Skip to content
2000
image of Therapeutic Potential of the Plants Ailanthus Excelsus, Allium Sativum, and Cymbopogon Flexuosus in the Treatment of Hyperlipidemia and 
Oxidative Stress: An Overview

Abstract

Cardiovascular disease (CVDs) has a major effect on global mortality rates. Increased blood lipids have been associated with the development of cardiovascular disease, which is an urgent health issue. Controlling blood lipid levels can reduce the risk of cardiovascular disease. Hyperlipidemia is a group of genetic and acquired disorders that cause high levels of lipids in the body. The condition is characterized by an abnormal increase in blood lipid levels, including cholesterol and triglycerides. Statins are commonly used to treat hyperlipidemia. Constraints exist in the utilization of these therapies, notwithstanding their efficacy. Statin therapy may face treatment resistance, leading to poor responses in some patients. Medication discontinuation may result from intolerance caused by adverse effects. The study indicates that boosting antioxidant levels in individuals with elevated lipid levels could potentially aid in halting disease progression. The study emphasizes the significance of maintaining a proper equilibrium of antioxidants in the body to avoid the development of hyperlipidemia. An inherent mechanism in the body counters oxidative damage to plasma lipoproteins. Oxidative stress can occur due to alterations in system activity or ROS generation. Cellular dysfunction and health problems can be caused by ROS. Achieving equilibrium between oxidants and antioxidants is essential for mitigating health hazards associated with oxidative stress. Plants with medicinal properties have been effective, well-tolerated, and economically valuable in treating various ailments. Studies suggest that medicinal plants may have comparable effectiveness to traditional medications, with fewer negative side effects. Natural options have the potential to manage dyslipidemia and oxidative stress.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968366669250703194520
2025-07-17
2025-10-14
Loading full text...

Full text loading...

References

  1. Brouwers M.C.G.J. van Greevenbroek M.M.J. Stehouwer C.D.A. de Graaf J. Stalenhoef A.F.H. The genetics of familial combined hyperlipidaemia. Nat. Rev. Endocrinol. 2012 8 6 352 362 10.1038/nrendo.2012.15 22330738
    [Google Scholar]
  2. Hill M.F. Bordoni B. 2023 https://www.ncbi. nlm.nih.gov/books/NBK559182/
  3. Nelson R.H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care 2013 40 1 195 211 10.1016/j.pop.2012.11.003 23402469
    [Google Scholar]
  4. Ezeh K.J. Ezeudemba O. Hyperlipidemia: A Review of the Novel Methods for the Management of Lipids. Cureus 2021 13 7 e16412 10.7759/cureus.16412 34401212
    [Google Scholar]
  5. Karr S. Epidemiology and management of hyperlipidemia. Am. J. Manag. Care 2017 23 9 S139 S148.(Suppl.) 28978219
    [Google Scholar]
  6. Araujo F.B. Barbosa D.S. Hsin C.Y. Maranhão R.C. Abdalla D.S.P. Evaluation of oxidative stress in patients with hyperlipidemia. Atherosclerosis 1995 117 1 61 71 10.1016/0021‑9150(94)05558‑Z 8546756
    [Google Scholar]
  7. Yang R.L. Shi Y.H. Hao G. Li W. Le G.W. Increasing Oxidative Stress with Progressive Hyperlipidemia in Human: Relation between Malondialdehyde and Atherogenic Index. J. Clin. Biochem. Nutr. 2008 43 3 154 158 10.3164/jcbn.2008044 19015749
    [Google Scholar]
  8. Durrington P. Dyslipidaemia. Lancet 2003 362 9385 717 731 10.1016/S0140‑6736(03)14234‑1 12957096
    [Google Scholar]
  9. Pirillo A. Casula M. Olmastroni E. Norata G.D. Catapano A.L. Global epidemiology of dyslipidaemias. Nat. Rev. Cardiol. 2021 18 10 689 700 10.1038/s41569‑021‑00541‑4 33833450
    [Google Scholar]
