Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Globally, cancer is the biggest cause of death. Many chemotherapy medications have been widely utilized to treat cancer. Current anticancer medications, however, lead to resistance and serious adverse effects. Thus, it's critical to find new, potent anticancer drugs with few or no adverse effects. Interestingly, natural substances have been emphasized as anticancer medications. By preventing cancer side effects such as nausea, bone marrow suppression, anaemia, and decreased resistance, mushrooms are known to support chemotherapy and radiation therapy. Several bioactive compounds, including anti-tumour drugs, have recently been discovered in a variety of mushrooms. Among them, mushrooms with biological properties, such as anticancer activity, have drawn the attention of several researchers. Discussing the anticancer potential of various mushrooms and the underlying molecular pathways is the goal of this review. and are among the genera of mushrooms that have been linked to cancer prevention. Inducing reactive oxygen species, inhibiting mitotic kinase, preventing angiogenesis, inhibiting topoisomerase, causing apoptosis, and ultimately halting the spread of cancer are all important functions of anti-cancer drugs. We include information on the numerous mushrooms and substances generated from them, including their current clinical status and potential molecular mechanisms of action. Researchers and medical professionals may find this study useful in creating evidence-based preclinical and clinical studies to evaluate the anti-cancer potential of mushrooms. This review incorporates all the reviews on mushrooms as anti-cancer agents.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968372088250629181159
2025-07-14
2025-12-08
Loading full text...

Full text loading...

References

  1. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  2. HossainM.S. KaruniawatiH. JairounA.A. UrbiZ. OoiD.J. JohnA. LimY.C. KibriaK.M.K. MohiuddinA.K.M. MingL.C. GohK.W. HadiM.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies.Cancers2022147173210.3390/cancers14071732 35406504
    [Google Scholar]
  3. EcclesS.A. WelchD.R. Metastasis: Recent discoveries and novel treatment strategies.Lancet200736995741742175710.1016/S0140‑6736(07)60781‑8 17512859
    [Google Scholar]
  4. TalibW.H. AlsayedA.R. BarakatM. Abu-TahaM.I. MahmodA.I. Targeting drug chemo-resistance in cancer using natural products.Biomedicines2021910135310.3390/biomedicines9101353 34680470
    [Google Scholar]
  5. PatelS GoyalA Recent developments in mushrooms as anticancer therapeutics: a review.3 Biotech201221115
    [Google Scholar]
  6. VetterJ. The mushroom glucans: Molecules of high biological and medicinal importance.Foods2023125100910.3390/foods12051009 36900525
    [Google Scholar]
  7. LemieszekM. RzeskiW. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.Contemp Oncol. (Pozn)20124428528910.5114/wo.2012.30055 23788896
    [Google Scholar]
  8. FriedmanM. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans.Foods2016548010.3390/foods5040080 28231175
    [Google Scholar]
  9. YuC. DongQ. ChenM. ZhaoR. ZhaL. ZhaoY. ZhangM. ZhangB. MaA. The effect of mushroom dietary fiber on the gut microbiota and related health benefits: A review.J. Fungi2023910102810.3390/jof9101028 37888284
    [Google Scholar]
  10. TörősG. El-RamadyH. ProkischJ. VelascoF. LlanajX. NguyenD.H.H. PelesF. Modulation of the gut microbiota with prebiotics and antimicrobial agents from Pleurotus ostreatus mushroom.Foods20231210201010.3390/foods12102010 37238827
    [Google Scholar]
  11. IoeleG. ChieffalloM. OcchiuzziM.A. De LucaM. GarofaloA. RagnoG. GrandeF. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules27175436 36080203
    [Google Scholar]
  12. GargP. MalhotraJ. KulkarniP. HorneD. SalgiaR. SinghalS.S. Emerging therapeutic strategies to overcome drug resistance in cancer cells.Cancers20241613247810.3390/cancers16132478 39001539
