Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Structural diversity, pharmacological relevance, and the ability to include N-containing heterocyclic derivatives through medicinal chemistry make these heterocyclic compounds known as essential scaffolds for the design and development of anticancer agents. Uncontrolled cell proliferation with metastasis remains a leading cause of global mortality from cancer. Enzyme binding sites interact with compounds with N-heterocycle to inhibit critical processes in cancer cells. The relative ease of synthesis, selective penetration, and low toxicity of these compounds make them desirable for use as a source of new therapeutic discoveries (over 90% of new therapeutic discoveries with approximately 65% of FDA-approved anticancer drugs (2010-2015). Focusing on selectivity, bioavailability, and low toxicity, this article compares the latest advancements in anticancer drug discovery, emphasizing the significance of SAR analysis in enhancing potency, efficacy, and development of N-heterocycle-based anticancer agents to overcome drug resistance.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968335169250107180240
2025-01-20
2025-10-31
Loading full text...

Full text loading...

References

  1. MehraA. SharmaV. VermaA. VenugopalS. MittalA. SinghG. KaurB. Indole derived anticancer agents.ChemistrySelect2022734e20220236110.1002/slct.202202361
    [Google Scholar]
  2. VenugopalS. SharmaV. MehraA. SinghI. SinghG. DNA intercalators as anticancer agents.Chem. Biol. Drug Des.2022100458059810.1111/cbdd.14116 35822451
    [Google Scholar]
  3. NagaiH. KimY.H. Cancer prevention from the perspective of global cancer burden patterns.J. Thorac. Dis.20179344845110.21037/jtd.2017.02.75 28449441
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  5. MaX. YuH. Global burden of cancer.Yale J. Biol. Med.2006793-48594 17940618
    [Google Scholar]
  6. AliI. LoneM. Al-OthmanZ. Al-WarthanA. SanagiM. Heterocyclic scaffolds: Centrality in anticancer drug development.Curr. Drug Targets201516771173410.2174/1389450116666150309115922 25751009
    [Google Scholar]
  7. AroraP. AroraV. LambaH. WadhwaD. Importance of heterocyclic chemistry: A review.Int. J. Pharm. Sci. Res.2012392947
    [Google Scholar]
  8. MartinsP. JesusJ. SantosS. RaposoL. Roma-RodriguesC. BaptistaP. FernandesA. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box.Molecules2015209168521689110.3390/molecules200916852 26389876
    [Google Scholar]
  9. LangD.K. KaurR. AroraR. SainiB. AroraS. Nitrogen-containing heterocycles as anticancer agents: An overview.Anticancer. Agents Med. Chem.2020201821502168
    [Google Scholar]
  10. HosseinzadehZ. RamazaniA. Razzaghi-AslN. Anti-cancer nitrogen-containing heterocyclic compounds.Curr. Org. Chem.201822232256227910.2174/1385272822666181008142138
    [Google Scholar]
  11. PearceS. The importance of heterocyclic compounds in anti-cancer drug design.Drug Discovery2017206670
    [Google Scholar]
  12. KinghornA.D. De BlancoE.J.C. LucasD.M. RakotondraibeH.L. OrjalaJ. SoejartoD.D. OberliesN.H. PearceC.J. WaniM.C. StockwellB.R. BurdetteJ. SwansonS.M. FuchsJ.R. PhelpsM.A. XuL. ZhangX. ShenY.Y. Discovery of anticancer agents of diverse natural origin.Anticancer Res.201636115623563810.21873/anticanres.11146 27793884
    [Google Scholar]
  13. KumarD. Kumar JainS. A comprehensive review of N-heterocycles as cytotoxic agents.Curr. Med. Chem.201623384338439410.2174/0929867323666160809093930 27516198
    [Google Scholar]