  10. Dumitrescu L. Carty C.L. Taylor K. Schumacher F.R. Hindorff, LA Genetic Determinants of Lipid Traits in Diverse Populations from the Population Architecture using Genomics and Epidemiology (PAGE) Study. PLoS Genet. 2011 7 6 e1002138 10.1371/journal.pgen.1002138
    [Google Scholar]
  11. Dumitrescu L. Carty C.L. Taylor K. Schumacher F.R. Hindorff L.A. Ambite J.L. Anderson G. Best L.G. Brown-Gentry K. Bůžková P. Carlson C.S. Cochran B. Cole S.A. Devereux R.B. Duggan D. Eaton C.B. Fornage M. Franceschini N. Haessler J. Howard B.V. Johnson K.C. Laston S. Kolonel L.N. Lee E.T. MacCluer J.W. Manolio T.A. Pendergrass S.A. Quibrera M. Shohet R.V. Wilkens L.R. Haiman C.A. Le Marchand L. Buyske S. Kooperberg C. North K.E. Crawford D.C. Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study. PLoS Genet. 2011 7 6 e1002138 10.1371/journal.pgen.1002138 21738485
    [Google Scholar]
  12. Bentley A.R. Chen G. Shriner D. Doumatey A.P. Zhou J. Huang H. Mullikin J.C. Blakesley R.W. Hansen N.F. Bouffard G.G. Cherukuri P.F. Maskeri B. Young A.C. Adeyemo A. Rotimi C.N. Gene-based sequencing identifies lipid-influencing variants with ethnicity-specific effects in African Americans. PLoS Genet. 2014 10 3 e1004190 10.1371/journal.pgen.1004190 24603370
    [Google Scholar]
  13. Liao P.J. Xie R.B. Yin R.X. Wei D.X. Huang J. Huang F. Li H. Lin W.X. Wu J.Z. Pan S.L. Serum lipid profiles, the prevalence of dyslipidemia and the risk factors in two isolated Chinese minorities. Int. J. Clin. Exp. Med. 2015 8 10 19200 19211 26770556
    [Google Scholar]
  14. Raal F.J. Alsheikh-Ali A.A. Omar M.I. Rashed W. Hamoui O. Kane A. Alami M. Abreu P. Mashhoud W.M. Cardiovascular risk factor burden in Africa and the Middle East across country income categories: a post hoc analysis of the cross-sectional Africa Middle East Cardiovascular Epidemiological (ACE) study. Arch. Public Health 2018 76 1 15 10.1186/s13690‑018‑0257‑5 29449941
    [Google Scholar]
  15. Tabatabaei-Malazy O. Qorbani M. Samavat T. Sharifi F. Larijani B. Fakhrzadeh H. Prevalence of dyslipidemia in iran: a systematic review and meta-analysis study. Int. J. Prev. Med. 2014 5 4 373 393 24829725
    [Google Scholar]
  16. Insull W. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med. 2009 122 1 S3 S14.(Suppl.) 10.1016/j.amjmed.2008.10.013 19110086
    [Google Scholar]
  17. Bentzon J.F. Otsuka F. Virmani R. Falk E. Mechanisms of plaque formation and rupture. Circ. Res. 2014 114 12 1852 1866 10.1161/CIRCRESAHA.114.302721 24902970
    [Google Scholar]
  18. Förstermann U. Xia N. Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 2017 120 4 713 735 10.1161/CIRCRESAHA.116.309326 28209797
    [Google Scholar]
  19. Badimon L. Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014 276 6 618 632 10.1111/joim.12296 25156650
    [Google Scholar]
  20. Duncker D.J. Koller A. Merkus D. Canty J.M. Regulation of coronary blood flow in health and ischemic heart disease. Prog. Cardiovasc. Dis. 2015 57 5 409 422 10.1016/j.pcad.2014.12.002 25475073
    [Google Scholar]
  21. Sundström J. Gulliksson G. Wirén M. Synergistic effects of blood pressure-lowering drugs and statins: systematic review and meta-analysis. BMJ Evid. Based Med. 2018 23 2 64 69 10.1136/bmjebm‑2017‑110888 29595132
    [Google Scholar]
  22. Hegele R.A. Tsimikas S. Lipid-Lowering Agents. Circ. Res. 2019 124 3 386 404 10.1161/CIRCRESAHA.118.313171 30702996
    [Google Scholar]
  23. Karou S.D. Tchacondo T. Djikpo Tchibozo M.A. Abdoul-Rahaman S. Anani K. Koudouvo K. Batawila K. Agbonon A. Simpore J. de Souza C. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm. Biol. 2011 49 12 1286 1297 10.3109/13880209.2011.621959 22077164
    [Google Scholar]
  24. Baharvand-Ahmadi B. Bahmani M. Eftekhari Z. Jelodari M. Mirhoseini M. Overview of medicinal plants used for cardiovascular system disorders and diseases in ethnobotany of different areas in Iran. J. HerbMed Pharmacol. 2016 5 39 44
    [Google Scholar]
