Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Introduction

Essential oils are widely recognized for their antioxidant properties, including their ability to neutralize free radicals and protect cells from oxidative stress, a key factor in cell death associated with neurodegenerative diseases.

Objective

The aim of this study was to analyze the chemical composition of essential oil extracted from the leaves and flowers of and to evaluate its antioxidant activity using the DPPH test and the Ferric Antioxidant Power Reduction Test (FRAP), as well as its hemolytic properties.

Methods

Leaf and fruit chemical composition was determined by gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS). Antioxidant properties were evaluated using DPPH and FRAP methods. A suspension of human blood erythrocytes was used to determine the hemolytic effect of essential oils.

Results

Thirty-five compounds were identified in the essential oil extracted from the leaves of . The main compounds were limonene (41.5%) and germacrene D (14.2%). For fruit essential oil, twenty-five compounds were identified, with α-bisabolol (62.2%), α-humulene (8.1%), and limonene (5.2%) as the main constituents. antioxidant activity tests showed that the essential oil of fruits is a powerful antioxidant (0.038 mg/mL), surpassing even ascorbic acid (0.048 mg/mL). Human erythrocyte toxicity tests showed that the essential oil of leaves and fruits have a relatively low hemolytic effect, with hemolysis rates of 15.3% and 8.1%, respectively, even at high concentrations of 1000 μg/mL.

Conclusion

The essential oils of show a strong antioxidant activity, especially in fruits, and a low hemolytic effect on human erythrocytes. This could be a safe and effective natural antioxidant.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968355699250203094820
2025-02-19
2025-09-15
Loading full text...

Full text loading...

