Skip to content
2000
image of A Comprehensive Review on the Biological Potential of Mushrooms in Combating Cancer

Abstract

Globally, cancer is the biggest cause of death. Many chemotherapy medications have been widely utilized to treat cancer. Current anticancer medications, however, lead to resistance and serious adverse effects. Thus, it's critical to find new, potent anticancer drugs with few or no adverse effects. Interestingly, natural substances have been emphasized as anticancer medications. By preventing cancer side effects such as nausea, bone marrow suppression, anaemia, and decreased resistance, mushrooms are known to support chemotherapy and radiation therapy. Several bioactive compounds, including anti-tumour drugs, have recently been discovered in a variety of mushrooms. Among them, mushrooms with biological properties, such as anticancer activity, have drawn the attention of several researchers. Discussing the anticancer potential of various mushrooms and the underlying molecular pathways is the goal of this review. and are among the genera of mushrooms that have been linked to cancer prevention. Inducing reactive oxygen species, inhibiting mitotic kinase, preventing angiogenesis, inhibiting topoisomerase, causing apoptosis, and ultimately halting the spread of cancer are all important functions of anti-cancer drugs. We include information on the numerous mushrooms and substances generated from them, including their current clinical status and potential molecular mechanisms of action. Researchers and medical professionals may find this study useful in creating evidence-based preclinical and clinical studies to evaluate the anti-cancer potential of mushrooms. This review incorporates all the reviews on mushrooms as anti-cancer agents.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968372088250629181159
2025-07-14
2025-10-31
Loading full text...

Full text loading...

References

  1. Anand P. Kunnumakara A.B. Sundaram C. Harikumar K.B. Tharakan S.T. Lai O.S. Sung B. Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008 25 9 2097 2116 10.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  2. Hossain M.S. Karuniawati H. Jairoun A.A. Urbi Z. Ooi D.J. John A. Lim Y.C. Kibria K.M.K. Mohiuddin A.K.M. Ming L.C. Goh K.W. Hadi M.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers 2022 14 7 1732 10.3390/cancers14071732 35406504
    [Google Scholar]
  3. Eccles S.A. Welch D.R. Metastasis: Recent discoveries and novel treatment strategies. Lancet 2007 369 9574 1742 1757 10.1016/S0140‑6736(07)60781‑8 17512859
    [Google Scholar]
  4. Talib W.H. Alsayed A.R. Barakat M. Abu-Taha M.I. Mahmod A.I. Targeting drug chemo-resistance in cancer using natural products. Biomedicines 2021 9 10 1353 10.3390/biomedicines9101353 34680470
    [Google Scholar]
  5. Patel S Goyal A A Recent developments in mushrooms as anticancer therapeutics: a review. 3 Biotech 2012 2 1 1 15
    [Google Scholar]
  6. Vetter J. The mushroom glucans: Molecules of high biological and medicinal importance. Foods 2023 12 5 1009 10.3390/foods12051009 36900525
    [Google Scholar]
  7. Lemieszek M. Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp. Oncol. (Pozn.) 2012 4 4 285 289 10.5114/wo.2012.30055 23788896
    [Google Scholar]
  8. Friedman M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 2016 5 4 80 10.3390/foods5040080 28231175
