Skip to content
2000
image of Synergistic Anti-Inflammatory, Antidiabetic, and Hemolytic Effects of Essential Oil of Eryngium triquetrum and its Falcarinol-Rich Fraction in Comparison with Reference Compounds

Abstract

Introduction

(Apiaceae) is a medicinal plant traditionally used for its diuretic and anti-inflammatory properties. Despite its ethnopharmacological relevance, the anti-inflammatory, antidiabetic, and hemolytic activities of its essential oil and falcarinol-rich fraction (FRF) remain poorly explored. This study aimed to characterize the chemical constituents of the essential oil extracted from the aerial parts of and to evaluate its anti-inflammatory, antidiabetic, and hemolytic properties, along with those of its falcarinol-rich fraction (FRF). Synergistic interactions with standard reference drugs were also assessed.

Methods

The essential oil and FRF were analyzed by gas chromatography–mass spectrometry (GC/MS). Anti-inflammatory activity was determined using the albumin denaturation assay, antidiabetic potential α-amylase inhibition, and hemolytic activity using human erythrocytes. Combinations with diclofenac and acarbose were also tested.

Results

Falcarinol was the major component in the essential oil (28.9%) and FRF (89.3%). FRF exhibited stronger anti-inflammatory (IC = 48.1 µg/mL) and antidiabetic (IC = 23.37 µg/mL) activities than the essential oil. Synergistic combinations with diclofenac and acarbose significantly improved efficacy (IC = 17.1 and 16.7 µg/mL, respectively). Hemolytic effects were minimal at active doses.

Discussion

The pronounced bioactivities are mainly attributed to falcarinol. Its synergistic action with reference drugs reinforces its therapeutic interest.

Conclusion

essential oil and its FRF represent promising natural agents for managing inflammation and type 2 diabetes. Further and clinical investigations are required to support their medical application.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968382950250517155021
2025-05-26
2025-10-31
Loading full text...

Full text loading...

