Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Utilizing the body's immune system to combat cancer has become a viable tactic known as cancer immunotherapy. Metallic nanoparticles, or MNPs, have drawn a lot of interest because of their special qualities and their uses in cancer immunotherapy. The manufacturing processes of MNPs, their function in altering the tumor microenvironment (TME), and their capacity to control immune cells for potent anticancer effects are all thoroughly covered in this review. The review underscores the benefits of MNPs in surmounting obstacles linked to traditional cancer treatments, including toxicity, resistance, and off-target effects. It also goes over the different ways that MNPs modulate the immune system, For example, by generating reactive oxygen species (ROS), reducing glutathione (GSH) levels, and improving hypoxia. The research also examines the ability of MNPs to enhance the maturation of dendritic cells, shift macrophages towards an M1 phenotype, stimulate T-cell responses, and aid in the transportation of natural killer (NK) cells. The investigation is focused on understanding the synergistic effects of MNPsIn conjunction with other immunotherapeutic approaches, such as checkpoint inhibitors and cell-based treatments, in order to generate potent immune responses against cancer.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X334574250107090812
2025-01-20
2025-09-23
Loading full text...

Full text loading...

References

  1. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nano-Enabled Medical Applications.Dubai, United Arab EmiratesJenny Stanford Publishing2020619110.1201/9780429399039‑2
    [Google Scholar]
  2. SawyersC. Targeted cancer therapy.Nature2004432701529429710.1038/nature0309515549090
    [Google Scholar]
  3. UrruticoecheaA. AlemanyR. BalartJ. VillanuevaA. ViñalsF. CapelláG. Recent advances in cancer therapy: An overview.Curr. Pharm. Des.201016131010.2174/13816121078994184720214614
    [Google Scholar]
  4. ValizadehA. KhaleghiA.A. AlipanahH. ZarenezhadE. OsanlooM. Anticarcinogenic effect of chitosan nanoparticles containing syzygium aromaticum essential oil or eugenol toward breast and skin cancer cell lines.Bionanoscience202111367868610.1007/s12668‑021‑00880‑z
    [Google Scholar]
  5. AlipanahH. AbdollahiA. FirooziyanS. ZarenezhadE. JafariM. OsanlooM. Nanoemulsion and nanogel containing Eucalyptus globulus essential oil; larvicidal activity and antibacterial properties.Interdiscip. Perspect. Infect. Dis.202220221910.1155/2022/161614936092391
    [Google Scholar]
  6. MellmanI. CoukosG. DranoffG. Cancer immunotherapy comes of age.Nature2011480737848048910.1038/nature1067322193102
    [Google Scholar]
  7. FarkonaS. DiamandisE.P. BlasutigI.M. Cancer immunotherapy: The beginning of the end of cancer?BMC Med.20161417310.1186/s12916‑016‑0623‑527151159
    [Google Scholar]
  8. BahmanyarM. VakilM.K. Al-AwsiG.R.L. Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: A literature review.Mol. Biol. Rep.20224911106271063310.1007/s11033‑022‑07633‑535715610
    [Google Scholar]
  9. Sochacka-ĆwikłaA. MączyńskiM. RegiecA. FDA-Approved drugs for hematological malignancies: The last decade review.Cancers20211418710.3390/cancers1401008735008250
    [Google Scholar]
  10. KiyotaniK. ToyoshimaY. NakamuraY. Personalized immunotherapy in cancer precision medicine.Cancer Biol. Med.202118495596534369137
    [Google Scholar]
  11. MulderW.J.M. OchandoJ. JoostenL.A.B. FayadZ.A. NeteaM.G. Therapeutic targeting of trained immunity.Nat. Rev. Drug Discov.201918755356610.1038/s41573‑019‑0025‑430967658
    [Google Scholar]
