Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Introduction

Freshwater bivalves are considered effective biomarkers for pollution in aquatic ecosystems. Despite advances in the use of zinc oxide nanoproducts in several sectors, such as food, industry, and medicine, paying attention to their environmental impacts is crucial. The objective of the study was to investigate the mechanisms of zinc oxide-chitosan nanocomposites (ZnO-CS NCs) ecotoxic in freshwater environments using freshwater bivalves as a sensitive indicator.

Methods

After preparing and characterizing ZnO NPs and ZnO-CS NCs with transmission electron microscopy, ultraviolet spectroscopy, and X-ray diffraction, we exposed the bivalve to three different doses of ZnO NPs and ZnO-CS NCs (12.5, 25, and 50 mg/L) for 7 days.

Results

ZnO-CS NCs concentrations significantly increased malondialdehyde and nitric oxide levels, whereas glutathione and catalase levels decreased in investigated organs. Furthermore, histological changes were detected in the tissues of the gills and mantle.

Discussion

The bivalve organs had varying quantities of MDA, NO, GSH, and CAT. This could be related to the accumulation pattern of heavy metals in each organ, their close interaction with water, or the removal rates.

Conclusion

We concluded from our findings that the toxicity of ZnO-CS NCs on freshwater bivalves causes histological alterations and an oxidative stress response. Moreover, was proposed as a highly sensitive bioindicator to monitor water contamination induced by diverse nanoparticles because it can accumulate and concentrate most pollutants, even at low concentrations. As a result, we recommend conducting additional studies with fresh bivalves to evaluate the aquatic ecosystem well and reduce water contamination at both local and worldwide levels.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968350685250325165915
2025-04-11
2025-11-02
Loading full text...

Full text loading...

