Utilizing the body's immune system to combat cancer has become a viable tactic known as cancer immunotherapy. Metallic nanoparticles, or MNPs, have drawn a lot of interest because of their special qualities and their uses in cancer immunotherapy. The manufacturing processes of MNPs, their function in altering the tumor microenvironment (TME), and their capacity to control immune cells for potent anticancer effects are all thoroughly covered in this review. The review underscores the benefits of MNPs in surmounting obstacles linked to traditional cancer treatments, including toxicity, resistance, and off-target effects. It also goes over the different ways that MNPs modulate the immune system, For example, by generating reactive oxygen species (ROS), reducing glutathione (GSH) levels, and improving hypoxia. The research also examines the ability of MNPs to enhance the maturation of dendritic cells, shift macrophages towards an M1 phenotype, stimulate T-cell responses, and aid in the transportation of natural killer (NK) cells. The investigation is focused on understanding the synergistic effects of MNPsIn conjunction with other immunotherapeutic approaches, such as checkpoint inhibitors and cell-based treatments, in order to generate potent immune responses against cancer.
PeerD.
KarpJ.M.
HongS.
FarokhzadO.C.
MargalitR.
LangerR.
Nanocarriers as an emerging platform for cancer therapy.Nano-Enabled Medical Applications.Dubai, United Arab EmiratesJenny Stanford Publishing2020619110.1201/9780429399039‑2
UrruticoecheaA.
AlemanyR.
BalartJ.
VillanuevaA.
ViñalsF.
CapelláG.
Recent advances in cancer therapy: An overview.Curr. Pharm. Des.201016131010.2174/13816121078994184720214614
ValizadehA.
KhaleghiA.A.
AlipanahH.
ZarenezhadE.
OsanlooM.
Anticarcinogenic effect of chitosan nanoparticles containing syzygium aromaticum essential oil or eugenol toward breast and skin cancer cell lines.Bionanoscience202111367868610.1007/s12668‑021‑00880‑z
BahmanyarM.
VakilM.K.
Al-AwsiG.R.L.
Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: A literature review.Mol. Biol. Rep.20224911106271063310.1007/s11033‑022‑07633‑535715610
Sochacka-ĆwikłaA.
MączyńskiM.
RegiecA.
FDA-Approved drugs for hematological malignancies: The last decade review.Cancers20211418710.3390/cancers1401008735008250
van PuffelenJ.H.
KeatingS.T.
OosterwijkE.
Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer.Nat. Rev. Urol.202017951352510.1038/s41585‑020‑0346‑432678343
NeteaM.G.
SchlitzerA.
PlacekK.
JoostenL.A.B.
SchultzeJ.L.
Innate and adaptive immune memory: An evolutionary continuum in the host’s response to pathogens.Cell Host Microbe2019251132610.1016/j.chom.2018.12.00630629914
NeteaM.G.
QuintinJ.
van der MeerJ.W.M.
Trained immunity: A memory for innate host defense.Cell Host Microbe20119535536110.1016/j.chom.2011.04.00621575907
CasbonA.J.
ReynaudD.
ParkC.
Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils.Proc. Natl. Acad. Sci. USA20151126E566E57510.1073/pnas.142492711225624500
MiaoL.
HuangL.
Exploring the tumor microenvironment with nanoparticles.Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer.Cham, SwitzerlandSpringer201519322610.1007/978‑3‑319‑16555‑4_9
MarziM.
Rostami ChijanM.
ZarenezhadE.
Hydrogels as promising therapeutic strategy for the treatment of skin cancer.J. Mol. Struct.2022126213301410.1016/j.molstruc.2022.133014
Redelman-SidiG.
GlickmanM.S.
BochnerB.H.
The mechanism of action of BCG therapy for bladder cancer—a current perspective.Nat. Rev. Urol.201411315316210.1038/nrurol.2014.1524492433
MagadánS.
Mikelez-AlonsoI.
BorregoF.
González-FernándezÁ.
Nanoparticles and trained immunity: Glimpse into the future.Adv. Drug Deliv. Rev.202117511382110.1016/j.addr.2021.05.03134087325
LeeL.
GuptaM.
SahasranamanS.
Immune Checkpoint inhibitors: An introduction to the next‐generation cancer immunotherapy.J. Clin. Pharmacol.201656215716910.1002/jcph.59126183909
GellerA.
ShresthaR.
YanJ.