    [Google Scholar]
  13. BaarsJ.J.P. ScholtmeijerK. SonnenbergA.S.M. van PeerA. Critical factors involved in primordia building in Agaricus bisporus: A review.Molecules20202513298410.3390/molecules25132984 32610638
    [Google Scholar]
  14. WangX. HaD. MoriH. ChenS. White button mushroom (Agaricus bisporus) disrupts androgen receptor signaling in human prostate cancer cells and patient-derived xenograft.J. Nutr. Biochem.20218910858010.1016/j.jnutbio.2020.108580 33388344
    [Google Scholar]
  15. ForniC. FacchianoF. BartoliM. PierettiS. FacchianoA. D’ArcangeloD. NorelliS. ValleG. NisiniR. BeninatiS. TabolacciC. JadejaR.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases.BioMed Res. Int.2019201911610.1155/2019/8748253 31080832
    [Google Scholar]
  16. BaeW.J. ChoiJ.B. KimK.S. HaU.S. HongS.H. LeeJ.Y. HwangT.K. HwangS.Y. WangZ. KimS.W. Inhibition of proliferation of prostate cancer cell line DU-145 in vitro and in vivo Using Salvia miltiorrhiza Bunge.Chin J. Integr Med.202026753353810.1007/s11655‑017‑2801‑5 28337641
    [Google Scholar]
  17. RahimniaR. AkbariM.R. YasseriA.F. TaheriD. MirzaeiA. GhajarH.A. FarashahP.D. BaghdadabadL.Z. AghamirS.M.K. The effect of Ganoderma lucidum polysaccharide extract on sensitizing prostate cancer cells to flutamide and docetaxel: An in vitro study.Sci. Rep20231311894010.1038/s41598‑023‑46118‑8 37919464
    [Google Scholar]
  18. ChangW. FengW. YangY. ShenY. SongT. LiY. CaiW. Metagenomics analysis of the effects of Agaricus bisporus mycelia on microbial diversity and CAZymes in compost.PeerJ202210e1442610.7717/peerj.14426 36523457
    [Google Scholar]
  19. CorzoL. Fernández-NovoaL. CarreraI. MartínezO. RodríguezS. AlejoR. CacabelosR. Nutrition, health, and disease: Role of selected marine and vegetal nutraceuticals.Nutrients202012374710.3390/nu12030747 32168971
    [Google Scholar]
  20. AlAliM. AlqubaisyM. AljaafariM.N. AlAliA.O. BaqaisL. MoloukiA. AbushelaibiA. LaiK.S. LimS.H.E. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations.Molecules2021269254010.3390/molecules26092540 33925346
    [Google Scholar]
  21. Mirończuk-ChodakowskaI. KujawowiczK. WitkowskaA.M. Beta-Glucans from Fungi: Biological and health-promoting potential in the COVID-19 pandemic era.Nutrients20211311396010.3390/nu13113960 34836215
    [Google Scholar]
  22. CognigniV. RanalloN. TronconiF. MorgeseF. BerardiR. Potential benefit of β-glucans as adjuvant therapy in immuno-oncology: A review.Explor. Target Antitumor Ther.20212212213810.37349/etat.2021.00036 36046144
    [Google Scholar]
  23. HetlandG. JohnsonE. LybergT. KvalheimG. The mushroom Agaricus blazei murill elicits medicinal effects on tumor, infection, allergy, and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation.Adv. Pharmacol. Sci.2011201111010.1155/2011/157015 21912538
    [Google Scholar]
  24. GuthrieG.J.K. CharlesK.A. RoxburghC.S.D. HorganP.G. McMillanD.C. ClarkeS.J. The systemic inflammation-based neutrophil–lymphocyte ratio: Experience in patients with cancer.Crit. Rev. Oncol. Hematol.201388121823010.1016/j.critrevonc.2013.03.010 23602134
    [Google Scholar]
  25. GeethangiliM. TzengY.M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds.Evid. Based Complement. Alternat. Med.20112011121264110.1093/ecam/nep108 19687189
    [Google Scholar]
  26. LiuY.W. LuK.H. HoC.T. SheenL.Y. Protective effects of Antrodia cinnamomea against liver injury.J. Tradit. Complement. Med.20122428429410.1016/S2225‑4110(16)30114‑6 24716143
    [Google Scholar]
  27. ChuangH.C. ShiY.Z. ChengC.M. PanC.Y. ChengA.C. Effects of Antrodia camphorata-supplemented diets on the non-specific immune responses and disease resistance of orange-spotted grouper (Epinephelus coioides) against Vibrio alginolyticus and Streptococcus iniae.J. Mar. Sci. Eng.202210445810.3390/jmse10040458
    [Google Scholar]