  25. Shaito A. Thuan D.T.B. Phu H.T. Nguyen T.H.D. Hasan H. Halabi S. Abdelhady S. Nasrallah G.K. Eid A.H. Pintus G. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front. Pharmacol. 2020 11 422 10.3389/fphar.2020.00422 32317975
    [Google Scholar]
  26. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014 4 177 10.3389/fphar.2013.00177 24454289
    [Google Scholar]
  27. Fitzgerald M. Heinrich M. Booker A. Medicinal plant analysis: a historical and regional discussion of emergent complex techniques. Front. Pharmacol. 2020 10 1480 10.3389/fphar.2019.01480 31998121
    [Google Scholar]
  28. Lobo V. Patil A. Phatak A. Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010 4 8 118 126 10.4103/0973‑7847.70902 22228951
    [Google Scholar]
  29. Kirichenko T.V. Sukhorukov V.N. Markin A.M. Nikiforov N.G. Liu P.Y. Sobenin I.A. Tarasov V.V. Orekhov A.N. Aliev G. Medicinal plants as a potential and successful treatment option in the context of atherosclerosis. Front. Pharmacol. 2020 11 403 10.3389/fphar.2020.00403 32322201
    [Google Scholar]
  30. Song L. Zhang J. Lai R. Li Q. Ju J. Xu H. Chinese herbal medicines and active metabolites: potential antioxidant treatments for atherosclerosis. Front. Pharmacol. 2021 12 675999 10.3389/fphar.2021.675999 34054550
    [Google Scholar]
  31. Gonçalves A.C. Nunes A.R. Falcão A. Alves G. Silva L.R. Dietary effects of anthocyanins in human health: a comprehensive review. Pharmaceuticals (Basel) 2021 14 7 690 10.3390/ph14070690 34358116
    [Google Scholar]
  32. Sharma P. Kumar Verma P. Kishore Pankaj N. Agarwal S. The phytochemical ingredients and therapeutic potential of Cynara scolymus L. Pharmaceutical and Biomedical Research 2021 7 141 160 10.18502/pbr.v7i3.7696
    [Google Scholar]
  33. Zayed A. Serag A. Farag M.A. Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J. Funct. Foods 2020 69 103937 10.1016/j.jff.2020.103937
    [Google Scholar]
  34. de Falco B. Incerti G. Amato M. Lanzotti V. Artichoke: botanical, agronomical, phytochemical, and pharmacological overview. Phytochem. Rev. 2015 14 6 993 1018 10.1007/s11101‑015‑9428‑y
    [Google Scholar]
  35. Jalili C. Moradi S. Babaei A. Boozari B. Asbaghi O. Lazaridi A.V. Hojjati Kermani M.A. Miraghajani M. Effects of Cynara scolymus L. on glycemic indices:A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2020 52 102496 10.1016/j.ctim.2020.102496 32951745
    [Google Scholar]
  36. Shahinfar H. Bazshahi E. Amini M.R. Payandeh N. Pourreza S. Noruzi Z. Shab-Bidar S. Effects of artichoke leaf extract supplementation or artichoke juice consumption on lipid profile: A systematic review and dose–response meta‐analysis of randomized controlled trials. Phytother. Res. 2021 35 12 6607 6623 10.1002/ptr.7247 34569671
    [Google Scholar]
  37. Xia N. Pautz A. Wollscheid U. Reifenberg G. Förstermann U. Li H. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells. Molecules 2014 19 3 3654 3668 10.3390/molecules19033654 24662080
    [Google Scholar]
  38. Santos H.O. Bueno A.A. Mota J.F. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol. Res. 2018 137 170 178 10.1016/j.phrs.2018.10.007 30308247
    [Google Scholar]
  39. Riva A. Petrangolini G. Allegrini P. Perna S. Giacosa A. Peroni G. Faliva M.A. Naso M. Rondanelli M. Artichoke and bergamot phytosome alliance: a randomized double blind clinical trial in mild hypercholesterolemia. Nutrients 2021 14 1 108 10.3390/nu14010108 35010984
    [Google Scholar]
  40. Frigerio J. Tedesco E. Benetti F. Insolia V. Nicotra G. Mezzasalma V. Pagliari S. Labra M. Campone L. Anticholesterolemic activity of three vegetal extracts (artichoke, caigua, and fenugreek) and their unique blend. Front. Pharmacol. 2021 12 726199 10.3389/fphar.2021.726199 34887750
    [Google Scholar]
  41. Sahebkar A. Pirro M. Banach M. Mikhailidis D.P. Atkin S.L. Cicero A.F.G. Lipid-lowering activity of artichoke extracts: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018 58 15 2549 2556 10.1080/10408398.2017.1332572 28609140