  14. OmarA. Review article; Anticancer activities of some fused heterocyclic moieties containing nitrogen and/or sulfur heteroatoms.Al-Azhar Journal of Pharmaceutical Sciences2020622395410.21608/ajps.2020.118375
    [Google Scholar]
  15. AminA. QadirT. SharmaP.K. JeelaniI. AbeH. A review on the medicinal and industrial applications of N-containing heterocycles.Open Med. Chem. J.2022161e18741045220901010.2174/18741045‑v16‑e2209010
    [Google Scholar]
  16. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective.Pharmaceuticals202316229910.3390/ph16020299 37259442
    [Google Scholar]
  17. EttahiriW. SaberM. OuzrourZ. LahmidiS. SalimR. AdardourM. BouyahyaA. BaouidA. EssassiE.M. RamliY. TalebM. Recent advances in the development of nitrogen containing heterocyclic compounds as anticancer agents: A review.Mor. J. Heterocycl. Chem.20232222660
    [Google Scholar]
  18. ZhangY.F. YinY.K. ZhangH. HanY.F. Metal N-heterocyclic carbene complexes as potential metallodrugs in antitumor therapy.Coord. Chem. Rev.202451421594110.1016/j.ccr.2024.215941
    [Google Scholar]
  19. ZhangX. FangX. GaoZ. ChenW. TaoF. CaiP. YuanH. ShuY. XuQ. SunY. GuY. Axitinib, a selective inhibitor of vascular endothelial growth factor receptor, exerts an anticancer effect in melanoma through promoting antitumor immunity.Anticancer Drugs201425220421110.1097/CAD.0000000000000033 24135499
    [Google Scholar]
  20. HillB.G. KotaV.K. KhouryH.J. Bosutinib: A third generation tyrosine kinase inhibitor for the treatment of chronic myeloid leukemia.Expert Rev. Anticancer Ther.201414776577010.1586/14737140.2014.924400 24875651
    [Google Scholar]
  21. MatulonisU.A. An oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer.J. Clin. Oncol.2009273356015606
    [Google Scholar]
  22. FujiiY. AmanoM. SeriuT. Pharmacological properties and clinical efficacy of dasatinib hydrate (Sprycel®), an anticancer drug for chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia.Nippon Yakurigaku Zasshi2009134315916710.1254/fpj.134.159 19749489
    [Google Scholar]
  23. PandeyP. DurejaH. Erlotinib: A targeted anticancer drug.Curr. Cancer Ther. Rev.201713110.2174/1573394713666170522181615
    [Google Scholar]
  24. VansteenkisteJ.F. Gefitinib (Iressa®): A novel treatment for non-small cell lung cancer.Expert Rev. Anticancer Ther.20044151710.1586/14737140.4.1.5 14748652
    [Google Scholar]
  25. GoswamiD. GuruleS. LahiryA. AnandA. KhurooA. MonifT. Clinical development of imatinib: An anticancer drug.Future Sci. OA201621FSO9210.4155/fso.15.92 28031942
    [Google Scholar]
  26. Dogan-TopalB. Bozal-PalabiyikB. OzkanS.A. UsluB. Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques.Sens. Actuators B Chem.201419418519410.1016/j.snb.2013.12.088
    [Google Scholar]
  27. AversaC. LeoneF. ZucchiniG. SeriniG. GeunaE. MilaniA. ValdembriD. MartinelloR. MontemurroF. Linifanib: current status and future potential in cancer therapy.Expert Rev. Anticancer Ther.201515667768710.1586/14737140.2015.1042369 25936222
    [Google Scholar]
  28. AbdelgalilA.A. AlkahtaniH.M. Al-JenoobiF.I. Sorafenib.Profiles Drug Subst. Excip. Relat. Methodol.20194423926610.1016/bs.podrm.2018.11.003 31029219
    [Google Scholar]
  29. FieldsJ.A. MetcalfJ. OverkC. AdameA. SpencerB. WrasidloW. FlorioJ. RockensteinE. HeJ.J. MasliahE. The anticancer drug sunitinib promotes autophagyand protects from neurotoxicity in an HIV-1 Tat model of neurodegeneration.J. Neurovirol.201723229030310.1007/s13365‑016‑0502‑z 28105557
    [Google Scholar]
  30. De LucaA. NormannoN. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors.IDrugs2010139636645 20799147
