cancers 2019 11 5 611 10.3390/cancers11050611 31052435
    [Google Scholar]
  76. Subramaniyan B. Polachi N. Mathan G. Isocoreopsin: An active constituent of n-butanol extract of Butea monosperma flowers against colorectal cancer (CRC). J. Pharm. Anal. 2016 6 5 318 325 10.1016/j.jpha.2016.04.007 29403999
    [Google Scholar]
  77. Semwal R.B. Semwal D.K. Combrinck S. Viljoen A. Butein: From ancient traditional remedy to modern nutraceutical. Phytochem. Lett. 2015 11 188 201 10.1016/j.phytol.2014.12.014
    [Google Scholar]
  78. Ansari M.Y. Haynie S. Haqqi T.M. Indian medicinal plant butea monosperma flower extract and its bioactive constituent butein activates autophagy in human oa chondrocytes under pathological conditions. Osteoarthritis Cartilage 2016 24 S350 S351 10.1016/j.joca.2016.01.631
    [Google Scholar]
  79. Yang P.Y. Hu D.N. Kao Y.H. Lin I.C. Liu F.S. Butein induces apoptotic cell death of human cervical cancer cells. Oncol. Lett. 2018 16 5 6615 6623 10.3892/ol.2018.9426 30344763
    [Google Scholar]
  80. Mohammad Munawar T. Aruna K. Srinu Venkat Rao R. Evaluation of antibacterial and antioxidant activity of ethanolic extracts of butea monosperma. World J. Pharm. Res. 2018 7 730 740 10.20959/WJPR20183‑10833
    [Google Scholar]
  81. de Barros Machado T. Leal I.C.R. Kuster R.M. Amaral A.C.F. Kokis V. de Silva M.G. dos Santos K.R.N. Brazilian phytopharmaceuticals – Evaluation against hospital bacteria. Phytother. Res. 2005 19 6 519 525 10.1002/ptr.1696 16114081
    [Google Scholar]
  82. Brown A.K. Papaemmanouil A. Bhowruth V. Bhatt A. Dover L.G. Besra G.S. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology 2007 153 10 3314 3322 10.1099/mic.0.2007/009936‑0 17906131
    [Google Scholar]
  83. Jain S. Dubey P.K. Butea monosperma (Lam.) Taub: Review on its chemistry, morphology, ethnomedical uses, phytochemistry and pharmacological activities. J. Drug Deliv. Ther. 2023 13 4 137 144 10.22270/jddt.v13i4.5782
    [Google Scholar]
  84. DAVE K.M. Antimicrobial activity and phytochemical study of plant parts of butea monosperma. J. Drug Deliv. Ther. 2019 9 344 348 10.22270/jddt.v9i4‑A.3435
    [Google Scholar]
  85. Kasture V.S. Chopde C.T. Deshmukh V.K. Anticonvulsive activity of Albizzia lebbeck, Hibiscus rosa sinesis and Butea monosperma in experimental animals. J. Ethnopharmacol. 2000 71 1-2 65 75 10.1016/S0378‑8741(99)00192‑0 10904147
    [Google Scholar]
  86. Sharma N. Shukla S. Hepatoprotective potential of aqueous extract of Butea monosperma against CCl4 induced damage in rats. Exp. Toxicol. Pathol. 2011 63 7-8 671 676 10.1016/j.etp.2010.05.009 20561774
    [Google Scholar]
  87. Velis H. Kasture A. Maxia A. Sanna C. Mohan M. Kasture S. Antidopaminergic activity of isoflavone isolated from Butea monosperma flowers. Planta Med. 2008 74 9 159 168 10.1055/s‑0028‑1084252
    [Google Scholar]
  88. Kim S. Yoon H. Park S.K. Butein increases resistance to oxidative stress and lifespan with positive effects on the risk of age-related diseases in Caenorhabditis elegans. Antioxidants 2024 13 2 155 10.3390/antiox13020155 38397753
    [Google Scholar]
  89. Bhargava S.K. Estrogenic and postcoital anticonceptive activity in rats of butin isolated from Butea monosperma seed. J. Ethnopharmacol. 1986 18 1 95 101 10.1016/0378‑8741(86)90046‑2 3821138
    [Google Scholar]
  90. Somani R. Kasture S. Singhai A.K. Antidiabetic potential of Butea monosperma in rats. Fitoterapia 2006 77 2 86 90 10.1016/j.fitote.2005.11.003 16376023
    [Google Scholar]
  91. Samad M.B. Kabir A.U. D’Costa N.M. Akhter F. Ahmed A. Jahan M.R. Hannan J.M. Ethanolic extract of butea monosperma leaves elevate blood insulin level in type 2 diabetic rats, stimulate insulin secretion in isolated rat islets, and enhance hepatic glycogen formation. Evid. Based Complement. Alternat. Med. 2014 2014 356290 10.1155/2014/356290 24860609
    [Google Scholar]
  92. Divya B.T. Mini S. Ethanol extract of Butea monosperma bark modulates dyslipidemia in streptozotocin-induced diabetic rats. Pharm. Biol. 2014 52 8 1021 1027 10.3109/13880209.2013.876055 24617860