    [Google Scholar]
  42. Wittemer S.M. Ploch M. Windeck T. Müller S.C. Drewelow B. Derendorf H. Veit M. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine 2005 12 1-2 28 38 10.1016/j.phymed.2003.11.002 15693705
    [Google Scholar]
  43. Rocchetti G. Giuberti G. Lucchini F. Lucini L. Polyphenols and sesquiterpene lactones from artichoke heads: modulation of starch digestion, gut bioaccessibility, and bioavailability following in vitro digestion and large intestine fermentation. Antioxidants 2020 9 4 306 10.3390/antiox9040306 32290151
    [Google Scholar]
  44. Shimoda H. Ninomiya K. Nishida N. Yoshino T. Morikawa T. Matsuda H. Yoshikawa M. Anti-Hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg. Med. Chem. Lett. 2003 13 2 223 228 10.1016/S0960‑894X(02)00889‑2 12482428
    [Google Scholar]
  45. Elsebai M.F. Mocan A. Atanasov A.G. Cynaropicrin: a comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front. Pharmacol. 2016 7 472 10.3389/fphar.2016.00472 28008316
    [Google Scholar]
  46. Tanaka Y.T. Tanaka K. Kojima H. Hamada T. Masutani T. Tsuboi M. Akao Y. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg. Med. Chem. Lett. 2013 23 2 518 523 10.1016/j.bmcl.2012.11.034 23232059
    [Google Scholar]
  47. Javanmardi M.A. Mohammad Shahi M. Seyedian S.S. Haghighizadeh M.H. Effects of phytosterol supplementation on serum levels of lipid profiles, liver enzymes, inflammatory markers, adiponectin, and leptin in patients affected by nonalcoholic fatty liver disease: a double-blind, placebo-controlled, randomized clinical trial. J. Am. Coll. Nutr. 2018 16 1 8 29768109
    [Google Scholar]
  48. Li X. Xin Y. Mo Y. Marozik P. He T. Guo H. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules 2022 27 2 523 10.3390/molecules27020523 35056839
    [Google Scholar]
  49. Giacosa A. Guido D. Grassi M. Riva A. Morazzoni P. Bombardelli E. Perna S. Faliva M.A. Rondanelli M. The effect of ginger (Zingiber officinalis) and artichoke (Cynara cardunculus) extract supplementation on functional dyspepsia: a randomised, double-blind, and placebo-controlled clinical trial. Evid. Based Complement. Alternat. Med. 2015 2015 1 9 10.1155/2015/915087 25954317
    [Google Scholar]
  50. Bent S. Ko R. Commonly used herbal medicines in the United States: a review. Am. J. Med. 2004 116 7 478 485 10.1016/j.amjmed.2003.10.036 15047038
    [Google Scholar]
  51. Bora K.S. Sharma A. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm. Biol. 2011 49 2 211 220 10.3109/13880209.2010.504732 20969516
    [Google Scholar]
  52. Adamik K. Brauns F.E. Ailanthus glendulosa (Tree-of- heaven) as a pulpwood. Tappi 1957 40 522 527
    [Google Scholar]
  53. Government of India. (1990-2023). The Ayurvedic Pharmacopoeia of India (Vols. I–IX, Parts I & II). Ministry of AYUSH, Department of Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homoeopathy (AYUSH), New Delhi. 1990
    [Google Scholar]
  54. Srivastava V. Dubey S. Ailanthus Excelsa Roxb (Maha neem)- An holistic insight of the multipurpose tree. Int. J. Pharm. Sci. Res. 2021 12 5 2589 2595
    [Google Scholar]
  55. Ogura M. Cordell G.A. Kinghorn A.D. Farnsworth N.R. Potential anticancer agents vi. Constituents of Ailanthus excelsa (Simaroubaceae). Lloydia 1977 40 6 579 584 600027
    [Google Scholar]
  56. Sherman M. Borris R.P. Ogura M. Cordell G.A. Farnsworth N.R. 3S,24S,25-Trihydroxytirucall-7-ene from Ailanthus excelsa. Phytochemistry 1980 19 5 1499 1501 10.1016/S0031‑9422(00)82109‑3
    [Google Scholar]
  57. Joshi B.C. Pandey A. Prakash Sharma R. Khare A. Quassinoids from Ailanthus excelsa. Phytochemistry 2003 62 4 579 584 10.1016/S0031‑9422(02)00493‑4 12560029
    [Google Scholar]
  58. Nag A. Matai S. Ailanthus excelsa Roxb. (Simaroubacae), a promising source of leaf protein. J. Agric. Food Chem. 1994 42 5 1115 1117 10.1021/jf00041a013
