Skip to content
2000
image of Biochemical and Physiological Alterations Triggered by Thermal Stress in Companion and Production Animals: A Narrative Review

Abstract

Introduction

Scientific and non-scientific groups have contributed to raising awareness in recent years about animal welfare. The results of such efforts include the creation of legal frameworks concerning animal abuse (or mistreatment) and the growing number of technical requirements for the commercial exploitation of animal-derived products (such as beef, milk, and eggs). Nonetheless, thermal stress is poorly explored in animal welfare research despite its life-threatening consequences.

Objective

In this study, we discuss the biochemical and physiological effects of thermal stress in cattle, broilers, dogs and cats.

Methodology

This review was conducted using data published in Portuguese and English, retrieved from Lilacs, Scielo, and PubMed databases, using the keywords “stress, cold, heat, canines, felines, broilers, poultry, milk cattle, and beef cattle”. Papers were considered if they were published from 2013 to 2025.

Results

Thermal stress refers to a series of biochemical and physiological changes that occur due to short-, moderate-, or long-term exposure to excessively high or low temperatures, where adaptive mechanisms fail to restore normal body temperature. Defining ideal body temperatures for animals can be challenging, as they are influenced by factors such as sex, general health status, body mass, species, and breed. In the species studied, heat typically increases levels of Reactive Oxygen Species (ROS), cortisol, transaminases, creatine kinase, and lactic acid, while decreasing levels of Superoxide Dismutase (SOD) and ATP. Cold exposure increases T4 production, proinflammatory cytokines, such as TNF-α and IL-4, and decreases SOD and lipid content in various tissues.

Conclusion

Studies on thermal stress are necessary to provide evidence on what actions are needed to control and adjust environmental conditions for proper husbandry of production and companion animals.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968370282250509055604
2025-05-15
2025-09-11
Loading full text...

Full text loading...