Yeast-derived β-glucan in cancer: Novel uses of a traditional therapeutic.Int. J. Mol. Sci.20192015361810.3390/ijms2015361831344853
DadwalA
BaldiA
Kumar NarangR.
Nanoparticles as carriers for drug delivery in cancer.Artif Cells Nanomed Biotechnol201846(sup2)(Suppl. S2)29530510.1080/21691401.2018.145703930043651
Mikelez-AlonsoI.
MagadánS.
González-FernándezÁ.
BorregoF.
Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity.Adv. Drug Deliv. Rev.202117611386010.1016/j.addr.2021.11386034237404
CroninJ.G.
JonesN.
ThorntonC.A.
JenkinsG.J.S.
DoakS.H.
CliftM.J.D.
Nanomaterials and innate immunity: A perspective of the current status in nanosafety.Chem. Res. Toxicol.20203351061107310.1021/acs.chemrestox.0c0005132307980
SunL.
LiuW.
ZhangL.
The role of toll-like receptors in skin host defense, psoriasis, and atopic dermatitis.J. Immunol. Res.2019201911310.1155/2019/182462431815151
VilliersC.
ChevalletM.
DiemerH.
From secretome analysis to immunology: Chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism.Mol. Cell. Proteomics2009861252126410.1074/mcp.M800589‑MCP20019279042
HamasakiT.
UtoT.
AkagiT.
AkashiM.
BabaM.
Modulation of gene expression related to Toll-like receptor signaling in dendritic cells by poly(γ-glutamic acid) nanoparticles.Clin. Vaccine Immunol.201017574875610.1128/CVI.00505‑0920219877
UtoT.
AkagiT.
YoshinagaK.
ToyamaM.
AkashiM.
BabaM.
The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway.Biomaterials201132225206521210.1016/j.biomaterials.2011.03.05221492934
RamosR.N.
RodriguezC.
HubertM.
CD163 + tumor‐associated macrophage accumulation in breast cancer patients reflects both local differentiation signals and systemic skewing of monocytes.Clin. Transl. Immunology202092e110810.1002/cti2.110832082570
CovarrubiasG.
MoonT.J.
LoutrianakisG.
Comparison of the uptake of untargeted and targeted immunostimulatory nanoparticles by immune cells in the microenvironment of metastatic breast cancer.J. Mater. Chem. B Mater. Biol. Med.202210222423510.1039/D1TB02256C34846443
ZuoT.
FangT.
ZhangJ.
pH‐sensitive molecular‐switch‐containing polymer nanoparticle for breast cancer therapy with ferritinophagy‐cascade ferroptosis and tumor immune activation.Adv. Healthc. Mater.20211021210068310.1002/adhm.20210068334535975
AhmedS.
AhmadM.
SwamiB.L.
IkramS.
A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
HühnJ.
Carrillo-CarrionC.
SolimanM.G.
Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles.Chem. Mater.201729139946110.1021/acs.chemmater.6b04738
FrensG.
Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nat. Phys. Sci1973241105202210.1038/physci241020a0
VaseghiZ.
NematollahzadehA.
TavakoliO.
Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review.Rev. Chem. Eng.201834452955910.1515/revce‑2017‑0005
MukherjeeS.
NethiS.K.
PatraC.R.
Green synthesized gold nanoparticles for future biomedical applications.Particulate Technology for Delivery of Therapeutics.
JanaS.
JanaS.
SingaporeSpringer Singapore201735939310.1007/978‑981‑10‑3647‑7_11
ZarenezhadE.
AbdulabbasH.T.
MarziM.
Nickel nanoparticles: Applications and antimicrobial role against methicillin-resistant Staphylococcus aureus infections.Antibiotics2022119120810.3390/antibiotics1109120836139986
NisarP.
AliN.
RahmanL.
AliM.
ShinwariZ.K.
Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action.J. Biol. Inorg. Chem.201924792994110.1007/s00775‑019‑01717‑731515623
DesaiN.
MominM.
KhanT.
GharatS.
NingthoujamR.S.
OmriA.
Metallic nanoparticles as drug delivery system for the treatment of cancer.Expert Opin. Drug Deliv.20211891261129010.1080/17425247.2021.191200833793359
BriolayT.
PetithommeT.
FouetM.
Nguyen-PhamN.
BlanquartC.
BoisgeraultN.
Delivery of cancer therapies by synthetic and bio-inspired nanovectors.Mol. Cancer20212015510.1186/s12943‑021‑01346‑233761944
JayasingheM.K.