    [Google Scholar]
  59. Joshi B.C. Pandey A. Chaurasia L. Pal M. Sharma R.P. Khare A. Antifungal activity of the stem bark of Ailanthus excelsa. Fitoterapia 2003 74 7-8 689 691 10.1016/S0367‑326X(03)00160‑6 14630175
    [Google Scholar]
  60. Dhanasekaran S. Suresh B. Sethuraman M. Rajan S. Dubey R. Antifertility activity of Ailanthus excelsa Linn. in female albino rats. Indian J. Exp. Biol. 1993 31 4 384 385 8359839
    [Google Scholar]
  61. Shrimali M. Jain D.C. Darokar M.P. Sharma R.P. Antibacterial activity of Ailanthus excelsa (Roxb). Phytother. Res. 2001 15 2 165 166 10.1002/ptr.706 11268120
    [Google Scholar]
  62. Sapkal P.R. Tatiya A.U. Firke S.D. Redasani V.K. Gurav S.S. Ayyanar M. Jamkhande P.G. Surana S.J. Mutha R.E. Kalaskar M.G. Phytochemical profile, antioxidant, cytotoxic and anti-inflammatory activities of stem bark extract and fractions of Ailanthus excelsa Roxb.: In vitro, in vivo and in silico approaches. Heliyon 2023 9 5 e15952 10.1016/j.heliyon.2023.e15952 37187902
    [Google Scholar]
  63. Said A. Tundis R. Hawas U.W. El-Kousy S.M. Rashed K. Menichini F. Bonesi M. In vitro Antioxidant and Antiproliferative Activities of Flavonoids from Ailanthus excelsa (Roxb.) (Simaroubaceae) Leaves. Z. Naturforsch. C 2010 65 3-4 180 186 10.1515/znc‑2010‑3‑403
    [Google Scholar]
  64. Vaibhav S. Subodh D. Vigyan S. Hypolipidemic activity of stem bark of Ailanthus excelsa Roxb in Triton WR 1339 induced hyperlipidemic rats. Research Journal of Pharmacy and Technology 2019 12 3 1338 1342 10.5958/0974‑360X.2019.00224.5
    [Google Scholar]
  65. KUMARI, ARUNA Evaluation of total phenolic, flavonoid content, and dpph free radical scavenging activity of methanolic extract of ailanthus excelsa ROXB. Asian journal of pharmaceutical research 2017 10 4 1 9
    [Google Scholar]
  66. Subroto E. Cahyana Y. Tensiska M. Mahani; Filianty, F.; Lembong, E.; Wulandari, E.; Kurniati, D.; Saputra, R.A.; Faturachman, F. Bioactive compounds in garlic (Allium sativum L.) as a source of antioxidants and its potential to improve the immune system: a review. Food Res. 2021 5 6 1 11 10.26656/fr.2017.5(6).042
    [Google Scholar]
  67. Khare C.P. Indian Medicinal Plants. An Illustrated Dictionary. United States Springer 2007 10.1007/978‑0‑387‑70638‑2
    [Google Scholar]
  68. Tudu C.K. Dutta T. Ghorai M. Biswas P. Samanta D. Oleksak P. Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front. Nutr. 2022 9 949554 10.3389/fnut.2022.929554
    [Google Scholar]
  69. Direct, S. Allium sativum. 2017 https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/allium-sativum
  70. Government of India. (1990-2023). The Ayurvedic Pharmacopoeia of India (Vols. I–IX, Parts I & II). Ministry of AYUSH, Department of Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homoeopathy (AYUSH), New Delhi. 2013 1 132 147
    [Google Scholar]
  71. Al-Snafi A. Pharmacological effects of Allium species grown in Iraq. An overview. Int. J. Pharm. Health. Care Res. 2013 1 132 147
    [Google Scholar]
  72. El-Saber Batiha G. Magdy Beshbishy A. Wasef G. L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020 12 3 872 10.3390/nu12030872 32213941
    [Google Scholar]
  73. Wallock-Richards D. Doherty C.J. Doherty L. Clarke D.J. Place M. Govan J.R.W. Campopiano D.J. Garlic revisited: antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS One 2014 9 12 e112726 10.1371/journal.pone.0112726 25438250
    [Google Scholar]
  74. Mikaili P. Maadirad S. Moloudizargari M. Aghajanshakeri S. Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran. J. Basic Med. Sci. 2013 16 10 1031 1048 24379960
    [Google Scholar]
  75. Pârvu M. Moţ C.A. Pârvu A.E. Mircea C. Stoeber L. Roşca-Casian O. Ţigu A.B. Allium sativum extract chemical composition, antioxidant activity and antifungal effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa causing onychomycosis. Molecules 2019 24 21 3958 10.3390/molecules24213958 31683743