References

  1. Chauhan S.S. Rashamol V.P. Bagath M. Sejian V. Dunshea F.R. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 2021 65 7 1231 1244 10.1007/s00484‑021‑02083‑3 33496873
    [Google Scholar]
  2. Binzer A. Guill C. Rall B.C. Brose U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food‐web structure. Glob. Change Biol. 2016 22 1 220 227 10.1111/gcb.13086 26365694
    [Google Scholar]
  3. Brivio F. Zurmühl M. Grignolio S. von Hardenberg J. Apollonio M. Ciuti S. Forecasting the response to global warming in a heat-sensitive species. Sci. Rep. 2019 9 1 3048 10.1038/s41598‑019‑39450‑5 30816191
    [Google Scholar]
  4. Vecchi M. Kossi Adakpo L. Dunn R.R. Nichols L.M. Penick C.A. Sanders N.J. Rebecchi L. Guidetti R. The toughest animals of the Earth versus global warming: Effects of long‐term experimental warming on tardigrade community structure of a temperate deciduous forest. Ecol. Evol. 2021 11 14 9856 9863 10.1002/ece3.7816 34306668
    [Google Scholar]
  5. Carter A.J. Hall E.J. Connoll S.L. Russell Z.F. Mitchell K. Drugs, dogs, and driving: the potential for year-round thermal stress in UK vehicles. Open Vet. J. 2020 10 2 216 225 10.4314/ovj.v10i2.11 32821666
    [Google Scholar]
  6. Skuce P.J. Morgan E.R. van Dijk J. Mitchell M. Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe. Animal 2013 7 Suppl. 2 333 345 10.1017/S175173111300075X 23739475
    [Google Scholar]
  7. Kim W.S. Nejad J.G. Park K.K. Lee H.G. Heat Stress Effects on Physiological and Blood Parameters, and Behavior in Early Fattening Stage of Beef Steers. Animals (Basel) 2023 13 7 1130 10.3390/ani13071130 37048386
    [Google Scholar]
  8. Renaudeau D. Collin A. Yahav S. de Basilio V. Gourdine J.L. Collier R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012 6 5 707 728 10.1017/S1751731111002448 22558920
    [Google Scholar]
  9. Sejian V. Bhatta R. Gaughan J.B. Dunshea F.R. Lacetera N. Review: Adaptation of animals to heat stress. Animal 2018 12 s2 s431 s444 10.1017/S1751731118001945 30139399
    [Google Scholar]
  10. Abdelnour S.A. Abd El-Hack M.E. Khafaga A.F. Arif M. Taha A.E. Noreldin A.E. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol. 2019 79 120 134 10.1016/j.jtherbio.2018.12.013 30612672
    [Google Scholar]
  11. Reece W.O. Dukes, fisiologia dos animais doméscos. 13th ed Rio de Janeiro Editora Guanabara Koogan 2017
    [Google Scholar]
  12. Farag M.R. Alagawany M. Physiological alterations of poultry to the high environmental temperature. J. Therm. Biol. 2018 76 101 106 10.1016/j.jtherbio.2018.07.012 30143284
    [Google Scholar]
  13. Shi D. Bai L. Qu Q. Zhou S. Yang M. Guo S. Li Q. Liu C. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci. 2019 98 6 2405 2413 10.3382/ps/pez026 30715508
    [Google Scholar]
  14. Ide R. Ide S.T. Mortola J.P. The cessation of breathing in the chicken embryo during cold-hypometabolism. Respir. Physiol. Neurobiol. 2017 242 19 29 10.1016/j.resp.2017.03.004 28341290
    [Google Scholar]
  15. Wei H. Zhang R. Su Y. Bi Y. Li X. Zhang X. Li J. Bao J. Effects of Acute Cold Stress After Long-Term Cold Stimulation on Antioxidant Status, Heat Shock Proteins, Inflammation and Immune Cytokines in Broiler Heart. Front. Physiol. 2018 9 1589 10.3389/fphys.2018.01589 30483152
    [Google Scholar]
  16. Zaboli G. Huang X. Feng X. Ahn D.U. How can heat stress affect chicken meat quality? – a review. Poult. Sci. 2019 98 3 1551 1556 10.3382/ps/pey399 30169735
    [Google Scholar]
  17. Kőrösi Molnár A. Kőrösi L. Balázs B. Gáspárdy A. Effects of heat stress on the immune responses of chickens subjected to thermal manipulation in the pre-hatch period. Acta Vet. Hung. 2021 69 1 67 72 10.1556/004.2021.00003 33764898
    [Google Scholar]
  18. Rocha A.C.G. Patrone L.G.A. Cristina-Silva C. Silva K.S.C. Bícego K.C. Szawka R.E. Gargaglioni L.H. Metabolic and respiratory chemosensitivity and brain monoaminergic responses to cold exposure in chicks subjected to thermal manipulation during incubation. J. Therm. Biol. 2022 109 103317 10.1016/j.jtherbio.2022.103317 36195384
    [Google Scholar]
  19. de Paula Freitas A. Santana Júnior M.L. Schenkel F.S. Mercadante M.E.Z. Cyrillo J.N.S.G. Paz C.C.P. Different selection practices affect the environmental sensitivity of beef cattle. PLoS One 2021 16 4 e0248186 10.1371/journal.pone.0248186 33798231
    [Google Scholar]
  20. Skibiel A.L. Dado-Senn B. Fabris T.F. Dahl G.E. Laporta J. In utero exposure to thermal stress has long-term effects on mammary gland microstructure and function in dairy cattle. PLoS One 2018 13 10 e0206046 10.1371/journal.pone.0206046 30325972
    [Google Scholar]
  21. Hu L. Brito L.F. Abbas Z. Sammad A. Kang L. Wang D. Wu H. Liu A. Qi G. Zhao M. Wang Y. Xu Q. Investigating the Short-Term Effects of Cold Stress on Metabolite Responses and Metabolic Pathways in Inner-Mongolia Sanhe Cattle. Animals (Basel) 2021 11 9 2493 10.3390/ani11092493 34573458
    [Google Scholar]