    [Google Scholar]
  31. YusefiM. ShameliK. JahangirianH. TeowS.Y. UmakoshiH. SalehB. Rafiee-moghaddamR. WebsterT.J. The potential anticancer activity of 5-fluorouracil loaded in cellulose fibers isolated from rice straw.Int. J. Nanomedicine2020155417543210.2147/IJN.S250047 32801697
    [Google Scholar]
  32. ŠkubníkJ. PavlíčkováV.S. RumlT. RimpelováS. Vincristine in combination therapy of cancer: Emerging trends in clinics.Biology202110984910.3390/biology10090849 34571726
    [Google Scholar]
  33. AlamM.M. NaeemM. KhanM.M.A. UddinM. Vincristine and vinblastine anticancer catharanthus alkaloids: Pharmacological applications and strategies for yield improvement.Catharanthus roseus.ChamSpringer International Publishing201727730710.1007/978‑3‑319‑51620‑2_11
    [Google Scholar]
  34. FujitaK. KubotaY. IshidaH. SasakiY. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer.World J. Gastroenterol.20152143122341224810.3748/wjg.v21.i43.12234 26604633
    [Google Scholar]
  35. LiF. JiangT. LiQ. LingX. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer?Am. J. Cancer Res.201771223502394 29312794
    [Google Scholar]
  36. VendittoV.J. SimanekE.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature.Mol. Pharm.20107230734910.1021/mp900243b 20108971
    [Google Scholar]
  37. Reis-MendesA. AlvesM. CarvalhoF. RemiãoF. BastosM.L. CostaV.M. Pixantrone, a new anticancer drug with the same old cardiac problems? An in vitro study with differentiated and non-differentiated H9c2 cells.Interdiscip. Toxicol.2018111132110.2478/intox‑2018‑0002 30181708
    [Google Scholar]
  38. El-SubbaghH.I. Al-BadrA.A. Cytarabine.Profiles Drug Subst. Excip. Relat. Methodol.2009343711310.1016/S1871‑5125(09)34002‑9 22469172
    [Google Scholar]
  39. Yaswanatha KumarN.L. BharathiK.K.N. MudgalJ. VasanthaRaju, S.G.; Manohara Reddy, S.A. Synthesis, characterization of novel Sesamol substituted with thiazolidin-4-one derivatives and their evaluation for anti-oxidant and anti-cancer activities.Results in Chemistry2021310009510.1016/j.rechem.2020.100095
    [Google Scholar]
  40. PuxedduM. ShenH. BaiR. ColucciaA. NalliM. MazzoccoliC. Da PozzoE. CavalliniC. MartiniC. OrlandoV. BiagioniS. MazzoniC. ColucciaA.M.L. HamelE. LiuT. SilvestriR. La ReginaG. Structure-activity relationship studies and in vitro and in vivo anticancer activity of novel 3-aroyl-1,4-diarylpyrroles against solid tumors and hematological malignancies.Eur. J. Med. Chem.202018511182810.1016/j.ejmech.2019.111828 31727471
    [Google Scholar]
  41. RostomS.A.F. FaidallahH.M. RadwanM.F. BadrM.H. Bifunctional ethyl 2-amino-4-methylthiazole-5-carboxylate derivatives: Synthesis and in vitro biological evaluation as antimicrobial and anticancer agents.Eur. J. Med. Chem.20147617018110.1016/j.ejmech.2014.02.027 24583356
    [Google Scholar]
  42. El-SheriefH.A.M. YoussifB.G.M. BukhariS.N.A. Abdel-AzizM. Abdel-RahmanH.M. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies.Bioorg. Chem.20187631432510.1016/j.bioorg.2017.12.013 29227915
    [Google Scholar]
  43. HarrasM.F. SabourR. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma.Bioorg. Chem.20187814915710.1016/j.bioorg.2018.03.014 29567429
    [Google Scholar]
  44. El-AdlK. El-HelbyA.A. SakrH. EissaI.H. El-HddadS.S.A. M I A Shoman F. Design synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme.Bioorg. Chem.202010210405910.1016/j.bioorg.2020.104059 32653608
    [Google Scholar]