References

  1. GiannousiK. MenelaouM. ArvanitidisJ. AngelakerisM. PantazakiA. Dendrinou-SamaraC. Hetero-nanocomposites of magnetic and antifungal nanoparticles as a platform for magnetomechanical stress induction in Saccharomyces cerevisiae.J. Mater. Chem. B Mater. Biol. Med.20153265341535110.1039/C5TB00734H 32262610
    [Google Scholar]
  2. SimonetB.M. ValcárcelM. Monitoring nanoparticles in the environment.Anal. Bioanal. Chem.20093931172110.1007/s00216‑008‑2484‑z 18974979
    [Google Scholar]
  3. SalieriB. RighiS. PasterisA. OlsenS.I. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle.Sci. Total Environ.201550549450210.1016/j.scitotenv.2014.09.107 25461051
    [Google Scholar]
  4. GirardelloF. Custódio LeiteC. Vianna VillelaI. da Silva MachadoM. Luiz Mendes JuchemA. Roesch-ElyM. Neves FernandesA. SalvadorM. Antonio Pêgas HenriquesJ. Titanium dioxide nanoparticles induce genotoxicity but not mutagenicity in golden mussel Limnoperna fortunei.Aquat. Toxicol.201617022322810.1016/j.aquatox.2015.11.030 26675368
    [Google Scholar]
  5. GirardelloF. LeiteC.C. BrancoC.S. Roesch-ElyM. FernandesA.N. SalvadorM. HenriquesJ.A.P. Antioxidant defences and haemocyte internalization in Limnoperna fortunei exposed to TiO2 nanoparticles.Aquat. Toxicol.201617619019610.1016/j.aquatox.2016.04.024 27152940
    [Google Scholar]
  6. MallevreF. FernandesT.F. AsprayT.J. Silver, zinc oxide and titanium dioxide nanoparticle ecotoxicity to bioluminescent Pseudomonas putida in laboratory medium and artificial wastewater.Environ. Pollut.201419521822510.1016/j.envpol.2014.09.002 25261625
    [Google Scholar]
  7. RamanaC.V. Carbajal-FrancoG. VemuriR.S. TroitskaiaI.B. GromilovS.A. AtuchinV.V. Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure.Mater. Sci. Eng. B20101741-327928410.1016/j.mseb.2010.03.060
    [Google Scholar]
  8. DyshlyukL. BabichO. IvanovaS. VasilchencoN. AtuchinV. KorolkovI. RussakovD. ProsekovA. Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation.Int. Biodeterior. Biodegradation202014610482110.1016/j.ibiod.2019.104821
    [Google Scholar]
  9. WangZ. LeeY.H. WuB. HorstA. KangY. TangY.J. ChenD.R. Anti-microbial activities of aerosolized transition metal oxide nanoparticles.Chemosphere201080552552910.1016/j.chemosphere.2010.04.047 20478610
    [Google Scholar]
  10. WuB. WangY. LeeY.H. HorstA. WangZ. ChenD.R. SureshkumarR. TangY.J. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes.Environ. Sci. Technol.20104441484148910.1021/es9030497 20102184
    [Google Scholar]
  11. YanatM. SchroënK. Preparation methods and applications of chitosan nanoparticles; With an outlook toward reinforcement of biodegradable packaging.React. Funct. Polym.202116110484910.1016/j.reactfunctpolym.2021.104849
    [Google Scholar]
  12. TaylorP. TharanathanR.N. KitturF.S. Critical reviews in food science and nutrition chitin — The undisputed biomolecule of great potential chitin — The undisputed biomolecule of great potential.Crit. Rev. Food Sci. Nutr.2003436187
    [Google Scholar]
  13. BuiV. ParkD. LeeY.C. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: A mini review of the research trends.Polymers2017912110.3390/polym9010021 30970696
    [Google Scholar]
  14. PiccinnoF. GottschalkF. SeegerS. NowackB. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world.J. Nanopart. Res.2012149110910.1007/s11051‑012‑1109‑9
    [Google Scholar]
  15. SharmaV. AndersonD. DhawanA. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2).Apoptosis201217885287010.1007/s10495‑012‑0705‑6 22395444
    [Google Scholar]
  16. LozanoT. ReyM. RojasE. MoyaS. FleddermannJ. Estrela-LopisI. DonathE. WangB. MaoZ. GaoC. González-FernándezÁ. Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines.J. Phys. Conf. Ser.201130401204610.1088/1742‑6596/304/1/012046
    [Google Scholar]
  17. FahmyS.R. Abdel-GhaffarF. BakryF.A. SayedD.A. Ecotoxicological effect of sublethal exposure to zinc oxide nanoparticles on freshwater snail Biomphalaria alexandrina.Arch. Environ. Contam. Toxicol.201467219220210.1007/s00244‑014‑0020‑z 24736985
    [Google Scholar]
  18. MoloukhiaH. SleemS. Bioaccumulation, fate and toxicity of two heavy metals common in industrial wastes in two aquatic molluscs.J. Am. Sci.20117459464
    [Google Scholar]