  22. de Andrade Ferrazza R. Mogollón Garcia H.D. Vallejo Aristizábal V.H. de Souza Nogueira C. Veríssimo C.J. Sartori J.R. Sartori R. Pinheiro Ferreira J.C. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. J. Therm. Biol. 2017 66 68 80 10.1016/j.jtherbio.2017.03.014 28477912
    [Google Scholar]
  23. Nakajima N. Doi K. Tamiya S. Yayota M. Effects of direct exposure to cold weather under grazing in winter on the physiological, immunological, and behavioral conditions of Japanese Black beef cattle in central Japan. Anim. Sci. J. 2019 90 8 1033 1041 10.1111/asj.13248 31237060
    [Google Scholar]
  24. Li T. Bai H. Yang L. Wang H. Wei S. Yan P. Cold exposure induces browning of bovine subcutaneous white fat in vivo and in vitro. J. Therm. Biol. 2023 112 103446 10.1016/j.jtherbio.2022.103446 36796901
    [Google Scholar]
  25. Roth Z. Cooling is the predominant strategy to alleviate the effects of heat stress on dairy cows. Reprod. Domest. Anim. 2022 57 S1 Suppl. 1 16 22 10.1111/rda.13765 32621343
    [Google Scholar]
  26. Azeez O.M. Olaifa F.H. Adah A.S. Basiru A. Akorede G.J. Ambali H.M. Suleiman K.Y. Sanusi F. Bolaji M. Effect of heat stress on vital and hematobiochemical parameters of healthy dogs. Vet. World 2022 15 3 722 727 10.14202/vetworld.2022.722‑727 35497950
    [Google Scholar]
  27. Hall E.J. Carter A.J. Chico G. Bradbury J. Gentle L.K. Barfield D. O’Neill D.G. Risk Factors for Severe and Fatal Heat-Related Illness in UK Dogs—A VetCompass Study. Vet. Sci. 2022 9 5 231 10.3390/vetsci9050231 35622759
    [Google Scholar]
  28. Dohi K. Miyamoto K. Fukuda K. Nakamura S. Hayashi M. Ohtaki H. Shioda S. Aruga T. Status of systemic oxidative stress during therapeutic hypothermia in patients with post-cardiac arrest syndrome. Oxid. Med. Cell. Longev. 2013 2013 1 8 10.1155/2013/562429 24066191
    [Google Scholar]
  29. Hall E. Carter A. O’Neill D. Dogs Don’t Die Just in Hot Cars—Exertional Heat-Related Illness (Heatstroke) Is a Greater Threat to UK Dogs. Animals (Basel) 2020 10 8 1324 10.3390/ani10081324 32751913
    [Google Scholar]
  30. Hall E.J. Carter A.J. O’Neill D.G. Incidence and risk factors for heat-related illness (heatstroke) in UK dogs under primary veterinary care in 2016. Sci. Rep. 2020 10 1 9128 10.1038/s41598‑020‑66015‑8 32555323
    [Google Scholar]
  31. Nuñez Favre R. García M.F. Rearte R. Stornelli M.C. Corrada Y.A. de la Sota R.L. Stornelli M.A. Heat stress and sperm production in the domestic cat. Theriogenology 2022 187 182 187 10.1016/j.theriogenology.2022.05.004 35598559
    [Google Scholar]
  32. Cudney S.E. Wayne A. Rozanski E.A. Clothes dryer–induced heat stroke in three cats. J. Vet. Emerg. Crit. Care (San Antonio) 2021 31 6 800 805 10.1111/vec.13131 34499793
    [Google Scholar]
  33. Kabatchnick E. Langston C. Olson B. Lamb K.E. Hypothermia in Uremic Dogs and Cats. J. Vet. Intern. Med. 2016 30 5 1648 1654 10.1111/jvim.14525 27481336
    [Google Scholar]
  34. Woodruff M.J. Sermersheim L.O. Wolf S.E. Rosvall K.A. Organismal effects of heat in a fixed ecological niche: Implications on the role of behavioral buffering in our changing world. Sci. Total Environ. 2023 893 164809 10.1016/j.scitotenv.2023.164809 37302589
    [Google Scholar]
  35. Murali G. Iwamura T. Meiri S. Roll U. Future temperature extremes threaten land vertebrates. Nature 2023 615 7952 461 467 10.1038/s41586‑022‑05606‑z 36653454
    [Google Scholar]
  36. Aroch I. Keidar I. Himelstein A. Schechter M. Shamir M.H. Segev G. Diagnostic and prognostic value of serum creatine-kinase activity in ill cats: A retrospective study of 601 cases. J. Feline Med. Surg. 2010 12 6 466 475 10.1016/j.jfms.2010.01.010 20236849
    [Google Scholar]
  37. Tavakolinasab F. Hashemi M. Effect of Using Vitamin C Supplementation on Performance, Blood Parameters, Carcass Characteristics and Meat Quality of Broiler Chickens Under Heat Stress Condition: A Meta‐Analysis. J. Anim. Physiol. Anim. Nutr. (Berl.) 2025 ••• jpn.14091 Epub ahead of print 10.1111/jpn.14091 39757422
    [Google Scholar]
  38. Wei H. Li H. Miao D. Wang H. Liu Y. Xing L. Bao J. Li J. Dietary resveratrol supplementation alleviates cold exposure-induced pyroptosis and inflammation in broiler heart by modulating oxidative stress and endoplasmic reticulum stress. Poult. Sci. 2024 103 11 104203 10.1016/j.psj.2024.104203 39178816
    [Google Scholar]
  39. Burgio M. Forte L. Prete A. Maggiolino A. De Palo P. Aiudi G.G. Rizzo A. Carbonari A. Lacalandra G.M. Cicirelli V. Effects of heat stress on oxidative balance and sperm quality in dogs. Front. Vet. Sci. 2024 11 1445058 10.3389/fvets.2024.1445058 39391220
    [Google Scholar]
  40. Weingarten M.A. Sande A.A. Acute liver failure in dogs and cats. J. Vet. Emerg. Crit. Care (San Antonio) 2015 25 4 455 473 10.1111/vec.12304 25882813
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968370282250509055604
Loading
/content/journals/ccb/10.2174/0122127968370282250509055604
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: heat ; cold ; cattle ; cats ; Thermal stress ; broilers ; dogs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test