TanM.
PengB.
New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies.Semin. Cancer Biol.202174627810.1016/j.semcancer.2021.02.01033609665
FogedC.
BrodinB.
FrokjaerS.
SundbladA.
Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model.Int. J. Pharm.2005298231532210.1016/j.ijpharm.2005.03.03515961266
YoonH.Y.
SelvanS.T.
YangY.
Engineering nanoparticle strategies for effective cancer immunotherapy.Biomaterials201817859760710.1016/j.biomaterials.2018.03.03629576282
LiuJ.
ZhangR.
XuZ.P.
Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions.Small20191532190026210.1002/smll.20190026230908864
CruzL.J.
TackenP.J.
FokkinkR.
Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro.J. Control. Release2010144211812610.1016/j.jconrel.2010.02.01320156497
LuoL.
ZhuC.
YinH.
Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors.ACS Nano20181287647766210.1021/acsnano.8b0020430020768
Poilil SurendranS.
MoonM.J.
ParkR.
JeongY.Y.
Bioactive nanoparticles for cancer immunotherapy.Int. J. Mol. Sci.20181912387710.3390/ijms1912387730518139
HeJ.
LiuS.
ZhangY.
The application of and strategy for gold nanoparticles in cancer immunotherapy.Front. Pharmacol.20211268739910.3389/fphar.2021.68739934163367
LiY.
Ayala-OrozcoC.
RautaP.R.
KrishnanS.
The application of nanotechnology in enhancing immunotherapy for cancer treatment: Current effects and perspective.Nanoscale20191137171571717810.1039/C9NR05371A31531445
PatilM.P.
KimG.D.
Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications.Colloids Surf. B Biointerfaces201817248749510.1016/j.colsurfb.2018.09.00730205339
MuddapurU.M.
AlshehriS.
GhoneimM.M.
Plant-based synthesis of gold nanoparticles and theranostic applications: A review.Molecules2022274139110.3390/molecules2704139135209180
PengG.
KeshavanS.
DeloguL.
ShinY.
CasiraghiC.
FadeelB.
Two‐dimensional transition metal dichalcogenides trigger trained immunity in human macrophages through epigenetic and metabolic pathways.Small20221820210781610.1002/smll.20210781635434920
ShaoY.
GanZ.
EpifanovskyE.
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package.Mol. Phys.2015113218421510.1080/00268976.2014.952696
ChenJ.
JiangC.C.
JinL.
ZhangX.D.
Regulation of PD-L1: A novel role of pro-survival signalling in cancer.Ann. Oncol.201627340941610.1093/annonc/mdv61526681673
ShiX.
ChengQ.
HouT.
Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy.Mol. Ther.202028253654710.1016/j.ymthe.2019.11.02031843452
LiuY.
QiaoL.
ZhangS.
Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy.Acta Biomater.20186631032410.1016/j.actbio.2017.11.01029129789
NguyenN.T.T.
NguyenT.T.T.
GeS.
LiewR.K.
NguyenD.T.C.
TranT.V.
Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery.Nanoscale Adv.2024671800182110.1039/D3NA01075A38545292
KorangathP.
JinL.
YangC.T.
Iron oxide nanoparticles inhibit tumor progression and suppress lung metastases in mouse models of breast cancer.ACS Nano20241815105091052610.1021/acsnano.3c1206438564478
LiF.R.
LiQ.
ZhouH.X.
QiH.
DengC.Y.
Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR.Nanomedicine2013971106111310.1016/j.nano.2013.03.00223506951
PaholakH.J.
SteversN.O.
ChenH.
Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy.Biomaterials201610414515710.1016/j.biomaterials.2016.06.04527450902
IshizukaM.
KaiboriM.
SumiyamaF.
Photodynamic therapy with paclitaxel-encapsulated indocyanine green-modified liposomes for breast cancer.Front. Oncol.202414136530510.3389/fonc.2024.136530538515576
LecotN.
Fernández-LomónacoM.
CerecettoH.
GambiniJ.P.
CabralP.
GlisoniR.
Indocyanine green within glycosylated polymeric micelles as potential image agents to map sentinel lymph nodes and breast cancer.RSC Pharmaceutics202411576710.1039/D3PM00053B
LiuF.
ChenY.
LiY.
Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.Int. J. Nanomedicine2018135139515810.2147/IJN.S16704330233177
YangX.
HuC.
TongF.