  45. DaiH. GeS. GuoJ. ChenS. HuangM. YangJ. SunS. LingY. ShiY. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage.Eur. J. Med. Chem.20181431066107610.1016/j.ejmech.2017.11.098 29232583
    [Google Scholar]
  46. La ReginaG. BaiR. ColucciaA. FamigliniV. PellicciaS. PassacantilliS. MazzoccoliC. RuggieriV. SisinniL. BolognesiA. RensenW.M. MieleA. NalliM. AlfonsiR. Di MarcotullioL. GulinoA. BrancaleA. NovellinoE. DondioG. VultaggioS. VarasiM. MercurioC. HamelE. LaviaP. SilvestriR. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer.J. Med. Chem.201457156531655210.1021/jm500561a 25025991
    [Google Scholar]
  47. AlsayariA. AsiriY.I. MuhsinahA.B. HassanM.Z. Anticolon cancer properties of pyrazole derivatives acting through xanthine oxidase inhibition.J. Oncol.2021202111510.1155/2021/5691982 34326873
    [Google Scholar]
  48. AshourpourM. Mostafavi HosseiniF. AminiM. Saeedian MoghadamE. KazerouniF. ArmanS.Y. ShahsavariZ. Pyrazole derivatives induce apoptosis via ROS generation in the triple negative breast cancer cells, MDA-MB-468.Asian Pac. J. Cancer Prev.20212272079208710.31557/APJCP.2021.22.7.2079 34319030
    [Google Scholar]
  49. ŞenkardeşS. TüreA. EkrekS. DurakA.T. AbbakM. ÇevikÖ. KaşkatepeB. Küçükgüzelİ. Güniz KüçükgüzelŞ. Novel 2,6-disubstituted pyridine hydrazones: Synthesis, anticancer activity, docking studies and effects on caspase-3-mediated apoptosis.J. Mol. Struct.2021122312896210.1016/j.molstruc.2020.128962
    [Google Scholar]
  50. FaragA.K. HassanA.H.E. ChungK.S. LeeJ.H. GilH.S. LeeK.T. RohE.J. Diarylurea derivatives comprising 2,4-diarylpyrimidines: Discovery of novel potential anticancer agents via combined failed-ligands repurposing and molecular hybridization approaches.Bioorg. Chem.202010310412110.1016/j.bioorg.2020.104121 32745753
    [Google Scholar]
  51. KumarB. SharmaP. GuptaV.P. KhullarM. SinghS. DograN. KumarV. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies.Bioorg. Chem.20187813014010.1016/j.bioorg.2018.02.027 29554587
    [Google Scholar]
  52. KahrimanN. SerdaroğluV. PekerK. AydınA. UstaA. FandaklıS. YaylıN. Synthesis and biological evaluation of new 2,4,6-trisubstituted pyrimidines and their N-alkyl derivatives.Bioorg. Chem.20198358059410.1016/j.bioorg.2018.10.068 30471580
    [Google Scholar]
  53. MalarzK. ZychD. GaweckiR. KuczakM. MusiołR. Mrozek-WilczkiewiczA. New derivatives of 4′-phenyl-2,2′:6′,2″-terpyridine as promising anticancer agents.Eur. J. Med. Chem.202121211303211303210.1016/j.ejmech.2020.113032 33261897
    [Google Scholar]
  54. ElmeligieS. AhmedE.M. Abuel-MaatyS.M. ZaitoneS.A.B. MikhailD.S. Design and synthesis of pyridazine containing compounds with promising anticancer activity.Chem. Pharm. Bull.201765323624710.1248/cpb.c16‑00532 28250345
    [Google Scholar]
  55. SabtA. EldehnaW.M. Al-WarhiT. AlotaibiO.J. ElaasserM.M. SulimanH. Abdel-AzizH.A. Discovery of 3,6-disubstituted pyridazines as a novel class of anticancer agents targeting cyclin-dependent kinase 2: synthesis, biological evaluation and in silico insights.J. Enzyme Inhib. Med. Chem.20203511616163010.1080/14756366.2020.1806259 32781872
    [Google Scholar]
  56. MurtyM.S.R. RaoB.R. RamK.R. YadavJ.S. AntonyJ. AntoR.J. Synthesis and preliminary evaluation activity studies of novel 4-(aryl/heteroaryl-2-ylmethyl)-6-phenyl-2-[3-(4-substituted-piperazine-1-yl)propyl]pyridazin-3(2H)-one derivatives as anticancer agents.Med. Chem. Res.201221103161316910.1007/s00044‑011‑9851‑6
    [Google Scholar]