  28. WangJ.J. WuC.C. LeeC.L. HsiehS.L. ChenJ.B. LeeC.I. Antimelanogenic, antioxidant and antiproliferative effects of antrodia camphorata fruiting bodies on B16-F0 melanoma cells.PLoS One2017121e017092410.1371/journal.pone.0170924 28125738
    [Google Scholar]
  29. JiaoC. XieY.Z. YangX. LiH. LiX.M. PanH.H. CaiM.H. ZhongH.M. YangB.B. Anticancer activity of Amauroderma rude.PLoS One201386e6650410.1371/journal.pone.0066504 23840494
    [Google Scholar]
  30. PanH. HanY. HuangJ. YuX. JiaoC. YangX. DhaliwalP. XieY. YangB.B. Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth.Oncotarget2015619177771779110.18632/oncotarget.4397 26219260
    [Google Scholar]
  31. LiX. WuQ. XieY. DingY. DuW.W. SdiriM. YangB.B. Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors.Oncotarget2015619178321784610.18632/oncotarget.4026 26098777
    [Google Scholar]
  32. LoH.C. HsiehC. LinF.Y. HsuT.H. A Systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in dong-chongxiacao (Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients.J. Tradit. Complement. Med.201331163210.1016/S2225‑4110(16)30164‑X 24716152
    [Google Scholar]
  33. Dworecka-KaszakB. Cordyceps fungi as natural killers, new hopes for medicine and biological control factors.Ann. Parasitol.2014603151
    [Google Scholar]
  34. LaoT.D. LeT.A.H. TruongN.B. Morphological and genetic characteristics of the novel entomopathogenic fungus Ophiocordyceps langbianensis (Ophiocordycipitaceae, Hypocreales) from Lang Biang biosphere reserve, vietnam.Sci. Rep.2021111141210.1038/s41598‑020‑78265‑7 33446667
    [Google Scholar]
  35. WeiY. ZhangL. WangJ. WangW. NiyatiN. GuoY. WangX. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation.Sci. Total Environ.2021755Pt 114254810.1016/j.scitotenv.2020.142548 33035977
    [Google Scholar]
  36. WawrzynG.T. QuinM.B. ChoudharyS. López-GallegoF. Schmidt-DannertC. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota.Chem. Biol.201219677278310.1016/j.chembiol.2012.05.012 22726691
    [Google Scholar]
  37. Chaverra-MuñozL. BriemT. HüttelS. Optimization of the production process for the anticancer lead compound illudin M: Improving titers in shake-flasks.Microb. Cell Fact.20222119810.1186/s12934‑022‑01827‑z 35643529
    [Google Scholar]
  38. WeberG.F. DNA Damaging Drugs. Molecular Therapies of Cancer.Springer20149112
    [Google Scholar]
  39. JamesA.R. JayaprakashS. SundeepL.M. In-vitro cytotoxicity, apoptotic property, and gene expression changes induced by naringenin-7-O-glucoside in triple-negative breast cancer.Cureus2024164e5863410.7759/cureus.58634 38770462
    [Google Scholar]
  40. KelnerM.J. McMorrisT.C. TaetleR. Preclinical evaluation of illudins as anticancer agents: Basis for selective cytotoxicity.J. Natl. Cancer Inst.199082191562156510.1093/jnci/82.19.1562 2402017
    [Google Scholar]
  41. LinderB. ZoldakovaM. KornyeiZ. KöhlerL.H.F. SeibtS. MengerD. WetzelA. MadarászE. SchobertR. KögelD. BiersackB. Antitumor effects of a new retinoate of the fungal cytotoxin illudin m in brain tumor models.Int. J. Mol. Sci.20222316905610.3390/ijms23169056 36012321
    [Google Scholar]
  42. UroojT. WasimB. MushtaqS. ShahS.N.N. ShahM. Cancer cell-derived secretory factors in breast cancer-associated lung metastasis: Their mechanism and future prospects.Curr. Cancer Drug Targets202020316818610.2174/1568009620666191220151856 31858911
    [Google Scholar]
  43. WangL. QinJ.H. LiangY. YuY.H. ChoW.C. WangR.A. Differential distribution of immune cells in breast invasive carcinoma vs. breast carcinoma in situ and its significance in interpretation of immune surveillance.Int. J. Clin. Exp. Pathol.201710777437749 31966621
    [Google Scholar]
  44. MengX. ZhongJ. LiuS. MurrayM. Gonzalez-AnguloA.M. A new hypothesis for the cancer mechanism.Cancer Metastasis Rev.2012311-224726810.1007/s10555‑011‑9342‑8 22179983
    [Google Scholar]
  45. DesisaB. MuletaD. DejeneT. JidaM. GoshuA. Martin-PintoP. Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia.J. Fungi20239881110.3390/jof9080811 37623582
    [Google Scholar]