  12. van PuffelenJ.H. KeatingS.T. OosterwijkE. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer.Nat. Rev. Urol.202017951352510.1038/s41585‑020‑0346‑432678343
    [Google Scholar]
  13. NeteaM.G. SchlitzerA. PlacekK. JoostenL.A.B. SchultzeJ.L. Innate and adaptive immune memory: An evolutionary continuum in the host’s response to pathogens.Cell Host Microbe2019251132610.1016/j.chom.2018.12.00630629914
    [Google Scholar]
  14. NeteaM.G. QuintinJ. van der MeerJ.W.M. Trained immunity: A memory for innate host defense.Cell Host Microbe20119535536110.1016/j.chom.2011.04.00621575907
    [Google Scholar]
  15. QuintinJ. SaeedS. MartensJ.H.A. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes.Cell Host Microbe201212222323210.1016/j.chom.2012.06.00622901542
    [Google Scholar]
  16. KongL. MoorlagS.J.C.F.M. LefkovithA. Single-cell transcriptomic profiles reveal changes associated with BCG-induced trained immunity and protective effects in circulating monocytes.Cell Rep.202137711002810.1016/j.celrep.2021.11002834788625
    [Google Scholar]
  17. CasbonA.J. ReynaudD. ParkC. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils.Proc. Natl. Acad. Sci. USA20151126E566E57510.1073/pnas.142492711225624500
    [Google Scholar]
  18. MiaoL. HuangL. Exploring the tumor microenvironment with nanoparticles.Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer.Cham, SwitzerlandSpringer201519322610.1007/978‑3‑319‑16555‑4_9
    [Google Scholar]
  19. UthamanS. HuhK.M. ParkI.K. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications.Biomater. Res.20182212210.1186/s40824‑018‑0132‑z30155269
    [Google Scholar]
  20. ChenY. LiuX. YuanH. Therapeutic remodeling of the tumor microenvironment enhances nanoparticle delivery.Adv. Sci.201965180207010.1002/advs.20180207030886813
    [Google Scholar]
  21. MarziM. Rostami ChijanM. ZarenezhadE. Hydrogels as promising therapeutic strategy for the treatment of skin cancer.J. Mol. Struct.2022126213301410.1016/j.molstruc.2022.133014
    [Google Scholar]
  22. Redelman-SidiG. GlickmanM.S. BochnerB.H. The mechanism of action of BCG therapy for bladder cancer—a current perspective.Nat. Rev. Urol.201411315316210.1038/nrurol.2014.1524492433
    [Google Scholar]
  23. MagadánS. Mikelez-AlonsoI. BorregoF. González-FernándezÁ. Nanoparticles and trained immunity: Glimpse into the future.Adv. Drug Deliv. Rev.202117511382110.1016/j.addr.2021.05.03134087325
    [Google Scholar]
  24. LeeL. GuptaM. SahasranamanS. Immune Checkpoint inhibitors: An introduction to the next‐generation cancer immunotherapy.J. Clin. Pharmacol.201656215716910.1002/jcph.59126183909
    [Google Scholar]
  25. GellerA. ShresthaR. YanJ. Yeast-derived β-glucan in cancer: Novel uses of a traditional therapeutic.Int. J. Mol. Sci.20192015361810.3390/ijms2015361831344853
    [Google Scholar]
  26. UpretiM. JyotiA. SethiP. Tumor microenvironment and nanotherapeutics.Transl. Cancer Res.20132430931924634853
    [Google Scholar]
  27. WangH. YuJ. LuX. HeX. Nanoparticle systems reduce systemic toxicity in cancer treatment.Nanomedicine201611210310610.2217/nnm.15.16626653177
    [Google Scholar]
  28. ZhangJ. LanC.Q. PostM. SimardB. DeslandesY. HsiehT.H. Design of nanoparticles as drug carriers for cancer therapy.Can Geno Prote200633-414715731394693
    [Google Scholar]
  29. DadwalA BaldiA Kumar NarangR. Nanoparticles as carriers for drug delivery in cancer.Artif Cells Nanomed Biotechnol201846(sup2)(Suppl. S2)29530510.1080/21691401.2018.145703930043651
    [Google Scholar]
  30. Mikelez-AlonsoI. MagadánS. González-FernándezÁ. BorregoF. Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how nanoparticles enhance NK cell activity.Adv. Drug Deliv. Rev.202117611386010.1016/j.addr.2021.11386034237404