  57. BoraeiA.T.A. EltamanyE.H. AliI.A.I. GebrielS.M. NafieM.S. Synthesis of new substituted pyridine derivatives as potent anti-liver cancer agents through apoptosis induction: In vitro, in vivo, and in silico integrated approaches.Bioorg. Chem.202111110487710487710.1016/j.bioorg.2021.104877 33839579
    [Google Scholar]
  58. MadiaV.N. NicolaiA. MessoreA. De LeoA. IalongoD. TudinoV. SaccolitiF. De VitaD. ScipioneL. ArticoM. TauroneS. TaglieriL. Di SantoR. ScarpaS. CostiR. Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents.Molecules202126377110.3390/molecules26030771 33540875
    [Google Scholar]
  59. El-ShariefA.M.S. AmmarY.A. BelalA. El-ShariefM.A.M.S. MohamedY.A. MehanyA.B.M. Elhag AliG.A.M. RagabA. Design, synthesis, molecular docking and biological activity evaluation of some novel indole derivatives as potent anticancer active agents and apoptosis inducers.Bioorg. Chem.20198539941210.1016/j.bioorg.2019.01.016 30665034
    [Google Scholar]
  60. HeZ. QiaoH. YangF. ZhouW. GongY. ZhangX. WangH. ZhaoB. MaL. LiuH. ZhaoW. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent.Eur. J. Med. Chem.201918411176410.1016/j.ejmech.2019.111764 31614257
    [Google Scholar]
  61. IacopettaD. CatalanoA. CeramellaJ. BarbarossaA. CarocciA. FazioA. La TorreC. CarusoA. PonassiM. RosanoC. FranchiniC. SinicropiM.S. Synthesis, anticancer and antioxidant properties of new indole and pyranoindole derivatives.Bioorg. Chem.202010510444010.1016/j.bioorg.2020.104440 33217633
    [Google Scholar]
  62. MetwallyN.H. DeebE.A. Synthesis, anticancer assessment on human breast, liver and colon carcinoma cell lines and molecular modeling study using novel pyrazolo[4,3-c]pyridine derivatives.Bioorg. Chem.20187720321410.1016/j.bioorg.2017.12.032 29367077
    [Google Scholar]
  63. Abdel-MaksoudM.S. AliE.M.H. AmmarU.M. MersalK.I. YooK.H. OhC.H. Design and synthesis of novel pyrrolo[2,3-b]pyridine derivatives targeting V600EBRAF.Bioorg. Med. Chem.2020281111549310.1016/j.bmc.2020.115493 32340792
    [Google Scholar]
  64. WangR. ChenY. YangB. YuS. ZhaoX. ZhangC. HaoC. ZhaoD. ChengM. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents.Bioorg. Chem.20209410347410.1016/j.bioorg.2019.103474 31859010
    [Google Scholar]
  65. RomagnoliR. BaraldiP.G. PrencipeF. OlivaP. BaraldiS. SalvadorM.K. Lopez-CaraL.C. BortolozziR. MattiuzzoE. BassoG. ViolaG. Design, synthesis and biological evaluation of 3-substituted-2-oxindole hybrid derivatives as novel anticancer agents.Eur. J. Med. Chem.201713425827010.1016/j.ejmech.2017.03.089 28419928
    [Google Scholar]
  66. SreenivasuluR. TejM.B. JadavS.S. SujithaP. KumarC.G. RajuR.R. Synthesis, anticancer evaluation and molecular docking studies of 2,5-bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues.J. Mol. Struct.2020120812787510.1016/j.molstruc.2020.127875
    [Google Scholar]
  67. NoolviM.N. PatelH.M. BhardwajV. ChauhanA. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent.Eur. J. Med. Chem.20114662327234610.1016/j.ejmech.2011.03.015 21458891
    [Google Scholar]
  68. LiuQ.Q. LuK. ZhuH.M. KongS.L. YuanJ.M. ZhangG.H. ChenN.Y. GuC.X. PanC.X. MoD.L. SuG.F. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation in vitro and in vivo.Eur. J. Med. Chem.201916529330810.1016/j.ejmech.2019.01.004 30685528
    [Google Scholar]
  69. FayedE.A. AmmarY.A. SalehM.A. BayoumiA.H. BelalA. MehanyA.B.M. RagabA. Design, synthesis, antiproliferative evaluation, and molecular docking study of new quinoxaline derivatives as apoptotic inducers and EGFR inhibitors.J. Mol. Struct.2021123613031710.1016/j.molstruc.2021.130317
    [Google Scholar]