References

  1. HalengJ. PincemailJ. DefraigneJ.O. CharlierC. ChapelleJ.P. Le stress oxydant.Rev. Med. Liege20076210628638 18069575
    [Google Scholar]
  2. PincemailJ. DegruneF. VoussureS. MalherbeC. PaquotN. DefraigneJ.O. EEffect of a diet rich in fruits and vegetables on plasma levels of antioxidants and markers of oxidative damage.Nutr. Clin. Metab.2007212667510.1016/j.nupar.2007.04.005
    [Google Scholar]
  3. LynaB. FouziaM. OkkachaB. DibM.E.A. MuselliA. A combined in vitro–in silico approach for the discovery of novel endogenous enzymatic and ctDNA sequence of bioactive molecules from aerial and root parts of Centaurea sulphurea as antioxidant’s agents.J. Biomol. Struct. Dyn.202341125516553710.1080/07391102.2022.2090438 35766214
    [Google Scholar]
  4. TitD.M. BungauS.G. Antioxidant activity of essential oils.Antioxidants202312238310.3390/antiox12020383 36829942
    [Google Scholar]
  5. TutinT.G. LöveD. HansenA. Flora Europea.CambridgeCambridge University press1976Vol. 4
    [Google Scholar]
  6. JeanmonodD. GamisansJ. Flora Corsica.Aix en ProvenceEdisud20071922
    [Google Scholar]
  7. GrahamJ.G. QuinnM.L. FabricantD.S. FarnsworthN.R. Plants used against cancer: An extension of the work of Jonathan Hartwell.J. Ethnopharmacol.200073334737710.1016/S0378‑8741(00)00341‑X 11090989
    [Google Scholar]
  8. FanW. FanL. PengC. ZhangQ. WangL. LiL. WangJ. ZhangD. PengW. WuC. Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: A review.Molecules201924235910.3390/molecules24020359 30669496
    [Google Scholar]
  9. TongC. ChenR-H. LiuD-C. ZengD-S. LiuH. Chemical constituents from the fruits of Xanthium strumarium and their antitumor effects.Nat. Prod. Commun.202015810.1177/1934578X20945541
    [Google Scholar]
  10. VasasA. HohmannJ. Xanthane sesquiterpenoids: structure, synthesis and biological activity.Nat. Prod. Rep.201128482484210.1039/c0np00011f 21321751
    [Google Scholar]
  11. SchererR. DuarteM.C.T. CatharinoR.R. NachtigallF.M. EberlinM.N. Teixeira FilhoJ. GodoyH.T. Xanthium strumarium L. antimicrobial activity and carboxyatractyloside analysis through electrospray ionization mass spectrometry.Rev. Bras. Plantas Med.200911215916310.1590/S1516‑05722009000200008
    [Google Scholar]
  12. LinB. ZhaoY. HanP. YueW. MaX.Q. RahmanK. ZhengC.J. QinL.P. HanT. HanT. Anti-arthritic activity of Xanthium strumarium L. extract on complete Freund׳s adjuvant induced arthritis in rats.J. Ethnopharmacol.2014155124825510.1016/j.jep.2014.05.023 24862493
    [Google Scholar]
  13. PaumesM.C. Sauvages et Toxiques.Edisud2009150151
    [Google Scholar]
  14. JennigsW. ShibamotoT. Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography.New York, London, Sydney, Toronto, San FranciscoAcademic Press1980
    [Google Scholar]
  15. KonigW.A. JoulainD. HochmuthD.H. Terpenoids and related constituents of essential oils. Library of MassFinder, 2.1.HamburgInstitute of Organic Chemistry2001
    [Google Scholar]
  16. DjabouN. LorenziV. GuinoiseauE. AndreaniS. GiulianiM.C. DesjobertJ.M. BollaJ.M. CostaJ. BertiL. LucianiA. MuselliA. Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens.Food Control201330135436310.1016/j.foodcont.2012.06.025
    [Google Scholar]
  17. MasudaT. YonemoriS. OyamaY. TakedaY. TanakaT. AndohT. ShinoharaA. NakataM. Evaluation of the antioxidant activity of environmental plants: Activity of the leaf extracts from seashore plants.J. Agric. Food Chem.19994741749175410.1021/jf980864s 10564049
    [Google Scholar]
  18. OyaizuM. Studies on product of browning reaction prepared from glucose amine. JPN.J. Nutr. Diet.1986446307315
    [Google Scholar]
  19. El OmariN. SayahK. FettachS. El BlidiO. BouyahyaA. FaouziM.E.A. KamalR. BarkiyouM. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolo chialonga extracts.Evid. Based Complement. Alternat. Med.20192019738473510.1155/2019/7384735
    [Google Scholar]
  20. AndräJ. JakovkinI. GrötzingerJ. HechtO. KrasnosdembskayaA.D. GoldmannT. GutsmannT. LeippeM. AndräJ. Structure and mode of action of the antimicrobial peptide arenicin.Biochem. J.2008410111312210.1042/BJ20071051 17935487
    [Google Scholar]