    [Google Scholar]
  31. CroninJ.G. JonesN. ThorntonC.A. JenkinsG.J.S. DoakS.H. CliftM.J.D. Nanomaterials and innate immunity: A perspective of the current status in nanosafety.Chem. Res. Toxicol.20203351061107310.1021/acs.chemrestox.0c0005132307980
    [Google Scholar]
  32. KangM. HongJ. JungM. T‐Cell‐mimicking nanoparticles for cancer immunotherapy.Adv. Mater.20203239200336810.1002/adma.20200336832812291
    [Google Scholar]
  33. SunL. LiuW. ZhangL. The role of toll-like receptors in skin host defense, psoriasis, and atopic dermatitis.J. Immunol. Res.2019201911310.1155/2019/182462431815151
    [Google Scholar]
  34. VilliersC. ChevalletM. DiemerH. From secretome analysis to immunology: Chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism.Mol. Cell. Proteomics2009861252126410.1074/mcp.M800589‑MCP20019279042
    [Google Scholar]
  35. HamasakiT. UtoT. AkagiT. AkashiM. BabaM. Modulation of gene expression related to Toll-like receptor signaling in dendritic cells by poly(γ-glutamic acid) nanoparticles.Clin. Vaccine Immunol.201017574875610.1128/CVI.00505‑0920219877
    [Google Scholar]
  36. UtoT. AkagiT. YoshinagaK. ToyamaM. AkashiM. BabaM. The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway.Biomaterials201132225206521210.1016/j.biomaterials.2011.03.05221492934
    [Google Scholar]
  37. RamosR.N. RodriguezC. HubertM. CD163 + tumor‐associated macrophage accumulation in breast cancer patients reflects both local differentiation signals and systemic skewing of monocytes.Clin. Transl. Immunology202092e110810.1002/cti2.110832082570
    [Google Scholar]
  38. ZanganehS. HutterG. SpitlerR. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.Nat. Nanotechnol.2016111198699410.1038/nnano.2016.16827668795
    [Google Scholar]
  39. CovarrubiasG. MoonT.J. LoutrianakisG. Comparison of the uptake of untargeted and targeted immunostimulatory nanoparticles by immune cells in the microenvironment of metastatic breast cancer.J. Mater. Chem. B Mater. Biol. Med.202210222423510.1039/D1TB02256C34846443
    [Google Scholar]
  40. ZuoT. FangT. ZhangJ. pH‐sensitive molecular‐switch‐containing polymer nanoparticle for breast cancer therapy with ferritinophagy‐cascade ferroptosis and tumor immune activation.Adv. Healthc. Mater.20211021210068310.1002/adhm.20210068334535975
    [Google Scholar]
  41. HodgeD.R. HurtE.M. FarrarW.L. The role of IL-6 and STAT3 in inflammation and cancer.Eur. J. Cancer200541162502251210.1016/j.ejca.2005.08.01616199153
    [Google Scholar]
  42. DePeauxK. DelgoffeG.M. Metabolic barriers to cancer immunotherapy.Nat. Rev. Immunol.2021211278579710.1038/s41577‑021‑00541‑y33927375
    [Google Scholar]
  43. ParkW. HeoY.J. HanD.K. New opportunities for nanoparticles in cancer immunotherapy.Biomater. Res.20182212410.1186/s40824‑018‑0133‑y30275967
    [Google Scholar]
  44. KumariY. KaurG. KumarR. Gold nanoparticles: New routes across old boundaries.Adv. Colloid Interface Sci.201927410203710.1016/j.cis.2019.10203731655366
    [Google Scholar]
  45. KharissovaO.V. DiasH.V.R. KharisovB.I. PérezB.O. PérezV.M.J. The greener synthesis of nanoparticles.Trends Biotechnol.201331424024810.1016/j.tibtech.2013.01.00323434153
    [Google Scholar]
  46. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
    [Google Scholar]
  47. HühnJ. Carrillo-CarrionC. SolimanM.G. Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles.Chem. Mater.201729139946110.1021/acs.chemmater.6b04738
    [Google Scholar]
  48. FrensG. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nat. Phys. Sci1973241105202210.1038/physci241020a0
    [Google Scholar]