  70. GhanbarimasirZ. BekhradniaA. Morteza-SemnaniK. RafieiA. Razzaghi-AslN. KardanM. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents.Spectrochim. Acta A Mol. Biomol. Spectrosc.2018194213510.1016/j.saa.2017.12.063 29310028
    [Google Scholar]
  71. PirasS. LorigaM. PagliettiG. Quinoxaline chemistry. Part XVII. Methyl [4-(substituted 2-quinoxalinyloxy) phenyl] acetates and ethyl N-[4-(substituted 2-quinoxalinyloxy) phenyl] acetyl glutamates analogs of methotrexate: Synthesis and evaluation of in vitro anticancer activity.Farmaco200459318519410.1016/j.farmac.2003.11.014 14987981
    [Google Scholar]
  72. SaruengkhanphasitR. ButkinareeC. OrnnorkN. LirdprapamongkolK. NiwetmarinW. SvastiJ. RuchirawatS. EurtivongC. Identification of new 3-phenyl-1H-indole-2-carbohydrazide derivatives and their structure–activity relationships as potent tubulin inhibitors and anticancer agents: A combined in silico, in vitro and synthetic study.Bioorg. Chem.202111010479510479510.1016/j.bioorg.2021.104795 33730670
    [Google Scholar]
  73. HeZ.X. HuoJ.L. GongY.P. AnQ. ZhangX. QiaoH. YangF.F. ZhangX.H. JiaoL.M. LiuH.M. MaL.Y. ZhaoW. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells.Eur. J. Med. Chem.202121011297011297010.1016/j.ejmech.2020.112970 33153765
    [Google Scholar]
  74. KarthikeyanC. SolomonV.R. LeeH. TrivediP. Synthesis and biological evaluation of 2-(phenyl)-3H-benzo[d]imidazole-5-carboxylic acids and its methyl esters as potent anti-breast cancer agents.Arab. J. Chem.201710S1788S179410.1016/j.arabjc.2013.07.003
    [Google Scholar]
  75. WangF.Q. YangH. HeB. JiaY.K. MengS.Y. ZhangC. LiuH.M. LiuF.W. A novel domino approach for synthesis of indolyl tetrahydropyrano[4,3-c]pyrazole derivatives as anticancer agents.Tetrahedron201672385769577510.1016/j.tet.2016.07.078
    [Google Scholar]
  76. ArgyrosO. LougiakisN. KouvariE. PapafotikaA. RaptopoulouC.P. PsycharisV. ChristoforidisS. PouliN. MarakosP. TamvakopoulosC. Design and synthesis of novel 7-aminosubstituted pyrido[2,3-b]pyrazines exhibiting anti-breast cancer activity.Eur. J. Med. Chem.201712695496810.1016/j.ejmech.2016.12.025 28006668
    [Google Scholar]
  77. GengP.F. WangC.C. LiZ.H. HuX.N. ZhaoT.Q. FuD.J. ZhaoB. YuB. LiuH.M. Design, synthesis and preliminary biological evaluation of 5,8-dihydropteridine-6,7-diones that induce apoptosis and suppress cell migration.Eur. J. Med. Chem.20181431959196710.1016/j.ejmech.2017.11.009 29133051
    [Google Scholar]
  78. JiX. XueS. ZhanY. ShenJ. WuL. JinJ. WangZ. LiZ. Design, synthesis and antiproliferative activity of a novel class of indole-2-carboxylate derivatives.Eur. J. Med. Chem.20148340941810.1016/j.ejmech.2014.05.043 24996136
    [Google Scholar]
  79. BaytasS.N. IncelerN. YılmazA. OlgacA. MenevseS. BanogluE. HamelE. BortolozziR. ViolaG. Synthesis, biological evaluation and molecular docking studies of trans-indole-3-acrylamide derivatives, a new class of tubulin polymerization inhibitors.Bioorg. Med. Chem.201422123096310410.1016/j.bmc.2014.04.027 24816066
    [Google Scholar]
  80. MetwallyN.H. MohamedM.S. RagbE.A. Design, synthesis, anticancer evaluation, molecular docking and cell cycle analysis of 3-methyl-4,7-dihydropyrazolo[1,5-a]pyrimidine derivatives as potent histone lysine demethylases (KDM) inhibitors and apoptosis inducers.Bioorg. Chem.20198810292910292910.1016/j.bioorg.2019.102929 31015179
    [Google Scholar]
  81. HassanA.Y. SargM.T. El-SebaeyS.A. Synthesis and antitumor evaluation of some new derivatives and fused heterocyclic compounds derived from thieno[2,3‐ b]pyridine: Part 2.J. Heterocycl. Chem.202057269471510.1002/jhet.3810