References

  1. UgwuD.I. OkoroU.C. UkohaP.O. GuptaA. OkaforS.N. Novel anti-inflammatory and analgesic agents: Synthesis, molecular docking and in vivo studies.J. Enzyme Inhib. Med. Chem.2018331405415 29372659
    [Google Scholar]
  2. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.2020833770803 32162523
    [Google Scholar]
  3. TsalamandrisS. The role of inflammation in diabetes: Current concepts and future perspectives.Eur Cardiol. Rev.20191415059
    [Google Scholar]
  4. SwamyM.K. Natural bio-active compounds.Pharmacology and Health. Care Practices.Berlin/Heidelberg. GermanySpringer20192
    [Google Scholar]
  5. BenhamidatL. DibM.E.A. BensaidO. KenicheA. ouar, I.E.; Muselli, A. Chemical composition and antioxidant, anti-inflammatory and neuroprotective properties of hexane extracts from the roots of Centaurea acaulis and Centaurea pullata.Antiinfect. Agents2022205e10062220583110.2174/2211352520666220610113750
    [Google Scholar]
  6. AinsebaN. LoukiliN. SoulimaneA. BellifaS. DibM.E.A. MuselliA. Antimicrobial and antifungal effects of essential oils from Origanum vulgare, Lavandula officinalis, and Syzygium aromaticum on bacterial strains through gaseous contact.Antiinfect. Agents2024224e29012422644010.2174/0122113525283890240108162525
    [Google Scholar]
  7. MelianiN. AchiriR. DibM.E.A. MuselliA. Assessment of chemical composition and investigation into the antioxidant, anti-inflammatory, and hemolytic properties of hexane extracts from Cynara cardunculus subsp. Cardunculus and Cynara cardunculus subsp. sylvestris.Curr. Chem. Biol.2024181465210.2174/0122127968309078240815053526
    [Google Scholar]
  8. HammoudiA. ZatlaA.T. MamiI.R. PérardJ. DibM.E.A. Hemisynthesis, anti-inflammatory, and in-silico alpha-amylase inhibition of novel carlina oxide analogs.Curr. Chem. Biol.202418424925810.2174/0122127968313911241007040045
    [Google Scholar]
  9. Sayed-AhmadB. TalouT. SaadZ. HijaziA. MerahO. The Apiaceae: Ethnomedicinal family as source for industrial uses.Ind. Crops Prod.201710966167110.1016/j.indcrop.2017.09.027
    [Google Scholar]
  10. BussaN.F. BelaynehA. Long-standing herbal medicinal traditions from the prehistoric Harar town and the surroundings. Eastern Ethiopia.J. Ayurvedic Herbal Med.202063154172
    [Google Scholar]
  11. KonovalovD.A. CáceresE.A. ShcherbakovaE.A. Herrera-BravoJ. ChandranD. MartorellM. HasanM. KumarM. BakrimS. BouyahyaA. ChoW.C. Sharifi-RadJ. SuleriaH.A.R. CalinaD. Eryngium caeruleum: An update on ethnobotany, phytochemistry and biomedical applications.Chin. Med.202217111410.1186/s13020‑022‑00672‑x 36175969
    [Google Scholar]
  12. NusairS.D. AhmadM.I. Toxicity of Vipera palaestinae venom and antagonistic effects of methanolic leaf extract of Eryngium creticum lam.Toxicon201916618 31095960
    [Google Scholar]
  13. Cárdenas-ValdovinosJ.G. García-RuizI. Angoa-PérezM.V. Mena-ViolanteH.G. Ethnobotany, biological activities and phytochemical compounds of some species of the genus Eryngium (Apiaceae), from the Central-Western Region of Mexico.Molecules20232810409410.3390/molecules28104094 37241835
    [Google Scholar]
  14. Hamami ChamgordaniZ. MazaheriM. IrajB. BaghshahiH. SabouhiF. Antidiabetic effects of Eryngium billardieri hydrosol in the treatment of type 2 diabetic patients: A double-blind randomized clinical trial.Avicenna J. Phytomed.20231313444 36698734
    [Google Scholar]
  15. Espinoza-HernándezF. Andrade-CettoA. Escandón-RiveraS. Mata-TorresG. MataR. Contribution of fasting and postprandial glucose-lowering mechanisms to the acute hypoglycemic effect of traditionally used Eryngium cymosum F.Delaroche. J. Ethnopharmacol202127911433910.1016/j.jep.2021.114339 34166734
    [Google Scholar]
  16. MedbouhiA. TintaruA. BeaufayC. NaubronJ.V. DjabouN. CostaJ. Quetin-LeclercqJ. MuselliA. Structural elucidation and cytotoxicity of a new 17-membered ringn lactone from Algerian Eryngium campestre.Molecules20182312325010.3390/molecules23123250 30544816
    [Google Scholar]
  17. de Carvalho AugustoR. MeradN. RognonA. GourbalB. BertrandC. DjabouN. DuvalD. Molluscicidal and parasiticidal activities of Eryngium triquetrum essential oil on Schistosoma mansoni and its intermediate snail host Biomphalaria glabrata, a double impact.Parasit. Vectors202013148610.1186/s13071‑020‑04367‑w 32967724
    [Google Scholar]