    [Google Scholar]
  9. Yu C. Dong Q. Chen M. Zhao R. Zha L. Zhao Y. Zhang M. Zhang B. Ma A. The effect of mushroom dietary fiber on the gut microbiota and related health benefits: A review. J. Fungi 2023 9 10 1028 10.3390/jof9101028 37888284
    [Google Scholar]
  10. Törős G. El-Ramady H. Prokisch J. Velasco F. Llanaj X. Nguyen D.H.H. Peles F. Modulation of the gut microbiota with prebiotics and antimicrobial agents from Pleurotus ostreatus mushroom. Foods 2023 12 10 2010 10.3390/foods12102010 37238827
    [Google Scholar]
  11. Ioele G. Chieffallo M. Occhiuzzi M.A. De Luca M. Garofalo A. Ragno G. Grande F. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules 2022 27 17 5436 10.3390/molecules27175436 36080203
    [Google Scholar]
  12. Garg P. Malhotra J. Kulkarni P. Horne D. Salgia R. Singhal S.S. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers 2024 16 13 2478 10.3390/cancers16132478 39001539
    [Google Scholar]
  13. Baars J.J.P. Scholtmeijer K. Sonnenberg A.S.M. van Peer A. Critical factors involved in primordia building in Agaricus bisporus: A review. Molecules 2020 25 13 2984 10.3390/molecules25132984 32610638
    [Google Scholar]
  14. Wang X. Ha D. Mori H. Chen S. White button mushroom (Agaricus bisporus) disrupts androgen receptor signaling in human prostate cancer cells and patient-derived xenograft. J. Nutr. Biochem. 2021 89 108580 10.1016/j.jnutbio.2020.108580 33388344
    [Google Scholar]
  15. Forni C. Facchiano F. Bartoli M. Pieretti S. Facchiano A. D’Arcangelo D. Norelli S. Valle G. Nisini R. Beninati S. Tabolacci C. Jadeja R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int. 2019 2019 1 16 10.1155/2019/8748253 31080832
    [Google Scholar]
  16. Bae W.J. Choi J.B. Kim K.S. Ha U.S. Hong S.H. Lee J.Y. Hwang T.K. Hwang S.Y. Wang Z. Kim S.W. Inhibition of proliferation of prostate cancer cell line DU-145 in vitro and in vivo Using Salvia miltiorrhiza Bunge. Chin. J. Integr. Med. 2020 26 7 533 538 10.1007/s11655‑017‑2801‑5 28337641
    [Google Scholar]
  17. Rahimnia R. Akbari M.R. Yasseri A.F. Taheri D. Mirzaei A. Ghajar H.A. Farashah P.D. Baghdadabad L.Z. Aghamir S.M.K. The effect of Ganoderma lucidum polysaccharide extract on sensitizing prostate cancer cells to flutamide and docetaxel: An in vitro study. Sci. Rep. 2023 13 1 18940 10.1038/s41598‑023‑46118‑8 37919464
    [Google Scholar]
  18. Chang W. Feng W. Yang Y. Shen Y. Song T. Li Y. Cai W. Metagenomics analysis of the effects of Agaricus bisporus mycelia on microbial diversity and CAZymes in compost. PeerJ 2022 10 e14426 10.7717/peerj.14426 36523457
    [Google Scholar]
  19. Corzo L. Fernández-Novoa L. Carrera I. Martínez O. Rodríguez S. Alejo R. Cacabelos R. Nutrition, health, and disease: Role of selected marine and vegetal nutraceuticals. Nutrients 2020 12 3 747 10.3390/nu12030747 32168971
    [Google Scholar]
  20. AlAli M. Alqubaisy M. Aljaafari M.N. AlAli A.O. Baqais L. Molouki A. Abushelaibi A. Lai K.S. Lim S.H.E. Nutraceuticals: Transformation of conventional foods into health promoters/disease preventers and safety considerations. Molecules 2021 26 9 2540 10.3390/molecules26092540 33925346
    [Google Scholar]
  21. Mirończuk-Chodakowska I. Kujawowicz K. Witkowska A.M. Beta-Glucans from Fungi: Biological and health-promoting potential in the COVID-19 pandemic era. Nutrients 2021 13 11 3960 10.3390/nu13113960 34836215
