Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

In the realm of nanomedicine, graphene quantum dots (GQDs) stand at the forefront, offering transformative potential for cancer diagnosis and therapy. Possessing exceptional optical and electronic properties, biocompatibility, and versatile surface customization, GQDs emerge as powerful tools for advanced imaging and targeted drug delivery. Synthesized through innovative bottom-up and top-down methods, GQDs present a diverse tool for precise tailoring. Their application in cancer therapy, especially when functionalized with vitamins, proteins, peptides, and polysaccharides, showcases remarkable versatility and efficacy. These tailored drug delivery systems demonstrate not only enhanced drug effectiveness and reduced toxicity but also enable targeted cancer treatment. Ongoing research into GQD synthesis and functionalization, coupled with a deeper understanding of their interactions with biological systems, promises to further refine cancer diagnosis and therapy. The potential of GQDs as intelligent carriers holds the key to revolutionizing cancer treatment, offering renewed hope for improved patient outcomes and quality of life.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X350689250227092216
2025-03-07
2025-08-13
Loading full text...

Full text loading...

References

  1. KhandakarS. Unveiling early detection and prevention of cancer: Machine learning and deep learning approaches.Educat. Administ. Theory Pract.20243051461414628
    [Google Scholar]
  2. BeygisangchinM. KamarudinS.K. RashidS.A. Synthesis, properties, and applications of polyaniline–graphene quantum dot nanocomposites: Comprehensive review.J. Environ. Chem. Eng.202412511346010.1016/j.jece.2024.113460
    [Google Scholar]
  3. RaniP. DalalR. SrivastavaS. Effect of surface modification on optical and electronic properties of graphene quantum dots.Appl. Surf. Sci.202360915537910.1016/j.apsusc.2022.155379
    [Google Scholar]
  4. KaramiM.H. AbdoussM. RahdarA. PandeyS. Graphene quantum dots: Background, synthesis methods, and applications as nanocarrier in drug delivery and cancer treatment: An updated review.Inorg. Chem. Commun.202416111203210.1016/j.inoche.2024.112032
    [Google Scholar]
  5. BaratiF. AvatefiM. MoghadamN.B. AsghariS. EkramiE. MahmoudifardM. A review of graphene quantum dots and their potential biomedical applications.J. Biomater. Appl.20233771137115810.1177/0885328222112531136066191
    [Google Scholar]
  6. BhattacharyaT. PreetamS. MukherjeeS. KarS. RoyD.S. SinghH. GhoseA. DasT. MohapatraG. Anticancer activity of quantum size carbon dots: Opportunities and challenges.Discov. Nano202419112210.1186/s11671‑024‑04069‑739103694
    [Google Scholar]
  7. ArabK. JafariA. ShahiF. The role of graphene quantum dots in cutting‐edge medical therapies.Polym. Adv. Technol.2024359e657110.1002/pat.6571
    [Google Scholar]
  8. AkmalM.H. KalashgraniM.Y. MousaviS.M. RahmanianV. SharmaN. GholamiA. AlthomaliR.H. RahmanM.M. ChiangW.H. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment.J. Mater. Chem. B Mater. Biol. Med.202412215039506010.1039/D4TB00024B38716622
    [Google Scholar]
  9. AgrawalA. Top-down strategies for achieving high-quality graphene: Recent advancements.J. Ind. Eng. Chem.2024142103126
    [Google Scholar]
  10. YangS. LiY. ChenL. WangH. ShangL. HeP. DongH. WangG. DingG. Fabrication of carbon‐based quantum dots via a “bottom‐up” approach: Topology, chirality, and free radical processes in “Building Blocks”.Small20231931220595710.1002/smll.20220595736610043
    [Google Scholar]
  11. LeeB. StokesG.A. ValimukhametovaA. NguyenS. Gonzalez-RodriguezR. BhalooA. CofferJ. NaumovA.V. Automated approach to in vitro image-guided photothermal therapy with top-down and bottom-up-synthesized graphene quantum dots.Nanomaterials202313580510.3390/nano1305080536903683
    [Google Scholar]