    [Google Scholar]
  93. Zhao L. Han J. Liu J. Fan K. Yuan T. Han J. Chen L. Zhang S. Zhao M. Duan J. A novel formononetin derivative promotes anti-ischemic effects on acute ischemic injury in mice. Front. Microbiol. 2021 12 786464 10.3389/fmicb.2021.786464 34970243
    [Google Scholar]
  94. Li J. Mou Y. Cardioprotective effects of metformin. Zhongguo Jiceng Yiyao 2020 27 2424 2426 10.3760/cma.j.issn.1008‑6706.2020.19.028
    [Google Scholar]
  95. Kanda N. Psoriasis: Pathogenesis, comorbidities, and therapy updated. Int. J. Mol. Sci. 2021 22 6 2979 10.3390/ijms22062979 33804147
    [Google Scholar]
  96. Marchioro H.Z. Silva de Castro C.C. Fava V.M. Sakiyama P.H. Dellatorre G. Miot H.A. Update on the pathogenesis of vitiligo. An. Bras. Dermatol. 2022 97 4 478 490 10.1016/j.abd.2021.09.008 35643735
    [Google Scholar]
  97. Dwivedi M. Laddha N.C. Shah K. Shah B.J. Begum R. Involvement of interferon-gamma genetic variants and intercellular adhesion molecule-1 in onset and progression of generalized vitiligo. J. Interferon Cytokine Res. 2013 33 11 646 659 10.1089/jir.2012.0171 23777204
    [Google Scholar]
  98. Qu Y. Li D. Xiong H. Shi D. Transcriptional regulation on effector T cells in the pathogenesis of psoriasis. Eur. J. Med. Res. 2023 28 1 182 10.1186/s40001‑023‑01144‑0 37270497
    [Google Scholar]
  99. Mak R.K.H. Hundhausen C. Nestle F.O. Progress in understanding the immunopathogenesis of psoriasis. Actas Dermosifiliogr. 2009 100 Suppl 2 2 13 10.1016/S0001‑7310(09)73372‑1 20096156
    [Google Scholar]
  100. Liu X.Q. Zhou P.L. Yin X.Y. Wang A.X. Wang D.H. Yang Y. Liu Q. Circulating inflammatory cytokines and psoriasis risk: A systematic review and meta-analysis. PLoS One 2023 18 10 0293327 10.1371/journal.pone.0293327 37883350
    [Google Scholar]
  101. Bonifati C. Carducci M. Fei P.C. Trento E. Sacerdoti G. Fazio M. Ameglio F. Correlated increases of tumour necrosis factor-alpha, interleukin-6 and granulocyte monocyte-colony stimulating factor levels in suction blister fluids and sera of psoriatic patients relationships with disease severity. Clin. Exp. Dermatol. 1994 19 5 383 387 10.1111/j.1365‑2230.1994.tb02687.x 7955493
    [Google Scholar]
  102. Singh M. Mansuri M.S. Kadam A. Palit S.P. Dwivedi M. Laddha N.C. Begum R. Tumor Necrosis Factor-alpha affects melanocyte survival and melanin synthesis via multiple pathways in vitiligo. Cytokine 2021 140 155432 10.1016/j.cyto.2021.155432 33517195
    [Google Scholar]
  103. Gençoğlu Ş. Kanat Z. The role of long pentraxin 3 and nuclear factor kappa beta in vitiligo occurrence and disease severity. Dermatol. Ther. 2023 2023 1 6303637 10.1155/2023/6303637
    [Google Scholar]
  104. Chadeganipour M. Shadzi S. Mohammadi R. Fungal infections among psoriatic patients: Etiologic agents, comorbidities, and vulnerable population. Autoimmune Dis. 2021 2021 1 7 10.1155/2021/1174748 34567800
    [Google Scholar]
  105. Batista B.G. Chaves M.A. Reginatto P. Saraiva O.J. Fuentefria A.M. Human fusariosis: An emerging infection that is difficult to treat. Rev. Soc. Bras. Med. Trop. 2020 53 20200013 10.1590/0037‑8682‑0013‑2020 32491099
    [Google Scholar]
  106. What is Penicillium digitatum? 2024 Available from: https://library.bustmold.com/penicillium/penicillium-digitatum/
  107. Lv X. Zhao S. Ning Z. Zeng H. Shu Y. Tao O. Xiao C. Lu C. Liu Y. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem. Cent. J. 2015 9 1 68 10.1186/s13065‑015‑0145‑9 26705419
    [Google Scholar]
  108. Mtewa A.G. Egbuna C. Beressa T.B. Ngwira K.J. Lampiao F. Phytopharmaceuticals: Efficacy, safety, and regulation. Preparation of Phytopharmaceuticals for the Management of Disorders Academic Press Cambridge, Massachusetts 2021 25 38 10.1016/B978‑0‑12‑820284‑5.00010‑1
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968386977250811094211
Loading
/content/journals/ccb/10.2174/0122127968386977250811094211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test