    [Google Scholar]
  22. Cognigni V. Ranallo N. Tronconi F. Morgese F. Berardi R. Potential benefit of β-glucans as adjuvant therapy in immuno-oncology: A review. Explor. Target Antitumor Ther. 2021 2 2 122 138 10.37349/etat.2021.00036 36046144
    [Google Scholar]
  23. Hetland G. Johnson E. Lyberg T. Kvalheim G. The mushroom Agaricus blazei murill elicits medicinal effects on tumor, infection, allergy, and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation. Adv. Pharmacol. Sci. 2011 2011 1 10 10.1155/2011/157015 21912538
    [Google Scholar]
  24. Guthrie G.J.K. Charles K.A. Roxburgh C.S.D. Horgan P.G. McMillan D.C. Clarke S.J. The systemic inflammation-based neutrophil–lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013 88 1 218 230 10.1016/j.critrevonc.2013.03.010 23602134
    [Google Scholar]
  25. Geethangili M. Tzeng Y.M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med. 2011 2011 1 212641 10.1093/ecam/nep108 19687189
    [Google Scholar]
  26. Liu Y.W. Lu K.H. Ho C.T. Sheen L.Y. Protective effects of Antrodia cinnamomea against liver injury. J. Tradit. Complement. Med. 2012 2 4 284 294 10.1016/S2225‑4110(16)30114‑6 24716143
    [Google Scholar]
  27. Chuang H.C. Shi Y.Z. Cheng C.M. Pan C.Y. Cheng A.C. Effects of Antrodia camphorata-supplemented diets on the non-specific immune responses and disease resistance of orange-spotted grouper (Epinephelus coioides) against Vibrio alginolyticus and Streptococcus iniae. J. Mar. Sci. Eng. 2022 10 4 458 10.3390/jmse10040458
    [Google Scholar]
  28. Wang J.J. Wu C.C. Lee C.L. Hsieh S.L. Chen J.B. Lee C.I. Antimelanogenic, antioxidant and antiproliferative effects of antrodia camphorata fruiting bodies on B16-F0 melanoma cells. PLoS One 2017 12 1 e0170924 10.1371/journal.pone.0170924 28125738
    [Google Scholar]
  29. Jiao C. Xie Y.Z. Yang X. Li H. Li X.M. Pan H.H. Cai M.H. Zhong H.M. Yang B.B. Anticancer activity of Amauroderma rude. PLoS One 2013 8 6 e66504 10.1371/journal.pone.0066504 23840494
    [Google Scholar]
  30. Pan H. Han Y. Huang J. Yu X. Jiao C. Yang X. Dhaliwal P. Xie Y. Yang B.B. Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth. Oncotarget 2015 6 19 17777 17791 10.18632/oncotarget.4397 26219260
    [Google Scholar]
  31. Li X. Wu Q. Xie Y. Ding Y. Du W.W. Sdiri M. Yang B.B. Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget 2015 6 19 17832 17846 10.18632/oncotarget.4026 26098777
    [Google Scholar]
  32. Lo H.C. Hsieh C. Lin F.Y. Hsu T.H. A Systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in dong-chongxiacao (Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. J. Tradit. Complement. Med. 2013 3 1 16 32 10.1016/S2225‑4110(16)30164‑X 24716152
    [Google Scholar]
  33. Dworecka-Kaszak B. Cordyceps fungi as natural killers, new hopes for medicine and biological control factors. Ann. Parasitol. 2014 60 3 151
    [Google Scholar]
  34. Lao T.D. Le T.A.H. Truong N.B. Morphological and genetic characteristics of the novel entomopathogenic fungus Ophiocordyceps langbianensis (Ophiocordycipitaceae, Hypocreales) from Lang Biang biosphere reserve, vietnam. Sci. Rep. 2021 11 1 1412 10.1038/s41598‑020‑78265‑7 33446667
    [Google Scholar]
