Skip to content
2000
image of Designing Novel Antibiotics against Pseudomonas aeruginosa to Tackle Antimicrobial Drug Resistance: Structure-based Drug Design of Inhibitors of t-RNA Methyltransferases (trmA) from Pseudomonas aeruginosa

Abstract

Introduction

The global rise in antibiotic resistance among pathogenic bacteria poses a critical threat to public health. , a Gram-negative opportunistic pathogen, displays both intrinsic and acquired resistance mechanisms. Emerging evidence implicates post-transcriptional tRNA modifications in antibiotic resistance, positioning tRNA-modifying enzymes like trmA as potential therapeutic targets.

Objective

This study aims to identify potential inhibitors of trmA to disrupt essential cellular pro- cesses and counter antibiotic resistance.

Methods

We employed a structure-based virtual screening strategy to identify compounds structurally analogous to S-adenosylmethionine, a universal methyl group donor and known trmA binder. Top-ranked compounds were further evaluated through molecular dynamics (MD) simulations to examine binding-induced conformational dynamics and stability.

Results

Compound 24762163 emerged as a lead candidate with favorable binding affinity and structural compatibility, as confirmed through docking and MD simulations. The compound formed stable interactions with the active site of trmA, indicating its inhibitory potential.

Discussion

The computational findings suggest that compound 24762163 may effectively disrupt trmA function, thereby impairing tRNA methylation and hindering protein synthesis in . Given the essential role of tRNA modifications in bacterial survival and resistance, targeting trmA represents a promising strategy for novel antimicrobial development.

Conclusion

This study identifies compound 24762163 as a promising trmA inhibitor and a potential therapeutic agent to counter antibiotic resistance in . Targeting tRNA-modifying methyltransferases may offer a novel approach in the fight against drug-resistant pathogens.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968379517250519053237
2025-05-26
2025-09-10
Loading full text...

Full text loading...