Tumor microenvironment-responsive dual drug dimer-loaded pegylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer.Adv. Funct. Mater.20192932190189610.1002/adfm.201901896
Molanouri ShamsiM.
ChekachakS.
SoudiS.
Effects of exercise training and supplementation with selenium nanoparticle on T-helper 1 and 2 and cytokine levels in tumor tissue of mice bearing the 4 T1 mammary carcinoma.Nutrition20195714114710.1016/j.nut.2018.05.02230170303
XuC.
YuY.
SunY.
Transformable nanoparticle‐enabled synergistic elicitation and promotion of immunogenic cell death for triple‐negative breast cancer immunotherapy.Adv. Funct. Mater.20192945190521310.1002/adfm.201905213
CastroF.
PintoM.L.
PereiraC.L.
Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer.Biomaterials202025712021810.1016/j.biomaterials.2020.12021832736253
FengB.
NiuZ.
HouB.
ZhouL.
LiY.
YuH.
Enhancing triple negative breast cancer immunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles.Adv. Funct. Mater.2020306190660510.1002/adfm.201906605
JiaY.P.
ShiK.
YangF.
Multifunctional nanoparticle loaded injectable thermoresponsive hydrogel as NIR controlled release platform for local photothermal immunotherapy to prevent breast cancer postoperative recurrence and metastases.Adv. Funct. Mater.20203025200105910.1002/adfm.202001059
GurunathanS.
HanJ.W.
EppakayalaV.
JeyarajM.
KimJ.H.
Cytotoxicity of biologically synthesized silver nanoparticles in MDA‐MB‐231 human breast cancer cells.BioMed Res. Int.201320131535796
IqbalH.
RazzaqA.
UzairB.
Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice.Materials202114123155
UmarH.
KavazD.
RizanerN.
Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines.Int. J. Nanomedicine20191487100
SuryaC.
LakshminarayanaA.B.
RameshS.H.
Advancements in breast cancer therapy: The promise of copper nanoparticles.J. Trace Elem. Med. Biol.202486127526
HulloM.
GrallR.
PerrotY.
Radiation enhancer effect of platinum nanoparticles in breast cancer cell lines: In vitro and in silico analyses.Int. J. Mol. Sci.20212294436
HathoutAS
AljawishA
SabryBA
Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties.J Appl Pharma Sci.20177108692
Medina-CruzD
SalehB
Vernet-CruaA
Bimetallic nanoparticles for biomedical applications: A review.Racing for the Surface: Antimicrobial and Interface Tissue Engineering.2020397434
WangW.
LiuX.
DingL.
JinH.J.
LiX.
Rna hydrogel combined with MnO2 nanoparticles as a nano-vaccine to treat triple negative breast cancer.Front Chem.2021249797094
ShaoL.
LiuD.
LiuX.
Glucose oxidase and MnO2 functionalized liposome for catalytic radiosensitization enhanced synergistic breast cancer therapy.Biomed. Pharmacother.2024179117402
ZhaoM.
XieM.
GuoJ.
Facile phototherapeutic nanoplatform by integrating a multifunctional polymer and MnO2 for enhancing tumor synergistic therapy.Adv. Healthc. Mater.2019815190041410.1002/adhm.20190041431168955
WangX.S.
ZengJ.Y.
ZhangM.K.
ZengX.
ZhangX.Z.
A versatile pt‐based core–shell nanoplatform as a nanofactory for enhanced tumor therapy.Adv. Funct. Mater.20182836180178310.1002/adfm.201801783
ZhangZ.
NiuN.
GaoX.
A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy.Colloids Surf. B Biointerfaces201917333534510.1016/j.colsurfb.2018.10.00830316080
ChenZ.
NiuM.
ChenG.
Oxygen production of modified core–shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy.ACS Nano20181212127211273210.1021/acsnano.8b0774930512923
KalamburV.S.
LongmireE.K.
BischofJ.C.
Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.Langmuir20072324123291233610.1021/la701100r17960940
CurleyS.A.
CherukuriP.
BriggsK.
Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles.J. Exp. Ther. Oncol.20087431332619227011
BuonerbaA.
LapentaR.
DonniacuoA.
NIR multiphoton ablation of cancer cells, fluorescence quenching and cellular uptake of dansyl-glutathione-coated gold nanoparticles.Sci. Rep.20201011138010.1038/s41598‑020‑68397‑132647291
EspinosaA.
SilvaA.K.A.
Sánchez-IglesiasA.