  46. MartínC. ZervakisG.I. XiongS. KoutrotsiosG. StrætkvernK.O. Spent substrate from mushroom cultivation: exploitation potential toward various applications and value-added products.Bioengineered2023141225213810.1080/21655979.2023.2252138 37670430
    [Google Scholar]
  47. WangW. DongH. YanR. LiH. LiP. ChenP. YangB. WangZ. Comparative study of lanostane-type triterpene acids in different parts of Poria cocos (Schw.) Wolf by UHPLC–Fourier transform MS and UHPLC-triple quadruple MS.J. Pharm. Biomed. Anal.201510220321410.1016/j.jpba.2014.09.014 25282601
    [Google Scholar]
  48. ZhangJ. FalandyszJ. HanćA. LorencW. WangY. BarałkiewiczD. Occurrence, distribution, and associations of essential and non-essential nlms in the medicinal and edible fungus “Fuling” from southern China.Sci. Total Environ.202283115501110.1016/j.scitotenv.2022.155011 35381245
    [Google Scholar]
  49. JiangY. FanL. Evaluation of anticancer activities of Poria cocos ethanol extract in breast cancer: in vivo and in vitro, identification and mechanism.J. Ethnopharmacol.202025711285110.1016/j.jep.2020.112851 32283190
    [Google Scholar]
  50. PengX. JiaC. ChiH. WangP. FuH. LiY. WangQ. Efficacy and pharmacological mechanism of Poria cocos-based formulas combined with chemotherapy for ovarian cancer: A integrated systems pharmacology study.Front. Pharmacol.20221378881010.3389/fphar.2022.788810 35401186
    [Google Scholar]
  51. QuayleL.A. OttewellP.D. HolenI. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention.Clin. Exp. Metastasis201835883184610.1007/s10585‑018‑9946‑2 30377878
    [Google Scholar]
  52. DaiB. ClarkA.M. WellsA. Mesenchymal Stem cell-secreted exosomes and soluble signals regulate breast cancer metastatic dormancy: Current progress and future outlook.Int. J. Mol. Sci.20242513713310.3390/ijms25137133 39000239
    [Google Scholar]
  53. XiaoY. HuZ. LiuH. JiangX. ZhouT. WangH. LongH. LiM. A review on antitumor effect of pachymic acid.Medicine (Baltimore)202410338e3975210.1097/MD.0000000000039752 39312302
    [Google Scholar]
  54. YounesM. AmmouryC. HaykalT. NasrL. SarkisR. RizkS. The selective anti-proliferative and pro-apoptotic effect of A. cherimola on MDA-MB-231 breast cancer cell line.BMC Complement. Med. Ther.202020134310.1186/s12906‑020‑03120‑1 33187495
    [Google Scholar]
  55. VaouN. StavropoulouE. VoidarouC.C. TsakrisZ. RozosG. TsigalouC. BezirtzoglouE. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects.Antibiotics2022118101410.3390/antibiotics11081014 36009883
    [Google Scholar]
  56. Barba-OstriaC. Carrera-PachecoS.E. Gonzalez-PastorR. Heredia-MoyaJ. Mayorga-RamosA. Rodríguez-PólitC. Zúñiga-MirandaJ. Arias-AlmeidaB. GuamánL.P. Evaluation of biological activity of natural compounds: Current trends and methods.Molecules20222714449010.3390/molecules27144490 35889361
    [Google Scholar]
  57. LiJ. GuA. NongX.M. ZhaiS. YueZ.Y. LiM.Y. LiuY. Six‐membered aromatic nitrogen heterocyclic anti‐tumor agents: Synthesis and applications.Chem. Rec.20232312e20230029310.1002/tcr.202300293 38010365
    [Google Scholar]
  58. ThakurM.P. Advances in post-harvest technology and value additions of edible mushrooms.Indian Phytopathol.201871330331510.1007/s42360‑018‑0060‑9
    [Google Scholar]
  59. MayirnaoH-S. SharmaK. JangirP. KaurS. KapoorR. Mushroom-derived nutraceuticals in the 21st century: an appraisal and future perspectives.J. Future Foods20255434236010.1016/j.jfutfo.2024.10.004
    [Google Scholar]
  60. LiY. WangP. ZhangZ. LiuQ. A novel lectin from mushroom Phellodon melaleucus displays hemagglutination activity, and antitumor activity in a B16 melanoma mouse model.Food Sci. Hum. Wellness20231251885189210.1016/j.fshw.2023.02.040
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968372088250629181159
Loading
/content/journals/ccb/10.2174/0122127968372088250629181159
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): benefits; cancer; health; Mushrooms; studies; therapy; uses
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test