  19. MohamedA.S. Bin DajemS. Al-KahtaniM. AliS.B. IbrahimE. MorsyK. FahmyS.R. Silver/chitosan nanocomposites induce physiological and histological changes in freshwater bivalve.J. Trace Elem. Med. Biol.20216512671910.1016/j.jtemb.2021.126719 33517023
    [Google Scholar]
  20. MohamedA.S. Bin DajemS. Al-KahtaniM. AliS.B. AlshehriM. ShatiA. MorsyK. FahmyS.R. Freshwater clam as a potential bioindicator for silver/saponin nanocomposites toxicity.Bull. Environ. Contam. Toxicol.2020105682783410.1007/s00128‑020‑03038‑x 33156393
    [Google Scholar]
  21. OmarT.Y. ElshenawyH.I.A. AbdelfattahM.A. Al ShawoushA.M. MohamedA.S. SaadD.Y. Biointerfrence between Zinc Oxide/Alginate nanocomposites and freshwater bivalve.Biointerface Res. Appl. Chem.202213327710.33263/BRIAC133.277
    [Google Scholar]
  22. CaoD. GongS. ShuX. ZhuD. LiangS. Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process.Nanoscale Res. Lett.201914121010.1186/s11671‑019‑3038‑3 31222635
    [Google Scholar]
  23. MohamedA.S. Elkareem MustafaM.A. SolimanA.M. FahmyS.R. Potential inhibition of ehrlich ascites carcinoma by naja nubiae crude venom in swiss albino mice.Biointerface Res. Appl. Chem.20211267741775110.33263/BRIAC126.77417751
    [Google Scholar]
  24. YousseA. BaiomyA. FahmyS.R. MohamedA. SaadD. DesokyR. Potential anti-osteoporotic effect of Allolobophora caliginosa extract in orchiectomized rats.Pharm. Sci. Asia202249213814610.29090/psa.2022.02.21.144
    [Google Scholar]
  25. MohamedA.S. IbrahimW.M. ZakiN.I. AliS.B. SolimanA.M. Effectiveness of Coelatura aegyptiaca extract combination with atorvastatin on experimentally induced hyperlipidemia in rats.Evid. Based Complement. Alternat. Med.201920191910.1155/2019/9726137 30713580
    [Google Scholar]
  26. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.196361882888 13967893
    [Google Scholar]
  27. MontgomeryH. DymockJ.F. Determination of nitrite in water.Analyst196186414
    [Google Scholar]
  28. ZamanH.G. BalooL. AzizF. KuttyS.R. AshrafA. COD adsorption and optimization from produced water using chitosan–ZnO nanocomposite.Appl. Nanosci.20221261885189810.1007/s13204‑022‑02392‑y
    [Google Scholar]
  29. GuptaV.K. RastogiA. DwivediM.K. MohanD. Process Development for the Removal of Zinc and Cadmium from Wastewater Using Slag—A Blast Furnace Waste Material.Separation Sci. Technol.199732172883291210.1080/01496399708002227
    [Google Scholar]
  30. BurakovA.E. GaluninE.V. BurakovaI.V. KucherovaA.E. AgarwalS. TkachevA.G. GuptaV.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.Ecotoxicol. Environ. Saf.201814870271210.1016/j.ecoenv.2017.11.034 29174989
    [Google Scholar]
  31. AtuchinV.V. AsyakinaL.K. SerazetdinovaY.R. FrolovaA.S. VelichkovichN.S. ProsekovA.Y. Microorganisms for bioremediation of soils contaminated with heavy metals.Microorganisms202311486410.3390/microorganisms11040864 37110287
    [Google Scholar]
  32. SaravananR. KarthikeyanN. GuptaV.K. ThirumalE. ThangaduraiP. NarayananV. StephenA. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light.Mater. Sci. Eng. C20133342235224410.1016/j.msec.2013.01.046 23498253
    [Google Scholar]
  33. NémethI. MolnárS. VaszitaE. MolnárM. The biolog EcoPlate™ technique for assessing the effect of metal oxide nanoparticles on freshwater microbial communities.Nanomaterials2021117177710.3390/nano11071777 34361164
    [Google Scholar]
  34. SanpraditP. ByeonE. LeeJ.S. PeerakietkhajornS. Ecotoxicological, ecophysiological, and mechanistic studies on zinc oxide (ZnO) toxicity in freshwater environment.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202327310972010.1016/j.cbpc.2023.109720 37586582
    [Google Scholar]
  35. KovochichM. XiaT. XuJ. YehJ.I. Principles and procedures to assess nanomaterial toxicity.In: Environmental Nanotechnology: Applications and Impacts of Nanomaterials; The McGraw-Hill Companies,2007205230
    [Google Scholar]
  36. YangH. LiuC. YangD. ZhangH. XiZ. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition.J. Appl. Toxicol.2009291697810.1002/jat.1385 18756589
    [Google Scholar]
  37. NelA. XiaT. MädlerL. LiN. Toxic potential of materials at the nanolevel.Science2006311576162262710.1126/science.1114397 16456071
    [Google Scholar]