  12. SaadhM.J. BallalS. KumarA. PrasadS.G.V. QassemL.Y. FormanovaS.B. Al-khalidiA. AltimariU.S. Al Khidhir AbdullahS.A. DawoodI.I. AlamM.M. AlhadrawiM. AbualigahL. Advances in synthesis and characterization of GQDs for enhanced photocatalytic degradation of contaminants: A comprehensive review.Inorg. Chem. Commun.202416911307210.1016/j.inoche.2024.113072
    [Google Scholar]
  13. SinghaD.K. Graphene, its Family and Potential Applications.Covalent Materials and Hybrids: From 0D to 3D20238712510.1039/9781839169656‑00087
    [Google Scholar]
  14. DananjayaV. MarimuthuS. YangR.C. GraceA.N. AbeykoonC. Synthesis, properties, applications, 3D printing and machine learning of graphene quantum dots in polymer nanocomposites.Prog. Mater. Sci.202414410128210.1016/j.pmatsci.2024.101282
    [Google Scholar]
  15. HarishV. AnsariM.M. TewariD. YadavA.B. SharmaN. BawarigS. García-BetancourtM-L. KaratutluA. BechelanyM. BarhoumA. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review.J. Taiwan Inst. Chem. Eng.202314910501010.1016/j.jtice.2023.105010
    [Google Scholar]
  16. KharangarhP.R. RavindraN.M. SinghG. UmapathyS. Synthesis of luminescent graphene quantum dots from biomass waste materials for energy‐related applications—An overview.Energy Storage202353e39010.1002/est2.390
    [Google Scholar]
  17. DaudS. Carbon nanotubes: Fabrication using the arc discharge process.ChamSpringer Nature202318410.1007/978‑981‑99‑4962‑5
    [Google Scholar]
  18. YeF. MusselmanK.P. Synthesis of low dimensional nanomaterials by pulsed laser ablation in liquid.APL Mater.202412505060210.1063/5.0199104
    [Google Scholar]
  19. SinghJ. JindalN. KumarV. SinghK. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study.Chem. Phy.Impact2023610018510.1016/j.chphi.2023.100185
    [Google Scholar]
  20. NairA.S. SreejakumariS.S. VenkatesanJ. RakhiR.B. SumathiR.R. JayasankarK. A novel top-down approach for high yield production of graphene from natural graphite and its supercapacitor applications.Dia. Rel. Mater.202414411102510.1016/j.diamond.2024.111025
    [Google Scholar]
  21. KaurA. MortonJ.A. TyurninaA.V. PriyadarshiA. GhorbaniM. MiJ. PorfyrakisK. EskinD.G. TzanakisI. Dual frequency ultrasonic liquid phase exfoliation method for the production of few layer graphene in green solvents.Ultrason. Sonochem.202410810695410.1016/j.ultsonch.2024.10695438879962
    [Google Scholar]
  22. SahaA. BhattacharjeeL. BhattacharjeeR.R. Synthesis of carbon quantum dots in Carbon Quantum Dots for Sustainable Energy and Optoelectronics.NetherlandsElsevier2023395410.1016/B978‑0‑323‑90895‑5.00014‑X
    [Google Scholar]
  23. KalluriA. DharmadhikariB. DebnathD. PatraP. KumarC.V. Advances in structural modifications and properties of graphene quantum dots for biomedical applications.ACS Omega2023824213582137610.1021/acsomega.2c0818337360447
    [Google Scholar]
  24. HuY. NeumannC. ScholtzL. TurchaninA. Resch-GengerU. EiglerS. Polarity, intramolecular charge transfer, and hydrogen bond co-mediated solvent effects on the optical properties of graphene quantum dots.Nano Res.2023161455210.1007/s12274‑022‑4752‑1
    [Google Scholar]
  25. GoldsteinA.C. Araujo-LimaC.F. FernandesA.S. Santos-OliveiraR. FelzenszwalbI. In vitro genotoxicity assessment of graphene quantum dots nanoparticles: A metabolism-dependent response.Mutat. Res. Genet. Toxicol. Environ. Mutagen.202388550356310.1016/j.mrgentox.2022.50356336669812
    [Google Scholar]
  26. TadeR.S. KalkalA. PatilP.O. Functionalized graphene quantum dots (gqds) based label-free optical fluorescence sensor for cd59 antigen detection and cellular bioimaging.J. Fluoresc.2023•••11210.1007/s10895‑023‑03501‑y37976023
    [Google Scholar]
  27. RaviP.V. SubramaniyamV. SaravanakumarN. PattabiramanA. PichumaniM. What works and what doesn’t when graphene quantum dots are functionalized for contemporary applications?Coord. Chem. Rev.202349321527010.1016/j.ccr.2023.215270
    [Google Scholar]