    [Google Scholar]
  76. Fufa B.K. Anti-bacterial and anti-fungal properties of garlic extract (Allium sativum): A review. Microbiol. Res. J. Int. 2019 28 1 5 10.9734/mrji/2019/v28i330133
    [Google Scholar]
  77. Gruhlke M. Nicco C. Batteux F. Slusarenko A. The effects of allicin, a reactive sulfur species from garlic, on a selection of mammalian cell lines. Antioxidants 2016 6 1 1 10.3390/antiox6010001 28035949
    [Google Scholar]
  78. Sawai T. Itoh Y. Ozaki H. Isoda N. Okamoto K. Kashima Y. Kawaoka Y. Takeuchi Y. Kida H. Ogasawara K. Induction of cytotoxic T‐lymphocyte and antibody responses against highly pathogenic avian influenza virus infection in mice by inoculation of apathogenic H5N1 influenza virus particles inactivated with formalin. Immunology 2008 124 2 155 165 10.1111/j.1365‑2567.2007.02745.x 18205793
    [Google Scholar]
  79. Abdel-Hafeez E.H. Ahmad A.K. Kamal A.M. Abdellatif M.Z.M. Abdelgelil N.H. In vivo antiprotozoan effects of garlic (Allium sativum) and ginger (Zingiber officinale) extracts on experimentally infected mice with Blastocystis spp. Parasitol. Res. 2015 114 9 3439 3444 10.1007/s00436‑015‑4569‑x 26085068
    [Google Scholar]
  80. Hazaa I.K. Al-Taai N.A. Khalil N.K. Zakri A.M. Efficacy of garlic and onion oils on murin experimental Cryptosporidium parvum infection. Al-Anbar. J. Vet. Sci. 2016 9 69 74
    [Google Scholar]
  81. Jang H.J. Lee H.J. Yoon D.K. Ji D.S. Kim J.H. Lee C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2018 27 1 219 225 10.1007/s10068‑017‑0246‑4 30263743
    [Google Scholar]
  82. Liu J. Guo W. Yang M. Liu L. Huang S. Tao L. Zhang F. Liu Y. Investigation of the dynamic changes in the chemical constituents of Chinese “Laba” garlic during traditional processing. RSC Advances 2018 8 73 41872 41883 10.1039/C8RA09657K 35558794
    [Google Scholar]
  83. Ahmad T.A. El-Sayed B.A. El-Sayed L.H. Development of immunization trials against Eimeria spp. Trials Vaccinol. 2016 5 38 47 10.1016/j.trivac.2016.02.001
    [Google Scholar]
  84. Abdel-Daim M.M. Abushouk A.I. Bungău S.G. Bin-Jumah M. El-kott A.F. Shati A.A. Aleya L. Alkahtani S. Protective effects of thymoquinone and diallyl sulphide against malathion-induced toxicity in rats. Environ. Sci. Pollut. Res. Int. 2020 27 10 10228 10235 10.1007/s11356‑019‑07580‑y 31933077
    [Google Scholar]
  85. Shang A. Cao S.Y. Xu X.Y. Gan R.Y. Tang G.Y. Corke H. Mavumengwana V. Li H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019 8 7 246 10.3390/foods8070246 31284512
    [Google Scholar]
  86. Li Z. Le W. Cui Z. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Discov. 2018 4 1 108 10.1038/s41420‑018‑0122‑x 30479841
    [Google Scholar]
  87. Qidwai W. Ashfaq T. Role of garlic usage in cardiovascular disease prevention: an evidence-based approach. Evid. Based Complement. Alternat. Med. 2013 2013 1 9 10.1155/2013/125649 23690831
    [Google Scholar]
  88. Sobenin I.A. Nedosugova L.V. Filatova L.V. Balabolkin M.I. Gorchakova T.V. Orekhov A.N. Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study. Acta Diabetol. 2008 45 1 1 6 10.1007/s00592‑007‑0011‑x 17823766
    [Google Scholar]
  89. Sobenin I.A. Pryanishnikov V.V. Kunnova L.M. Rabinovich Y.A. Martirosyan D.M. Orekhov A.N. The effects of time-released garlic powder tablets on multifunctional cardiovascular risk in patients with coronary artery disease. Lipids Health Dis. 2010 9 1 119 10.1186/1476‑511X‑9‑119 20958974
    [Google Scholar]
  90. Iweala E.E. Akubugwo E.I. Okeke C.U. Effect of ethanolic extracts of Allium sativum Linn. Liliaceae on serum cholesterol and blood sugar levels of alibino rabbits. Plant. Prod Res. J. 2005 9 14 18
    [Google Scholar]