  49. BrustM. WalkerM. BethellD. SchiffrinD.J. WhymanR. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system.J. Chem. Soc. Chem. Commun.19940780180210.1039/C39940000801
    [Google Scholar]
  50. PeralaS.R.K. KumarS. On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method.Langmuir201329319863987310.1021/la401604q23848382
    [Google Scholar]
  51. DykmanL. KhlebtsovN. Gold nanoparticles in biomedical applications: Recent advances and perspectives.Chem. Soc. Rev.20124162256228210.1039/C1CS15166E22130549
    [Google Scholar]
  52. IravaniS. Green synthesis of metal nanoparticles using plants.Green Chem.201113102638265010.1039/c1gc15386b
    [Google Scholar]
  53. VaseghiZ. NematollahzadehA. TavakoliO. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review.Rev. Chem. Eng.201834452955910.1515/revce‑2017‑0005
    [Google Scholar]
  54. MukherjeeS. NethiS.K. PatraC.R. Green synthesized gold nanoparticles for future biomedical applications.Particulate Technology for Delivery of Therapeutics. JanaS. JanaS. SingaporeSpringer Singapore201735939310.1007/978‑981‑10‑3647‑7_11
    [Google Scholar]
  55. ZarenezhadE. AbdulabbasH.T. MarziM. Nickel nanoparticles: Applications and antimicrobial role against methicillin-resistant Staphylococcus aureus infections.Antibiotics2022119120810.3390/antibiotics1109120836139986
    [Google Scholar]
  56. NisarP. AliN. RahmanL. AliM. ShinwariZ.K. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action.J. Biol. Inorg. Chem.201924792994110.1007/s00775‑019‑01717‑731515623
    [Google Scholar]
  57. EvansE.R. BuggaP. AsthanaV. DrezekR. Metallic nanoparticles for cancer immunotherapy.Mater. Today201821667368510.1016/j.mattod.2017.11.02230197553
    [Google Scholar]
  58. DesaiN. MominM. KhanT. GharatS. NingthoujamR.S. OmriA. Metallic nanoparticles as drug delivery system for the treatment of cancer.Expert Opin. Drug Deliv.20211891261129010.1080/17425247.2021.191200833793359
    [Google Scholar]
  59. BriolayT. PetithommeT. FouetM. Nguyen-PhamN. BlanquartC. BoisgeraultN. Delivery of cancer therapies by synthetic and bio-inspired nanovectors.Mol. Cancer20212015510.1186/s12943‑021‑01346‑233761944
    [Google Scholar]
  60. JayasingheM.K. TanM. PengB. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies.Semin. Cancer Biol.202174627810.1016/j.semcancer.2021.02.01033609665
    [Google Scholar]
  61. ZhuG. ZhangF. NiQ. NiuG. ChenX. Efficient nanovaccine delivery in cancer immunotherapy.ACS Nano20171132387239210.1021/acsnano.7b0097828277646
    [Google Scholar]
  62. FogedC. BrodinB. FrokjaerS. SundbladA. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model.Int. J. Pharm.2005298231532210.1016/j.ijpharm.2005.03.03515961266
    [Google Scholar]
  63. YoonH.Y. SelvanS.T. YangY. Engineering nanoparticle strategies for effective cancer immunotherapy.Biomaterials201817859760710.1016/j.biomaterials.2018.03.03629576282
    [Google Scholar]
  64. LiuJ. ZhangR. XuZ.P. Nanoparticle-based nanomedicines to promote cancer immunotherapy: Recent advances and future directions.Small20191532190026210.1002/smll.20190026230908864
    [Google Scholar]
  65. CruzL.J. TackenP.J. FokkinkR. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro.J. Control. Release2010144211812610.1016/j.jconrel.2010.02.01320156497
    [Google Scholar]
  66. LuoL. ZhuC. YinH. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors.ACS Nano20181287647766210.1021/acsnano.8b0020430020768
    [Google Scholar]
  67. Poilil SurendranS. MoonM.J. ParkR. JeongY.Y. Bioactive nanoparticles for cancer immunotherapy.Int. J. Mol. Sci.20181912387710.3390/ijms1912387730518139
    [Google Scholar]