  28. RamezaniZ. ThompsonM. MohammadiE. Quantum dots in imaging.The Royal Society of Chemistry Diagnosis, and Targeted Drug Delivery to Cancer Cells202310714110.3390/cancers1403062235158888
    [Google Scholar]
  29. AhmadiM. RitterC.A. Woedtkev.T. BekeschusS. WendeK. Package delivered: Folate receptor-mediated transporters in cancer therapy and diagnosis.Chem. Sci.20241561966200610.1039/D3SC05539F38332833
    [Google Scholar]
  30. LiJ. ZhangZ. ZhangB. YanX. FanK. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy.Biomater. Sci.202311103394341310.1039/D2BM02152H36847174
    [Google Scholar]
  31. YanH. WangQ. WangJ. ShangW. XiongZ. ZhaoL. SunX. TianJ. KangF. YunS.H. Plantes for targeted, enhanced tumor imaging and long‐term visualization of local phad graphene quantum dotrmacokinetics.Adv. Mater.20233515221080910.1002/adma.20221080936740642
    [Google Scholar]
  32. HuangQ. ChenY. ZhangW. XiaX. LiH. QinM. GaoH. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases.J. Control. Rel.202436651953410.1016/j.jconrel.2023.12.05438182059
    [Google Scholar]
  33. WeiZ. YinX. CaiY. XuW. SongC. WangY. ZhangJ. KangA. WangZ. HanW. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma.Int. J. Nanomedicine2018131505152410.2147/IJN.S15698429559779
    [Google Scholar]
  34. ZarepourA. KhosraviA. AytenY.N. HatırC.P. IravaniS. ZarrabiA. Innovative approaches for cancer treatment: Graphene quantum dots for photodynamic and photothermal therapies.J. Mater. Chem. B Mater. Biol. Med.202412184307433410.1039/D4TB00255E
    [Google Scholar]
  35. IannazzoD. PistoneA. CelestiC. TrioloC. PatanéS. GiofréS.V. RomeoR. ZiccarelliI. MancusoR. GabrieleB. VisalliG. FacciolàA. PietroD.A. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots.Nanomaterials20199228210.3390/nano902028230781623
    [Google Scholar]
  36. IannazzoD. CelestiC. EsproC. Recent advances on graphene quantum dots as multifunctional nanoplatforms for cancer treatment.Biotechnol. J.2021162190042210.1002/biot.20190042232618417
    [Google Scholar]
  37. WangS. ColeI.S. LiQ. The toxicity of graphene quantum dots.RSC Adv.2016692898678987810.1039/C6RA16516H28496970
    [Google Scholar]
  38. IannazzoD. PistoneA. SalamòM. GalvagnoS. RomeoR. GiofréS.V. BrancaC. VisalliG. PietroD.A. Graphene quantum dots for cancer targeted drug delivery.Int. J. Pharm.20175181-218519210.1016/j.ijpharm.2016.12.06028057464
    [Google Scholar]
  39. DeS. PatraK. GhoshD. DuttaK. DeyA. SarkarG. MaitiJ. BasuA. RanaD. ChattopadhyayD. Tailoring the efficacy of multifunctional biopolymeric graphene oxide quantum dot-based nanomaterial as nanocargo in cancer therapeutic application.ACS Biomater. Sci. Eng.20184251453110.1021/acsbiomaterials.7b0068933418741
    [Google Scholar]
  40. MohammadnejadP. HosseiniS.M.M. SohrabiB. The graphene quantum dots encased in the molecularly imprinted polymer as a new fluorescent nanosensor for the detection of biotin.Sens. Actuators Rep.2024710018710.1016/j.snr.2024.100187
    [Google Scholar]
  41. ChaudhariR. PatelV. KumarA. Cutting-edge approaches for targeted drug delivery in breast cancer: Beyond conventional therapies.Nanoscale Adv.2024692270228610.1039/D4NA00086B38694472
    [Google Scholar]
  42. BandyopadhyayA. DasT. NandyS. SahibS. PreetamS. GopalakrishnanA.V. DeyA. Ligand-based active targeting strategies for cancer theranostics.Naunyn Schmiedebergs Arch. Pharmacol.2023396123417344110.1007/s00210‑023‑02612‑437466702
    [Google Scholar]
  43. AlibakhshiA. KahakiA.F. AhangarzadehS. YaghoobiH. YarianF. ArezumandR. RanjbariJ. MokhtarzadehA. de la GuardiaM. Targeted cancer therapy through antibody fragments-decorated nanomedicines.J. Control. Release201726832333410.1016/j.jconrel.2017.10.03629107128
    [Google Scholar]
  44. KoN.R. NafiujjamanM. LeeJ.S. LimH-N. LeeY. KwonI.K. Graphene quantum dot-based theranostic agents for active targeting of breast cancer.RSC Adv.2017719114201142710.1039/C6RA25949A