  21. Babu ShankarP. SathiyamoorthyS. PalanisamyP. BoopathiS. RajaramV. Antioxidant and antimicrobial properties of Glycine Max-A review.Int. J. Cur. Bio. Med. Sci2011124962
    [Google Scholar]
  22. MelianiN. AchiriR. DibM.E.A. MuselliA. Assessment of chemical composition and investigation into the antioxidant, anti-inflammatory, and hemolytic properties of hexane extracts from Cynara cardunculus subsp. Cardunculus and Cynara cardunculus subsp. sylvestris.Curr. Chem. Biol.20241810.2174/0122127968309078240815053526
    [Google Scholar]
  23. AndreaniS. BarboniT. DesjobertJ.M. PaoliniJ. CostaJ. MuselliA. Essential oil composition and chemical variability of Xanthium italicum Moretti from Corsica.Flavour Fragrance J.201227322723610.1002/ffj.3084
    [Google Scholar]
  24. ShaoH. ZhangY. NanP. HuangX. ZhangC. Chemical composition and phytotoxic activity of the volatile oil of invasive Xanthium italicum Moretti from Xinjiang, China.J. Arid Land20135332433010.1007/s40333‑013‑0170‑2
    [Google Scholar]
  25. MitićV.D. IlićM.D. JovanovićO. Stankov-JovanovićV.P. MarkovićM.S. StojanovićG.S. Essential oil composition of Xanthium italicum from Serbia.Nat. Prod. Commun.,20191461934578X1984996810.1177/1934578X19849968
    [Google Scholar]
  26. PopoviciC. SaykovaI. TylkowskiB. Evaluation of the antioxidant activity of phenolic compounds by reactivity with the free radical DPPH.Rev. Ind Engineering200942539
    [Google Scholar]
  27. BarattaM.T. DormanH.J.D. DeansS.G. FigueiredoA.C. BarrosoJ.G. RubertoG. Antimicrobial and antioxidant properties of some commercial essential oils.Flavour Fragrance J.199813423524410.1002/(SICI)1099‑1026(1998070)13:4<235::AID‑FFJ733>3.0.CO;2‑T
    [Google Scholar]
  28. Mohammad Al-IsmailK. AburjaiT. TalalA. Antioxidant activity of water and alcohol extracts of chamomile flowers, anise seeds and dill seeds.J. Sci. Food Agric.200484217317810.1002/jsfa.1625
    [Google Scholar]
  29. PiccagliaR. MarottiM. GiovanelliE. DeansS.G. EagleshamE. Antibacterial and antioxidant properties of Mediterranean aromatic plants.Ind. Crops Prod.199321475010.1016/0926‑6690(93)90010‑7
    [Google Scholar]
  30. ArunachalamS. Nagoor MeeranM.F. AzimullahS. Kumar JhaN. SaraswathiammaD. AlbawardiA. BeiramR. OjhaS. α-Bisabolol attenuates NF-κB/MAPK signaling activation and ER-stress-mediated apoptosis by invoking Nrf2-mediated antioxidant defense systems against doxorubicin-induced testicular toxicity in rats.Nutrients20221421464810.3390/nu14214648 36364909
    [Google Scholar]
  31. de Oliveira LeiteG. EckerA. SeegerR.L. KrumB.N. LugokenskiT.H. FachinettoR. SudatiJ.H. BarbosaN.V. WagnerC. Protective effect of (−)-α-bisabolol on rotenone-induced toxicity in Drosophila melanogaster.Can. J. Physiol. Pharmacol.20179642018
    [Google Scholar]
  32. da SilvaA.P. MartiniM.V. de OliveiraC.M.A. CunhaS. de CarvalhoJ.E. RuizA.L.T.G. da SilvaC.C. Antitumor activity of (−)-α-bisabolol-based thiosemicarbazones against human tumor cell lines.Eur. J. Med. Chem.20104572987299310.1016/j.ejmech.2010.03.026 20413188
    [Google Scholar]
  33. KamatouG.P.P. ViljoenA.M. Review of the application and pharmacological properties of α-bisabolol and α-bisabolol-rich oils.J. Am. Oil Chem. Soc.20108711710.1007/s11746‑009‑1483‑3
    [Google Scholar]
  34. SethupathyS. ShanmuganathanB. KasiP.D. Karutha PandianS. Alpha-bisabolol from brown macroalga Padina gymnospora mitigates biofilm formation and quorum sensing controlled virulence factor production in Serratia marcescens.J. Appl. Phycol.20162831987199610.1007/s10811‑015‑0717‑z
    [Google Scholar]
  35. FariasK.S. KatoN.N. BoarettoA.G. WeberJ.I. BrustF.R. AlvesF.M. TascaT. MacedoA.J. SilvaD.B. CarolloC.A. Nectandra as a renewable source for (+)-α-bisabolol, an antibiofilm and anti-Trichomonas vaginalis compound.Fitoterapia201913610417910.1016/j.fitote.2019.104179 31121252
    [Google Scholar]
  36. SunJ. D-Limonene: Safety and clinical applications.Altern. Med. Rev.200712325926418072821
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968355699250203094820
Loading
/content/journals/ccb/10.2174/0122127968355699250203094820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test