    [Google Scholar]
  82. SongY. FengS. FengJ. DongJ. YangK. LiuZ. QiaoX. Synthesis and biological evaluation of novel pyrazoline derivatives containing indole skeleton as anti-cancer agents targeting topoisomerase II.Eur. J. Med. Chem.202020011245910.1016/j.ejmech.2020.112459 32502865
    [Google Scholar]
  83. EissaI.H. El-NaggarA.M. El-HashashM.A. Design, synthesis, molecular modeling and biological evaluation of novel 1H-pyrazolo[3,4-b]pyridine derivatives as potential anticancer agents.Bioorg. Chem.201667435610.1016/j.bioorg.2016.05.006 27253830
    [Google Scholar]
  84. MagarT.B.T. SeoS.H. KadayatT.M. JoH. ShresthaA. BistG. KatilaP. KwonY. LeeE.S. Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines as selective topoisomerase IIα-targeting anticancer agents.Bioorg. Med. Chem.20182681909191910.1016/j.bmc.2018.02.035 29510948
    [Google Scholar]
  85. YoussifB.G.M. AbdelrahmanM.H. AbdelazeemA.H. abdelgawad, M.A.; Ibrahim, H.M.; Salem, O.I.A.; Mohamed, M.F.A.; Treambleau, L.; Bukhari, S.N.A. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production.Eur. J. Med. Chem.201814626027310.1016/j.ejmech.2018.01.042 29407956
    [Google Scholar]
  86. AlsaifN.A. DahabM.A. AlanaziM.M. ObaidullahA.J. Al-MehiziaA.A. AlanaziM.M. AldawasS. MahdyH.A. ElkadyH. New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis.Bioorg. Chem.202111010480710.1016/j.bioorg.2021.104807 33721808
    [Google Scholar]
  87. ZhuangS.H. LinY.C. ChouL.C. HsuM.H. LinH.Y. HuangC.H. LienJ.C. KuoS.C. HuangL.J. Synthesis and anticancer activity of 2,4-disubstituted furo[3,2-b]indole derivatives.Eur. J. Med. Chem.20136646647910.1016/j.ejmech.2013.06.012 23831809
    [Google Scholar]
  88. KhanI. GarikapatiK.R. ShaikA.B. MakaniV.K.K. RahimA. ShareefM.A. ReddyV.G. Pal-BhadraM. KamalA. KumarC.G. Design, synthesis and biological evaluation of 1, 4-dihydro indeno[1,2- c] pyrazole linked oxindole analogues as potential anticancer agents targeting tubulin and inducing p53 dependent apoptosis.Eur. J. Med. Chem.201814410411510.1016/j.ejmech.2017.12.010 29268127
    [Google Scholar]
  89. WangN.Y. XuY. XiaoK.J. ZuoW.Q. ZhuY.X. HuR. WangW.L. ShiY.J. YuL.T. LiuZ.H. Design, synthesis, and biological evaluation of 4,5-dihydro-[1,2,4]triazolo[4,3-f]pteridine derivatives as novel dual-PLK1/BRD4 inhibitors.Eur. J. Med. Chem.202019111215211215210.1016/j.ejmech.2020.112152 32088495
    [Google Scholar]
  90. El-MetwallyS.A. KhalilA.K. El-SayedW.M. Design, molecular modeling and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as inhibitors of topoisomerase II.Bioorg. Chem.20209410349210349210.1016/j.bioorg.2019.103492 31864673
    [Google Scholar]
  91. PatelA.S. JainV. RaoV.N. LinY.W. ShahA. LaiK.C. SuT.L. LeeT.C. Design, synthesis and antitumour evaluation of pyrrolo[1,2-f]-phenanthridine and dibenzo[f,h]pyrrolo[1,2-b]isoquinoline derivatives.Eur. J. Med. Chem.202020211251610.1016/j.ejmech.2020.112516 32622270
    [Google Scholar]
  92. TsengC.H. ChenY.R. TzengC.C. LiuW. ChouC.K. ChiuC.C. ChenY.L. Discovery of indeno[1,2- b]quinoxaline derivatives as potential anticancer agents.Eur. J. Med. Chem.201610825827310.1016/j.ejmech.2015.11.031 26686931
    [Google Scholar]
  93. AlanaziM.M. MahdyH.A. AlsaifN.A. ObaidullahA.J. AlkahtaniH.M. Al-MehiziaA.A. AlsubaieS.M. DahabM.A. EissaI.H. New bis([1,2,4]triazolo)[4,3-a:3′,4′-c]quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation.Bioorg. Chem.202111210494910.1016/j.bioorg.2021.104949 34023640
    [Google Scholar]