Photothermal therapy: Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: Toward a plasmonic thermal fingerprint in tumoral environment.Adv. Healthc. Mater.201659111210.1002/adhm.201670046
HuangZ.
GaoL.
KongL.
ZhangH.H.
YangJ.X.
LiL.
In vivo two-photon imaging/excited photothermal therapy strategy of a silver-nanohybrid.J. Mater. Chem. B Mater. Biol. Med.20197467377738610.1039/C9TB01769K31696197
Al-FahdawiM.Q.
Al-DoghachiF.A.J.
AbdullahQ.K.
Oxidative stress cytotoxicity induced by platinum-doped magnesia nanoparticles in cancer cells.Biomed. Pharmacother.202113811148310.1016/j.biopha.2021.11148333744756
WahabR.
KaushikN.K.
KaushikN.
ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells.J. Biomed. Nanotechnol.2013971181118910.1166/jbn.2013.165223909132
WahabR.
SiddiquiM.A.
SaquibQ.
ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity.Colloids Surf. B Biointerfaces201411726727610.1016/j.colsurfb.2014.02.03824657613
WangC.
CaoF.
RuanY.
JiaX.
ZhenW.
JiangX.
Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by CU‐TCPP nanosheets for cancer therapy.Angew. Chem. Int. Ed.201958299846985010.1002/anie.20190398131077533
SoenenS.J.
Rivera-GilP.
MontenegroJ.M.
ParakW.J.
De SmedtS.C.
BraeckmansK.
Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation.Nano Today20116544646510.1016/j.nantod.2011.08.001
YaoX.
YangB.
WangS.
A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemo] dynamic cancer therapies and photothermally-enhanced immuno] therapy.J. Mater. Chem. B Mater. Biol. Med.20208358010802110.1039/D0TB00411A32766612
WuS.
LiuX.
RenJ.
QuX.
Glutathione depletion in a benign manner by MoS 2 ‐based nanoflowers for enhanced hypoxia‐irrelevant free‐radical‐based cancer therapy.Small20191551190487010.1002/smll.20190487031750615
LinT.
ZhaoX.
ZhaoS.
O2 -generating MnO 2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia.Theranostics201884990100410.7150/thno.2246529463995
SweeneyE.E.
Cano-MejiaJ.
FernandesR.
Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma.Small20181420180067810.1002/smll.20180067829665282
LvM.
ChenM.
ZhangR.
Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.Cell Res.2020301196697910.1038/s41422‑020‑00395‑432839553
SunX.
ZhangY.
LiJ.
Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy.Nat. Nanotechnol.202116111260127010.1038/s41565‑021‑00962‑934594005
SchmidtM.
RaghavanB.
MüllerV.
Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel.Nat. Immunol.201011981481910.1038/ni.191920711192
CuiY.
LiuH.
ZhouM.
Signaling pathway of inflammatory responses in the mouse liver caused by TiO 2 nanoparticles.J. Biomed. Mater. Res. A201196A122122910.1002/jbm.a.3297621105171
JangE.S.
ShinJ.H.
RenG.
The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles.Biomaterials201233225584559210.1016/j.biomaterials.2012.04.04122575830
ZhaoY.
ZhaoX.
ChengY.
GuoX.
YuanW.
Iron oxide nanoparticles-based vaccine delivery for cancer treatment.Mol. Pharm.20181551791179910.1021/acs.molpharmaceut.7b0110329570298
Toraya-BrownS.
SheenM.R.
ZhangP.
Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors.Nanomedicine20141061273128510.1016/j.nano.2014.01.01124566274
JiaJ.
ZhangY.
XinY.
JiangC.
YanB.
ZhaiS.
Interactions between nanoparticles and dendritic cells: From the perspective of cancer immunotherapy.Front. Oncol.2018840410.3389/fonc.2018.0040430319969
SchanenB.C.
DasS.
ReillyC.M.
Immunomodulation and T helper TH1/TH2 response polarization by CeO2 and TiO2 nanoparticles.PLoS One201385e6281610.1371/journal.pone.006281623667525
ChengH.W.
TsaoH.Y.
ChiangC.S.
ChenS.Y.
Advances in magnetic nanoparticle‐mediated cancer immune‐theranostics.Adv. Healthc. Mater.2021101200145110.1002/adhm.20200145133135398
RobinsonB.D.
SicaG.L.
LiuY.F.