  91. Ashraf R. Aamir K. Shaikh A.R. Ahmed T. Effects of garlic on dyslipidemia in patients with type 2 diabetes mellitus. J. Ayub Med. Coll. Abbottabad 2005 17 3 60 64 16320801
    [Google Scholar]
  92. Shokrzadeh M. Ebadi A.G. Antibacterial effect of garlic (Allium sativum L.) on Staphylococcus aureus. Pak. J. Biol. Sci. 2006 9 8 1577 1579 10.3923/pjbs.2006.1577.1579
    [Google Scholar]
  93. Chen Y. Sun J. Dou C. Li N. Kang F. Wang Y. Cao Z. Yang X. Dong S. Alliin attenuated RANKL-induced osteoclastogenesis by scavenging reactive oxygen species through inhibiting Nox1. Int. J. Mol. Sci. 2016 17 9 1516 10.3390/ijms17091516 27657047
    [Google Scholar]
  94. Wikipedia contributors. Cymbopogon flexuosus [Internet]. Wikipedia 2019 [cited 2025 Jul 24]. Available from: https://en.wikipedia.org/wiki/Cymbopogon_flexuosus
    [Google Scholar]
  95. Campbell J.H. Efendy J.L. Smith N.J. Campbell G.R. Molecular basis by which garlic suppresses atherosclerosis. J. Nutr. 2001 131 3 1006S 1009S 10.1093/jn/131.3.1006S 11238806
    [Google Scholar]
  96. Weiss E.A. Essential oil crops. Wallingford, UK CAB International 1997 59 137
    [Google Scholar]
  97. Khandro A. Dhari A.M. Panwar A. Naqvi B. Hussain G. Quaisar S. Abbas S. Determination of diferent trace and essential element in lemon grass samples by X-ray fluorescence spectroscopy technique. Int. Food Res. J. 2011 18 265 270
    [Google Scholar]
  98. Mukarram M. Choudhary S. Khan M.A. Poltronieri P. Khan M.M.A. Ali J. Kurjak D. Shahid M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2021 11 1 20 10.3390/antiox11010020 35052524
    [Google Scholar]
  99. Sugumaran M. Joseph S. Lee K.L.W. Wong, K W Herbs of Malaysia. Shah Alam Federal Publication 2005
    [Google Scholar]
  100. Asdaq S.M.B. Inamdar M.N. Pharmacodynamic and pharmacokinetic interactions of propranolol with garlic (Allium sativum) in rats. Evid. Based Complement. Alternat. Med. 2011 2011 1 824042 10.1093/ecam/neq076 21792365
    [Google Scholar]
  101. Jaganath I.B. Ng L.T. Herbs: The garden pharmacy of Malaysia. Malaysia MARDI 2000
    [Google Scholar]
  102. Ganjewala D.E. Gupta. A. K. Lemongrass (Cymbopogon flexuosus Steud.) Wats essential oil: overview and biological activities. Recent Progress in Medicinal Plants 2013 37 235 271
    [Google Scholar]
  103. Chao S.C. Young D.G. Oberg C.J. Screening for Inhibitory Activity of Essential Oils on Selected Bacteria, Fungi and Viruses. J. Essent. Oil Res. 2000 12 5 639 649 10.1080/10412905.2000.9712177
    [Google Scholar]
  104. Kumar A. Malik F. Bhushan S. Sethi V.K. Shahi A.K. kaur, J.; Taneja, S.C.; Qazi, G.N.; Singh, J. An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells. Chem. Biol. Interact. 2008 171 3 332 347 10.1016/j.cbi.2007.10.003 18070620
    [Google Scholar]
  105. Carnesecchi S. Bras-Gonçalves R. Bradaia A. Zeisel M. Gossé F. Poupon M.F. Raul F. Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett. 2004 215 1 53 59 10.1016/j.canlet.2004.06.019 15374632
    [Google Scholar]
  106. Carnesecchi S. Schneider Y. Ceraline J. Duranton B. Gosse F. Seiler N. Raul F. Geraniol, a component of plant essential oils, inhibits growth and polyamine biosynthesis in human colon cancer cells. J. Pharmacol. Exp. Ther. 2001 298 1 197 200 10.1016/S0022‑3565(24)29368‑X 11408542
    [Google Scholar]
  107. Cavalieri E. Mariotto S. Fabrizi C. de Prati A.C. Gottardo R. Leone S. Berra L.V. Lauro G.M. Ciampa A.R. Suzuki H. α-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem. Biophys. Res. Commun. 2004 315 3 589 594 10.1016/j.bbrc.2004.01.088 14975741
    [Google Scholar]
  108. Del Toro-Arreola S. Flores-Torales E. Torres-Lozano C. Del Toro-Arreola A. Tostado-Pelayo K. Guadalupe Ramirez-Dueñas M. Daneri-Navarro A. Effect of d-limonene on immune response in BALB/c mice with lymphoma. Int. Immunopharmacol. 2005 5 5 829 838 10.1016/j.intimp.2004.12.012 15778119
    [Google Scholar]