  18. MedbouhiA. MeradN. KhadirA. BendahouM. DjabouN. CostaJ. MuselliA. Chemical composition and biological investigations of Eryngium triquetrum essential oil from Algeria.Chem. Biodivers.2018151e170034310.1002/cbdv.201700343 29083533
    [Google Scholar]
  19. NIST Chemistry WebBook 2005http://webbook. nist.gov/chemistry
  20. MamiI.R. Merad-BoussalahN. El Amine DibM. TabtiB. CostaJ. MuselliA. Chemical variability and antioxidant activities of the essential oils of the aerial parts of Ammoides verticillata and the roots of Carthamus caeruleus and their synergistic effect in combination.Comb. Chem. High Throughput Screen.20212417178 32504498
    [Google Scholar]
  21. M, A.; i, M.A.; Ramalingam, K.; S, R. Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel.Cureus2023159e46003 37900405
    [Google Scholar]
  22. OluwagunwaO.A. AlashiA.M. AlukoR.E. Inhibition of the in vitro activities of α-amylase and pancreatic lipase by aqueous extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis Leaves.Front. Nutr.2021877290310.3389/fnut.2021.772903 34820413
    [Google Scholar]
  23. JaberS.A. In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Quercus coccifera (Oak tree) leaves extracts.Saudi J. Biol. Sci.202330710368810.1016/j.sjbs.2023.103688 37292253
    [Google Scholar]
  24. Domínguez-GámezM. Romo-SáenzC.I. Gomez-FloresR. González-OchoaG. García-RomeroA. Orozco-FloresA.A. Rodríguez-PadillaC. Tamez-GuerraP. In vitro antitumor, antioxidant, and hemolytic activities of chlorella sorokiniana methanol extracts and collective fractions.Appl. Sci.20241420961310.3390/app14209613
    [Google Scholar]
  25. WickramaratneM.N. PunchihewaJ.C. WickramaratneD.B.M. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina.BMC Complement. Altern. Med.201616146610.1186/s12906‑016‑1452‑y 27846876
    [Google Scholar]
  26. ThiemB. KikowskaM. KurowskaA. KalembaD. Essential oil composition of the different parts and in vitro shoot culture of Eryngium planum L.Molecules20111687115712410.3390/molecules16087115 25134776
    [Google Scholar]
  27. ThiN.D.T. AnhT.H. ThachL.N. The essential oil composition of Eryngium foetidum L. in south Vietnam extracted by hydrodistillation under conventional heating and microwave irradiation.J. Essent. Oil-Bear. Plants200811215416110.1080/0972060X.2008.10643612
    [Google Scholar]
  28. LandoulsiA. RoumyV. DuhalN. SkhiriF.H. RivièreC. SahpazS. NeutC. BenhamidaJ. HennebelleT. Chemical composition and antimicrobial activity of the essential oil from aerial parts and roots of Eryngium barrelieri Boiss. and Eryngium glomeratum Lam. from Tunisia.Chem. Biodivers.201613121720172910.1002/cbdv.201600136 27448616
    [Google Scholar]
  29. AyoubN. Al-AziziM. KonigW. KubeczkaK.H. Essential oils and a novel polyacetylene from Eryngium yuccifolium Michx. (Apiaceae) in Recent Prog.Med. Plant200611237245
    [Google Scholar]
  30. XieQ. WangC. Polyacetylenes in herbal medicine: A comprehensive review of its occurrence, pharmacology, toxicology, and pharmacokinetics (2014–2021).Phytochemistry202220111328810.1016/j.phytochem.2022.113288 35718132
    [Google Scholar]
  31. AlfurayhiR. HuangL. BrandtK. Pathways affected by falcarinol-type polyacetylenes and implications for their anti-inflammatory function and potential in cancer chemoprevention.Foods2023126119210.3390/foods12061192 36981118
    [Google Scholar]
  32. KunduJ.K. SurhY. J. Inflammation: Gearing the journey to cancer.Mutat. Res.20086591-21530 18485806
    [Google Scholar]
  33. FitzgeraldK.A. KaganJ.C. Toll-like receptors and the control of immunity.Cell202018061044106610.1016/j.cell.2020.02.041 32164908
    [Google Scholar]
  34. El-HouriR.B. KotowskaD. ChristensenK.B. BhattacharyaS. OksbjergN. WolberG. KristiansenK. ChristensenL.P. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes.Food Funct.2015672135214410.1039/C5FO00223K
    [Google Scholar]
  35. ChristensenL.P. BrandtK. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis.J. Pharm. Biomed. Anal.200641368369310.1016/j.jpba.2006.01.057 16520011
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968382950250517155021
Loading
/content/journals/ccb/10.2174/0122127968382950250517155021
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: combination ; biological activities ; synergistic effects ; Apiaceae ; essential oils ; falcarinol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test