  35. Wei Y. Zhang L. Wang J. Wang W. Niyati N. Guo Y. Wang X. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 2021 755 Pt 1 142548 10.1016/j.scitotenv.2020.142548 33035977
    [Google Scholar]
  36. Wawrzyn G.T. Quin M.B. Choudhary S. López-Gallego F. Schmidt-Dannert C. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem. Biol. 2012 19 6 772 783 10.1016/j.chembiol.2012.05.012 22726691
    [Google Scholar]
  37. Chaverra-Muñoz L. Briem T. Hüttel S. Optimization of the production process for the anticancer lead compound illudin M: Improving titers in shake-flasks. Microb. Cell Fact. 2022 21 1 98 10.1186/s12934‑022‑01827‑z 35643529
    [Google Scholar]
  38. Weber G.F. DNA Damaging Drugs. In: Molecular Therapies of Cancer. Springer 2014 9 112
    [Google Scholar]
  39. James A.R. Jayaprakash S. Sundeep L.M. In-vitro cytotoxicity, apoptotic property, and gene expression changes induced by naringenin-7-O-glucoside in triple-negative breast cancer. Cureus 2024 16 4 e58634 10.7759/cureus.58634 38770462
    [Google Scholar]
  40. Kelner M.J. McMorris T.C. Taetle R. Preclinical evaluation of illudins as anticancer agents: Basis for selective cytotoxicity. J. Natl. Cancer Inst. 1990 82 19 1562 1565 10.1093/jnci/82.19.1562 2402017
    [Google Scholar]
  41. Linder B. Zoldakova M. Kornyei Z. Köhler L.H.F. Seibt S. Menger D. Wetzel A. Madarász E. Schobert R. Kögel D. Biersack B. Antitumor effects of a new retinoate of the fungal cytotoxin illudin m in brain tumor models. Int. J. Mol. Sci. 2022 23 16 9056 10.3390/ijms23169056 36012321
    [Google Scholar]
  42. Urooj T. Wasim B. Mushtaq S. Shah S.N.N. Shah M. Cancer cell-derived secretory factors in breast cancer-associated lung metastasis: Their mechanism and future prospects. Curr. Cancer Drug Targets 2020 20 3 168 186 10.2174/1568009620666191220151856 31858911
    [Google Scholar]
  43. Wang L. Qin J.H. Liang Y. Yu Y.H. Cho W.C. Wang R.A. Differential distribution of immune cells in breast invasive carcinoma vs. breast carcinoma in situ and its significance in interpretation of immune surveillance. Int. J. Clin. Exp. Pathol. 2017 10 7 7743 7749 31966621
    [Google Scholar]
  44. Meng X. Zhong J. Liu S. Murray M. Gonzalez-Angulo A.M. A new hypothesis for the cancer mechanism. Cancer Metastasis Rev. 2012 31 1-2 247 268 10.1007/s10555‑011‑9342‑8 22179983
    [Google Scholar]
  45. Desisa B. Muleta D. Dejene T. Jida M. Goshu A. Martin-Pinto P. Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia. J. Fungi 2023 9 8 811 10.3390/jof9080811 37623582
    [Google Scholar]
  46. Martín C. Zervakis G.I. Xiong S. Koutrotsios G. Strætkvern K.O. Spent substrate from mushroom cultivation: exploitation potential toward various applications and value-added products. Bioengineered 2023 14 1 2252138 10.1080/21655979.2023.2252138 37670430
    [Google Scholar]
  47. Wang W. Dong H. Yan R. Li H. Li P. Chen P. Yang B. Wang Z. Comparative study of lanostane-type triterpene acids in different parts of Poria cocos (Schw.) Wolf by UHPLC–Fourier transform MS and UHPLC-triple quadruple MS. J. Pharm. Biomed. Anal. 2015 102 203 214 10.1016/j.jpba.2014.09.014 25282601
    [Google Scholar]
  48. Zhang J. Falandysz J. Hanć A. Lorenc W. Wang Y. Barałkiewicz D. Occurrence, distribution, and associations of essential and non-essential nlms in the medicinal and edible fungus “Fuling” from southern China. Sci. Total Environ. 2022 831 155011 10.1016/j.scitotenv.2022.155011 35381245