  109. Granger R.E. Campbell, E.L.; Johnston, G. A. (+) and (−)-borneol: efficacious positive modulators of GABA action at human recombinant alpha 1 beta 2 gamma2L GABA9A) receptors. Biochem. Pharmacol. 2005 69 1101 1111 10.1016/j.bcp.2005.01.002 15763546
    [Google Scholar]
  110. Han X. Parker T.L. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts. Biochim. Open 2017 4 107 111 10.1016/j.biopen.2017.03.004 29450147
    [Google Scholar]
  111. Chandrashekar K.S. Prasanna K.S. Analgesic and Anti-inflammatory Activities of the Essential oil from Cymbopogon flexuosus. Pharmacogn. J. 2010 2 14 23 25 10.1016/S0975‑3575(10)80067‑7
    [Google Scholar]
  112. Adukwu E.C. Bowles M. Edwards-Jones V. Bone H. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl. Microbiol. Biotechnol. 2016 100 22 9619 9627 10.1007/s00253‑016‑7807‑y 27562470
    [Google Scholar]
  113. Kakarla S. Ganjewala D. Antimicrobial activity of essential oils of four lemongrass (Cymbopogon flexuosus Steud) varieties. Med. Aromat. Plant Sci. Biotechnol. 2009 3 1 107 109
    [Google Scholar]
  114. Lima L.R. Andrade F.K. Alves D.R. de Morais S.M. Vieira R.S. Anti-acetylcholinesterase and toxicity against Artemia salina of chitosan microparticles loaded with essential oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. Int. J. Biol. Macromol. 2021 167 1361 1370 10.1016/j.ijbiomac.2020.11.090 33217462
    [Google Scholar]
  115. Chandrashekar K.S. Prasanna K.S. Analgesic and anti-inflammatory activities of the essential oil from Cymbopogon flexuosus. Pharmacogn. J. 2010 2 14 23 25 10.1016/S0975‑3575(10)80067‑7
    [Google Scholar]
  116. Kumar R. Krishan P. Swami G. Kaur P. Shah G. Kaur A. Pharmacognostical investigation of Cymbopogon citratus (DC). Stapf. Pharm. Lett 2010 2 2 181 189
    [Google Scholar]
  117. Oladeji O.S. Adelowo F.E. Ayodele D.T. Odelade K.A. Phytochemistry and pharmacological activities of Cymbopogon citratus. Sci. Am. 2019 6 e00137
    [Google Scholar]
  118. Aly O. Mekky R.H. Pereira F. Diab Y.M. Tammam M.A. El-Demerdash A. Deciphering the potential of Cymbopogon citratus (DC.) Stapf as an anti-obesity agent: phytochemical profiling, in vivo evaluations and molecular docking studies. Food Funct. 2024 15 24 12146 12168 10.1039/D4FO04602A
    [Google Scholar]
  119. Irfan S. Ranjha M. Nadeem M. Safdar M. Jabbar S. Mahmood S. Murtaza M. Ameer K. Ibrahim S. Antioxidant Activity and Phenolic Content of Sonication- and Maceration-Assisted Ethanol and Acetone Extracts of Cymbopogon citratus Leaves. Separations 2022 9 9 244 10.3390/separations9090244
    [Google Scholar]
  120. De Oliveira E. Silva, F.; Soares, J.C.M.; Valdez, A.; da Silva Ferreira, M.V.; da Silva Cecim, M. Cymbopogon citratus Protects Erythrocytes from Lipid Peroxidation in vitro. Cardiovasc. Hematol. Agents Med. Chem. 2022 20 2 166 169 10.2174/1871525719666210906122948 34488600
    [Google Scholar]
  121. Ngarsou P. Agbodjogbé K.W.D. Bonoy L. Taiwe S.G. Messan F. Dansou P. Effects of Aqueous Extract of Cymbopogon Citratus Leaves on Exercise-Induced Oxidative Stress and Lipid Profile in Wistar Albino. Journal of Pharmaceutical Research and Development 2024 12 6
    [Google Scholar]
  122. Orrego R. Leiva E. Cheel J. Inhibitory effect of three C-glycosylflavonoids from Cymbopogon citratus (Lemongrass) on human low density lipoprotein oxidation. Molecules 2009 14 10 3906 3913 10.3390/molecules14103906 19924037
    [Google Scholar]
  123. Koh P.H. Azli R. Mokhtar M. Iqbal, Mohammad Antioxidant potential of Cymbopogon citratus extract: alleviation of carbon tetrachloride-induced hepatic oxidative stress and toxicity. Hum. Exp. Toxicol. 2012 31 1 81 91 January 10.1177/0960327111407226
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968366669250703194520
Loading
/content/journals/ccb/10.2174/0122127968366669250703194520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test