Tumor microenvironment of metastasis in human breast carcinoma: A potential prognostic marker linked to hematogenous dissemination.Clin. Cancer Res.20091572433244110.1158/1078‑0432.CCR‑08‑217919318480
VarneyM.L.
JohanssonS.L.
SinghR.K.
Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: Role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A.Melanoma Res.200515541742510.1097/00008390‑200510000‑0001016179869
ChattopadhyayS.
DashS.K.
MandalD.
Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine.Vaccine201634795796710.1016/j.vaccine.2015.12.05326772632
TomićS.
ĐokićJ.
VasilijićS.
Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro.PLoS One201495e9658410.1371/journal.pone.009658424802102
MoY.
MoY.
ZhuX.
Cytokine and NO release from peripheral blood neutrophils after exposure to metal nanoparticles: in vitro and ex vivo studies.Nanotoxicology200822798710.1080/17435390802112874
ShariatzadehS.
MoghimiN.
KhalafiF.
Metallic nanoparticles for the modulation of tumor microenvironment; a new horizon.Front. Bioeng. Biotechnol.20221084743310.3389/fbioe.2022.84743335252155
ChoiB.
ChoiH.
YuB.
KimD.H.
Synergistic local combination of radiation and anti-programmed death ligand 1 immunotherapy using radiation-responsive splintery metallic nanocarriers.ACS Nano20201410131151312610.1021/acsnano.0c0470132885958
KorangathP
BarnettJD
SharmaA
Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer.Sci Adv2020613eaay160110.1126/sciadv.aay1601
ZhuJ.
ZhiQ.
ZhouB.P.
TaoM.
LiuJ.
LiW.
The role of tumor associated macrophages in the tumor microenvironment: Mechanism and functions.Anti Ccancer Agents Med Chem (Former Curr Med Chem Anti Cancer Agents)2016161133114110.2174/187152061666616052011262227198986
SicaA.
SchioppaT.
MantovaniA.
AllavenaP.
Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy.Eur. J. Cancer200642671772710.1016/j.ejca.2006.01.00316520032
HeathW.R.
KatoY.
SteinerT.M.
CaminschiI.
Antigen presentation by dendritic cells for B cell activation.Curr. Opin. Immunol.201958445210.1016/j.coi.2019.04.00331071588
BezuL.
Gomes-de-SilvaL.C.
DewitteH.
Combinatorial strategies for the induction of immunogenic cell death.Front. Immunol.2015618710.3389/fimmu.2015.0018725964783
ShaoD.
LiJ.
ZhengX.
Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy.Biomaterials201610011813310.1016/j.biomaterials.2016.05.03027258482
GreppiM.
TabelliniG.
PatriziO.
Strengthening the antitumor NK cell function for the treatment of ovarian cancer.Int. J. Mol. Sci.201920489010.3390/ijms2004089030791364
ChenL.
MaX.
DangM.
Simultaneous T cell activation and macrophage polarization to promote potent tumor suppression by iron oxide‐embedded large‐pore mesoporous organosilica core–shell nanospheres.Adv. Healthc. Mater.201989190003910.1002/adhm.20190003930838801
YuG.T.
RaoL.
WuH.
Myeloid‐derived suppressor cell membrane‐coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death.Adv. Funct. Mater.20182837180138910.1002/adfm.201801389
GuZ.
LiuT.
TangJ.
Mechanism of iron oxide-induced macrophage activation: The impact of composition and the underlying signaling pathway.J. Am. Chem. Soc.2019141156122612610.1021/jacs.8b1090430933483
SchanenB.C.
KarakotiA.S.
SealS.
DrakeD.R.III
WarrenW.L.
SelfW.T.
Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct.ACS Nano2009392523253210.1021/nn900403h19769402
ShenC.C.
LiangH.J.
WangC.C.
LiaoM.H.
JanT.R.
A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression.Int. J. Nanomedicine201162791279822114506
ZhouB.
WuQ.
WangM.
Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment.Chem. Eng. J.202039612523910.1016/j.cej.2020.12523932523422
ZhouB.
SongJ.
WangM.
BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy.Nanoscale20181046216402164710.1039/C8NR05323E30232481
WuL.
ZhangF.
WeiZ.
Magnetic delivery of Fe 3 O 4 @polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment.Biomater. Sci.20186102714272510.1039/C8BM00588E30151523
HaghighatF.
KimY.
SourinejadI.
YuI.J.
JohariS.A.
Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio).Chemosphere202126212780510.1016/j.chemosphere.2020.12780532750593