    [Google Scholar]
  49. Jiang Y. Fan L. Evaluation of anticancer activities of Poria cocos ethanol extract in breast cancer: in vivo and in vitro, identification and mechanism. J. Ethnopharmacol. 2020 257 112851 10.1016/j.jep.2020.112851 32283190
    [Google Scholar]
  50. Peng X. Jia C. Chi H. Wang P. Fu H. Li Y. Wang Q. Efficacy and pharmacological mechanism of Poria cocos-based formulas combined with chemotherapy for ovarian cancer: A integrated systems pharmacology study. Front. Pharmacol. 2022 13 788810 10.3389/fphar.2022.788810 35401186
    [Google Scholar]
  51. Quayle L.A. Ottewell P.D. Holen I. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention. Clin. Exp. Metastasis 2018 35 8 831 846 10.1007/s10585‑018‑9946‑2 30377878
    [Google Scholar]
  52. Dai B. Clark A.M. Wells A. Mesenchymal Stem cell-secreted exosomes and soluble signals regulate breast cancer metastatic dormancy: Current progress and future outlook. Int. J. Mol. Sci. 2024 25 13 7133 10.3390/ijms25137133 39000239
    [Google Scholar]
  53. Xiao Y. Hu Z. Liu H. Jiang X. Zhou T. Wang H. Long H. Li M. A review on antitumor effect of pachymic acid. Medicine (Baltimore) 2024 103 38 e39752 10.1097/MD.0000000000039752 39312302
    [Google Scholar]
  54. Younes M. Ammoury C. Haykal T. Nasr L. Sarkis R. Rizk S. The selective anti-proliferative and pro-apoptotic effect of A. cherimola on MDA-MB-231 breast cancer cell line. BMC Complement Med. Ther. 2020 20 1 343 10.1186/s12906‑020‑03120‑1 33187495
    [Google Scholar]
  55. Vaou N. Stavropoulou E. Voidarou C.C. Tsakris Z. Rozos G. Tsigalou C. Bezirtzoglou E. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects. Antibiotics 2022 11 8 1014 10.3390/antibiotics11081014 36009883
    [Google Scholar]
  56. Barba-Ostria C. Carrera-Pacheco S.E. Gonzalez-Pastor R. Heredia-Moya J. Mayorga-Ramos A. Rodríguez-Pólit C. Zúñiga-Miranda J. Arias-Almeida B. Guamán L.P. Evaluation of biological activity of natural compounds: Current trends and methods. Molecules 2022 27 14 4490 10.3390/molecules27144490 35889361
    [Google Scholar]
  57. Li J. Gu A. Nong X.M. Zhai S. Yue Z.Y. Li M.Y. Liu Y. Six‐membered aromatic nitrogen heterocyclic anti‐tumor agents: Synthesis and applications. Chem. Rec. 2023 23 12 e202300293 10.1002/tcr.202300293 38010365
    [Google Scholar]
  58. Thakur M.P. Advances in post-harvest technology and value additions of edible mushrooms. Indian Phytopathol. 2018 71 3 303 315 10.1007/s42360‑018‑0060‑9
    [Google Scholar]
  59. Mayirnao H-S. Sharma K. Jangir P. Kaur S. Kapoor R. Mushroom-derived nutraceuticals in the 21st century: an appraisal and future perspectives. J. Future Foods 2025 5 4 342 360 10.1016/j.jfutfo.2024.10.004
    [Google Scholar]
  60. Li Y. Wang P. Zhang Z. Liu Q. A novel lectin from mushroom Phellodon melaleucus displays hemagglutination activity, and antitumor activity in a B16 melanoma mouse model. Food Sci. Hum. Wellness 2023 12 5 1885 1892 10.1016/j.fshw.2023.02.040
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968372088250629181159
Loading
/content/journals/ccb/10.2174/0122127968372088250629181159
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer ; Mushrooms ; benefits ; health ; studies ; uses ; therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test