    [Google Scholar]
  45. KoN.R. HongS.H. NafiujjamanM. AnS.Y. RevuriV. LeeS.J. KwonI.K. LeeY. OhS.J. Glutathione-responsive PEGylated GQD-based nanomaterials for diagnosis and treatment of breast cancer.J. Ind. Eng. Chem.20197130130710.1016/j.jiec.2018.11.039
    [Google Scholar]
  46. GoelH.L. MercurioA.M. VEGF targets the tumour cell.Nat. Rev. Cancer2013131287188210.1038/nrc362724263190
    [Google Scholar]
  47. NasrollahiF. KohY.R. ChenP. VarshosazJ. KhodadadiA.A. LimS. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging.Mater. Sci. Eng. C20199424725710.1016/j.msec.2018.09.02030423706
    [Google Scholar]
  48. WangK. LiD. SunL. High levels of EGFR expression in tumor stroma are associated with aggressive clinical features in epithelial ovarian cancer.OncoTargets Ther.2016937738610.2147/OTT.S9630926855586
    [Google Scholar]
  49. MahrooqiA.J.H. KhutoryanskiyV. WilliamsA.C. Thiolated and PEGylated organosilica nanoparticles: A model carrier for drug delivery to the hair follicles and vitreous humour.EnglandUniversity of Reading202159310.1016/j.ijpharm.2020.120130
    [Google Scholar]
  50. DongJ. YaoX. SunS. ZhongY. QianC. YangD. In vivo targeting of breast cancer with a vasculature-specific GQDs/hMSN nanoplatform.RSC Adv.2019920115761158410.1039/C9RA01833F35520225
    [Google Scholar]
  51. NobariA.S. DoustvandiM.A. YaghoubiS.M. OskoueiS.S.S. AlizadehE. NourA.M. KhiabaniA.N. BaradaranB. RahmatiM. Emerging trends in quantum dot-based photosensitizers for enhanced photodynamic therapy in cancer treatment.J. Pharm. Investig.2024•••13610.1007/s40005‑024‑00698‑3
    [Google Scholar]
  52. HaiderM. CaglianiR. JagalJ. JayakumarM.N. FayedB. ShakartallaS.B. PasrichaR. GreishK. El-AwadyR. Peptide-functionalized graphene oxide quantum dots as colorectal cancer theranostics.J. Colloid Interf. Sci.2023630Pt A69871310.1016/j.jcis.2022.10.04536274405
    [Google Scholar]
  53. GuiW. ZhangJ. ChenX. YuD. MaQ. N-Doped graphene quantum dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery.Mikrochim. Acta201818516610.1007/s00604‑017‑2598‑029594582
    [Google Scholar]
  54. SenbanjoL.T. ChellaiahM.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells.Front. Cell Dev. Biol.201751810.3389/fcell.2017.0001828326306
    [Google Scholar]
  55. JoshiN.P. AgawaneS. AthalyeM.C. JadhavV. SarkarD. PrakashR. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy.Mater. Sci. Eng. C2017781203121110.1016/j.msec.2017.03.17628575959
    [Google Scholar]
  56. LiZ. FanJ. TongC. ZhouH. WangW. LiB. LiuB. WangW. A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy.Nanomedicine201914152011202510.2217/nnm‑2018‑037831355696
    [Google Scholar]
  57. ChowdhuryD.A. GanganboinaA.B. TsaiY. ChiuH. DoongR. Multifunctional GQDs-Concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery.Anal. Chim. Acta2018102710912010.1016/j.aca.2018.04.02929866260
    [Google Scholar]
  58. DongJ. WangK. SunL. SunB. YangM. ChenH. WangY. SunJ. DongL. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery.Sens. Actuators B Chem.201825661662310.1016/j.snb.2017.09.200
    [Google Scholar]
  59. MohkamM. SadraeianM. LautoA. GholamiA. NabavizadehS.H. EsmaeilzadehH. AlyasinS. Exploring the potential and safety of quantum dots in allergy diagnostics.Microsyst. Nanoeng.20239114510.1038/s41378‑023‑00608‑x38025887
    [Google Scholar]
  60. BiswasP. Quantum dots as functional nanosystems for enhanced biomedical applications.J. Biol. Regul. Homeost. Agents202438318311857
    [Google Scholar]
  61. BabazadA.M. ForoozandehA. AbdoussM. SalarAmoliH. BabazadR.A. HasanzadehM. Recent progress and challenges in biosensing of carcinoembryonic antigen.Trends Analyt. Chem.202418011796410.1016/j.trac.2024.117964
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X350689250227092216
Loading
/content/journals/ccand/10.2174/012212697X350689250227092216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test