References

  1. GaldinoA.C.M. BranquinhaM.H. SantosA.L. ViganorL. Pseudomonas aeruginosa and its arsenal of proteases: Weapons to battle the host.Pathophysiological Aspects of Proteases.SingaporeSpringer201710.1007/978‑981‑10‑6141‑7_16
    [Google Scholar]
  2. LucenaA. Dalla CostaL.M. NogueiraK.S. MatosA.P. GalesA.C. PaganiniM.C. CastroM.E.S. RaboniS.M. Nosocomial infections with metallo-beta-lactamase-producing pseudomonas aeruginosa: Molecular epidemiology, risk factors, clinical features and outcomes.J. Hosp. Infect.201487423424010.1016/j.jhin.2014.05.007 25027563
    [Google Scholar]
  3. VentolaC.L. The antibiotic resistance crisis: part 1: causes and threats.2015404277283 25859123
    [Google Scholar]
  4. SinhaM. GhoshN. WijesingheD.S. Mathew-SteinerS.S. DasA. SinghK. SenC.K. Pseudomonas aeruginosa theft biofilm require host lipids of cutaneous wound.Ann. Surg.2022 35129518
    [Google Scholar]
  5. GrobeS. DoberenzS. FerreiraK. KruegerJ. BrönstrupM. KaeverV. HäusslerS. Identification and quantification of (t) RNA modifications in Pseudomonas aeruginosa by liquid chromatography–tandem mass spectrometry.ChemBioChem201920111430143710.1002/cbic.201800741 30644616
    [Google Scholar]
  6. BoccalettoP. MachnickaM.A. PurtaE. PiątkowskiP. BagińskiB. WireckiT.K. de Crécy-LagardV. RossR. LimbachP.A. KotterA. HelmM. BujnickiJ.M. MODOMICS: a database of RNA modification pathways. 2017 update.Nucleic Acids Res.201846D1D303D30710.1093/nar/gkx1030 29106616
    [Google Scholar]
  7. KharazmiA. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa.Immunol. Lett.199130220120510.1016/0165‑2478(91)90026‑7 1757106
    [Google Scholar]
  8. JouaultA. SalibaA.M. TouquiL. Modulation of the immune response by the Pseudomonas aeruginosa type-III secretion system.Front. Cell. Infect. Microbiol.202212106401010.3389/fcimb.2022.1064010 36519135
    [Google Scholar]
  9. BishtK. LueckeA.R. WakemanC.A. Temperature-specific adaptations and genetic requirements in a biofilm formed by Pseudomonas aeruginosa.Front. Microbiol.202313103252010.3389/fmicb.2022.1032520 36687584
    [Google Scholar]
  10. HouY.M. MatsubaraR. TakaseR. MasudaI. SulkowskaJ.I. TrmD. Enzymes2017418911510.1016/bs.enz.2017.03.003 28601227
    [Google Scholar]
  11. ThongdeeN. JaroensukJ. AtichartpongkulS. ChittrakanwongJ. ChooyoungK. SrimahaeakT. ChaiyenP. VattanaviboonP. MongkolsukS. FuangthongM. TrmB, a tRNA m7G46 methyltransferase, plays a role in hydrogen peroxide resistance and positively modulates the translation of katA and katB mRNAs in Pseudomonas aeruginosa.Nucleic Acids Res.201947179271928110.1093/nar/gkz702 31428787
    [Google Scholar]
  12. AlexandrovA. ChernyakovI. GuW. HileyS.L. HughesT.R. GrayhackE.J. PhizickyE.M. Rapid tRNA decay can result from lack of nonessential modifications.Mol. Cell2006211879610.1016/j.molcel.2005.10.036 16387656
    [Google Scholar]
  13. TomikawaC. YokogawaT. KanaiT. HoriH.N. 7-Methylguanine at position 46 (m7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network.Nucleic Acids Res.201038394295710.1093/nar/gkp1059 19934251
    [Google Scholar]
  14. RobertusJ.D. LadnerJ.E. FinchJ.T. RhodesD. BrownR.S. ClarkB.F.C. KlugA. Structure of yeast phenylalanine tRNA at 3 Å resolution.Nature1974250546754655110.1038/250546a0 4602655
    [Google Scholar]
  15. ChernyakovI. WhippleJ.M. KotelawalaL. GrayhackE.J. PhizickyE.M. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′–3′ exonucleases Rat1 and Xrn1.Genes Dev.200822101369138010.1101/gad.1654308 18443146
    [Google Scholar]
  16. UrbonavičiusJ. DurandJ.M.B. BjörkG.R. Three modifications in the D and T arms of tRNA influence translation in Escherichia coli and expression of virulence genes in Shigella flexneri.J. Bacteriol.2002184195348535710.1128/JB.184.19.5348‑5357.2002 12218021
    [Google Scholar]
  17. JaroensukJ. AtichartpongkulS. ChionhY.H. WongY.H. LiewC.W. McBeeM.E. ThongdeeN. PrestwichE.G. DeMottM.S. MongkolsukS. DedonP.C. LescarJ. FuangthongM. Methylation at position 32 of tRNA catalyzed by TrmJ alters oxidative stress response in Pseudomonas aeruginosa.Nucleic Acids Res.20164422108341084810.1093/nar/gkw870 27683218
    [Google Scholar]
  18. SchultzS.K.L. KotheU. tRNA elbow modifications affect the tRNA pseudouridine synthase TruB and the methyltransferase TrmA.RNA20202691131114210.1261/rna.075473.120 32385137
    [Google Scholar]
  19. KelleyL.A. MezulisS. YatesC.M. WassM.N. SternbergM.J.E. The Phyre2 web portal for protein modeling, prediction and analysis.Nat. Protoc.201510684585810.1038/nprot.2015.053 25950237
    [Google Scholar]
  20. KelleyL.A. SternbergM.J.E. Protein structure prediction on the Web: a case study using the Phyre server.Nat. Protoc.20094336337110.1038/nprot.2009.2 19247286
    [Google Scholar]
  21. BiasiniM. BienertS. WaterhouseA. ArnoldK. StuderG. SchmidtT. KieferF. CassarinoT.G. BertoniM. BordoliL. SchwedeT. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.Nucleic Acids Res.201442W1W252W25810.1093/nar/gku340 24782522
    [Google Scholar]
  22. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: a program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  23. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.051 27077332
    [Google Scholar]
  24. ReddyK.N. BojjaP. A novel method to solve visual tracking problem: hybrid algorithm of grasshopper optimization algorithm and differential evolution.Evol. Intell.202215178582210.1007/s12065‑021‑00567‑0
    [Google Scholar]
  25. LiA. SchertzerJ.W. YongX. Molecular dynamics modeling of Pseudomonas aeruginosa outer membranes.Phys. Chem. Chem. Phys.20182036236352364810.1039/C8CP04278K 30191217
    [Google Scholar]
  26. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  27. LuoR. DavidL. GilsonM.K. Accelerated Poisson–Boltzmann calculations for static and dynamic systems.J. Comput. Chem.200223131244125310.1002/jcc.10120 12210150
    [Google Scholar]
  28. KimuraS. WaldorM.K. The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA.Proc. Natl. Acad. Sci. USA201911641394140310.1073/pnas.1814130116 30622183
    [Google Scholar]
  29. SrimahaeakT. ThongdeeN. ChittrakanwongJ. AtichartpongkulS. JaroensukJ. PhatinuwatK. PhaonakropN. JaresitthikunchaiJ. RoytrakulS. MongkolsukS. FuangthongM. Pseudomonas aeruginosa GidA modulates the expression of catalases at the posttranscriptional level and plays a role in virulence.Front. Microbiol.202313107971010.3389/fmicb.2022.1079710 36726575
    [Google Scholar]
  30. ZhouJ.W. YinK.Y. LuoW.Q. ChenA. LiangZ-W. JiP-C. WangY-J. WangX-N. Anti-virulence potential of carvone against Serratia marcescens.202411942000110.26599/FMH.2024.9420001
    [Google Scholar]
  31. GengZ. CaoZ. LiuJ. Recent advances in targeted antibacterial therapy basing on nanomaterials.Exploration2023312021011710.1002/EXP.20210117 37323620
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968379517250519053237
Loading
/content/journals/ccb/10.2174/0122127968379517250519053237
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test