  94. PalluottoF. SosicA. PinatoO. ZoidisG. CattoM. SissiC. GattoB. CarottiA. Quinolino[3,4- b]quinoxalines and pyridazino[4,3- c]quinoline derivatives: Synthesis, inhibition of topoisomerase IIα, G-quadruplex binding and cytotoxic properties.Eur. J. Med. Chem.201612370471710.1016/j.ejmech.2016.07.063 27521587
    [Google Scholar]
  95. ShchekotikhinA.E. GlazunovaV.A. DezhenkovaL.G. LuzikovY.N. BuyanovV.N. TreshalinaH.M. LesnayaN.A. RomanenkoV.I. KaluzhnyD.N. BalzariniJ. AgamaK. PommierY. ShtilA.A. PreobrazhenskayaM.N. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho[2,3-f]indole-5,10-diones.Eur. J. Med. Chem.20148679780510.1016/j.ejmech.2014.09.021 25244612
    [Google Scholar]
  96. PatelO.P.S. ArunA. SinghP.K. SainiD. KaradeS.S. ChourasiaM.K. KonwarR. YadavP.P. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells.Eur. J. Med. Chem.201916722624410.1016/j.ejmech.2019.02.003 30772606
    [Google Scholar]
  97. ChenT.C. YuD.S. ChenS.J. ChenC.L. LeeC.C. HsiehY.Y. ChangL.C. GuhJ.H. LinJ.J. HuangH.S. Design, synthesis and biological evaluation of tetracyclic azafluorenone derivatives with topoisomerase I inhibitory properties as potential anticancer agents.Arab. J. Chem.20191284348436410.1016/j.arabjc.2016.06.014
    [Google Scholar]
  98. GuW. WangS. JinX. ZhangY. HuaD. MiaoT. TaoX. WangS. Synthesis and evaluation of new quinoxaline derivatives of dehydroabietic acid as potential antitumor agents.Molecules2017227115410.3390/molecules22071154 28696365
    [Google Scholar]
  99. ChateA.V. KamdiS.P. BhagatA.N. JadhavC.K. NipteA. SarkateA.P. TiwariS.V. GillC.H. Design, synthesis and SAR study of novel spiro [Pyrimido[5,4‐b]Quinoline‐10,5′‐Pyrrolo[2,3‐d]Pyrimidine] derivatives as promising anticancer agents.J. Heterocycl. Chem.201855102297230210.1002/jhet.3286
    [Google Scholar]
  100. GrishkoV.V. TolmachevaI.A. NebogatikovV.O. GalaikoN.V. NazarovA.V. DmitrievM.V. IvshinaI.B. Preparation of novel ring-A fused azole derivatives of betulin and evaluation of their cytotoxicity.Eur. J. Med. Chem.201712562963910.1016/j.ejmech.2016.09.065 27721148
    [Google Scholar]
  101. KimD.K. RyuD.H. LeeJ.Y. LeeN. KimY.W. KimJ.S. ChangK. ImG.J. KimT.K. ChoiW.S. Synthesis and biological evaluation of novel A-ring modified hexacyclic camptothecin analogues.J. Med. Chem.200144101594160210.1021/jm0004751 11334569
    [Google Scholar]
  102. GuoJ. YangY. WangN. LiuZ. Synthesis and cytotoxicity screening of derivatives of the simplified ecteinascidin pentacyclic skeleton as anticancer agents.Tetrahedron Lett.201859333202320510.1016/j.tetlet.2018.07.027
    [Google Scholar]
  103. LiJ.F. HuangR.Z. YaoG.Y. YeM.Y. WangH.S. PanY.M. XiaoJ.T. Synthesis and biological evaluation of novel aniline-derived asiatic acid derivatives as potential anticancer agents.Eur. J. Med. Chem.20148617518810.1016/j.ejmech.2014.08.003 25151580
    [Google Scholar]
  104. WangR. LiY. DehaenW. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells.Eur. J. Med. Chem.202020711273711273710.1016/j.ejmech.2020.112737 32866757
    [Google Scholar]
  105. Kadela-TomanekM. BębenekE. ChrobakE. MarciniecK. LatochaM. KuśmierzD. JastrzębskaM. BoryczkaS. Betulin-1,4-quinone hybrids: Synthesis, anticancer activity and molecular docking study with NQO1 enzyme.Eur. J. Med. Chem.201917730231510.1016/j.ejmech.2019.05.063 31158746
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968335169250107180240
Loading
/content/journals/ccb/10.2174/0122127968335169250107180240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test