  38. ValkoM. IzakovicM. MazurM. RhodesC.J. TelserJ. Role of oxygen radicals in DNA damage and cancer incidence.Mol. Cell. Biochem.2004266375610.1023/B:MCBI.0000049134.69131.89
    [Google Scholar]
  39. TanerG. AydınS. BacanlıM. SarıgölZ. ŞahinT. BaşaranA.A. BaşaranN. Modulating effects of pycnogenol® on oxidative stress and DNA damage induced by sepsis in rats.Phytother. Res.201428111692170010.1002/ptr.5184 24919414
    [Google Scholar]
  40. KimH.Y. KimJ.K. ChoiJ.H. JungJ.Y. OhW.Y. KimD.C. LeeH.S. KimY.S. KangS.S. LeeS.H. LeeS.M. Hepatoprotective effect of pinoresinol on carbon tetrachloride-induced hepatic damage in mice.J. Pharmacol. Sci.2010112110511210.1254/jphs.09234FP 20093790
    [Google Scholar]
  41. CanesiL. CiacciC. FabbriR. MarcominiA. PojanaG. GalloG. Bivalve molluscs as a unique target group for nanoparticle toxicity.Mar. Environ. Res.201276162110.1016/j.marenvres.2011.06.005 21767873
    [Google Scholar]
  42. WrightB. LacchiniA.H. DaviesA.J. WalkerA.J. Regulation of nitric oxide production in snail (Lymnaea stagnalis) defence cells: A role for PKC and ERK signalling pathways.Biol. Cell200698526527810.1042/BC20050066 16293103
    [Google Scholar]
  43. TafallaC. NovoaB. FiguerasA. Production of nitric oxide by mussel (Mytilus galloprovincialis) hemocytes and effect of exogenous nitric oxide on phagocytic functions.Comp. Biochem. Physiol. B Biochem. Mol. Biol.2002132242343110.1016/S1096‑4959(02)00050‑7 12031469
    [Google Scholar]
  44. ÖzelR.E. AlkasirR.S.J. RayK. WallaceK.N. AndreescuS. Comparative evaluation of intestinal nitric oxide in embryonic zebrafish exposed to metal oxide nanoparticles.Small20139244250426110.1002/smll.201301087 23873807
    [Google Scholar]
  45. HiraishiH. TeranoA. OtaS. MutohH. SugimotoT. HaradaT. RazandiM. IveyK.J. Protection of cultured rat gastric cells against oxidant-induced damage by exogenous glutathione.Gastroenterology199410651199120710.1016/0016‑5085(94)90010‑8 7909779
    [Google Scholar]
  46. VermaR.S. MehtaA. SrivastavaN. In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins.Pestic. Biochem. Physiol.200788219119610.1016/j.pestbp.2006.11.002
    [Google Scholar]
  47. RegoliF. PrincipatoG. Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: Implications for the use of biochemical biomarkers.Aquat. Toxicol.199531214316410.1016/0166‑445X(94)00064‑W
    [Google Scholar]
  48. MadanyN.M.K. ShehataM.R. MohamedA.S. Ovothiol-A isolated from sea urchin eggs suppress oxidative stress, inflammation, and dyslipidemia resulted in restoration of liver activity in cholestatic rats.Biointerface Res. Appl. Chem.20211268152816210.33263/BRIAC126.81528162
    [Google Scholar]
  49. ChelikaniP. FitaI. LoewenP.C. Diversity of structures and properties among catalases.Cell. Mol. Life Sci.200461219220810.1007/s00018‑003‑3206‑5 14745498
    [Google Scholar]
  50. LivingstoneD.R. Organic Xenobiotic metabolism in marine invertebrates.Adv. Comp. Environ. Physiol.199174518510.1007/978‑3‑642‑75897‑3_2
    [Google Scholar]
  51. HaoL. ChenL. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles.Ecotoxicol. Environ. Saf.20128010311010.1016/j.ecoenv.2012.02.017 22425733
    [Google Scholar]
  52. YoloğluE. UçkunM. UçkunA.A. Metal accumulation and biochemical variations in the freshwater mussels (Unio mancus) collected from Atatürk Dam Lake, Turkey.Biochem. Syst. Ecol.201879606810.1016/j.bse.2018.05.006
    [Google Scholar]
  53. JingW. LangL. LinZ. LiuN. WangL. Cadmium bioaccumulation and elimination in tissues of the freshwater mussel Anodonta woodiana.Chemosphere201921932132710.1016/j.chemosphere.2018.12.033 30551097
    [Google Scholar]
  54. ChandrasekaranT.S. MiltonJ. SanthanabharathiB. PradhoshiniK.P. CojandarajL. PriyadharshiniM. AhmedM.S. MusthafaM.S. BalajiP. FaggioC. Heavy metals toxicity in edible bivalves and risk exposure to humans through its consumption from Adyar Estuary, Tamilnadu, India – A baseline study.Reg. Stud. Mar. Sci.20247910385410.1016/j.rsma.2024.103854
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968350685250325165915
Loading
/content/journals/ccb/10.2174/0122127968350685250325165915
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chitosan; Coelatora aegyptiaca; ecotoxicity; nanoparticles; oxidative stress; zinc oxide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test