  68. HeJ. LiuS. ZhangY. The application of and strategy for gold nanoparticles in cancer immunotherapy.Front. Pharmacol.20211268739910.3389/fphar.2021.68739934163367
    [Google Scholar]
  69. LiY. Ayala-OrozcoC. RautaP.R. KrishnanS. The application of nanotechnology in enhancing immunotherapy for cancer treatment: Current effects and perspective.Nanoscale20191137171571717810.1039/C9NR05371A31531445
    [Google Scholar]
  70. PatilM.P. KimG.D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications.Colloids Surf. B Biointerfaces201817248749510.1016/j.colsurfb.2018.09.00730205339
    [Google Scholar]
  71. VinluanR.D.III ZhengJ. Serum protein adsorption and excretion pathways of metal nanoparticles.Nanomedicine201510172781279410.2217/nnm.15.9726377047
    [Google Scholar]
  72. MuddapurU.M. AlshehriS. GhoneimM.M. Plant-based synthesis of gold nanoparticles and theranostic applications: A review.Molecules2022274139110.3390/molecules2704139135209180
    [Google Scholar]
  73. NicosiaA. AbbadessaA. VentoF. MazzagliaA. MineoP.G. Silver nanoparticles decorated with pegylated porphyrins as potential theranostic and sensing agents.Materials20211411276410.3390/ma1411276434071106
    [Google Scholar]
  74. PengG. KeshavanS. DeloguL. ShinY. CasiraghiC. FadeelB. Two‐dimensional transition metal dichalcogenides trigger trained immunity in human macrophages through epigenetic and metabolic pathways.Small20221820210781610.1002/smll.20210781635434920
    [Google Scholar]
  75. LebreF. BolandJ.B. GouveiaP. Pristine graphene induces innate immune training.Nanoscale20201220111921120010.1039/C9NR09661B32407430
    [Google Scholar]
  76. ShaoY. GanZ. EpifanovskyE. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package.Mol. Phys.2015113218421510.1080/00268976.2014.952696
    [Google Scholar]
  77. ChenJ. JiangC.C. JinL. ZhangX.D. Regulation of PD-L1: A novel role of pro-survival signalling in cancer.Ann. Oncol.201627340941610.1093/annonc/mdv61526681673
    [Google Scholar]
  78. ShiX. ChengQ. HouT. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy.Mol. Ther.202028253654710.1016/j.ymthe.2019.11.02031843452
    [Google Scholar]
  79. LiuY. QiaoL. ZhangS. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy.Acta Biomater.20186631032410.1016/j.actbio.2017.11.01029129789
    [Google Scholar]
  80. NguyenN.T.T. NguyenT.T.T. GeS. LiewR.K. NguyenD.T.C. TranT.V. Recent progress and challenges of MOF-based nanocomposites in bioimaging, biosensing and biocarriers for drug delivery.Nanoscale Adv.2024671800182110.1039/D3NA01075A38545292
    [Google Scholar]
  81. BabaeiM. AbrishamiA. IranpourS. SaljooghiA.S. MatinM.M. Harnessing curcumin in a multifunctional biodegradable metal-organic framework (bio-MOF) for targeted colorectal cancer theranostics.Drug Deliv. Transl. Res.20242412010.1007/s13346‑024‑01707‑639302530
    [Google Scholar]
  82. KorangathP. JinL. YangC.T. Iron oxide nanoparticles inhibit tumor progression and suppress lung metastases in mouse models of breast cancer.ACS Nano20241815105091052610.1021/acsnano.3c1206438564478
    [Google Scholar]
  83. LiF.R. LiQ. ZhouH.X. QiH. DengC.Y. Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR.Nanomedicine2013971106111310.1016/j.nano.2013.03.00223506951
    [Google Scholar]
  84. PaholakH.J. SteversN.O. ChenH. Elimination of epithelial-like and mesenchymal-like breast cancer stem cells to inhibit metastasis following nanoparticle-mediated photothermal therapy.Biomaterials201610414515710.1016/j.biomaterials.2016.06.04527450902
    [Google Scholar]
  85. DuanX. ChanC. GuoN. HanW. WeichselbaumR.R. LinW. Photodynamic therapy mediated by nontoxic core–shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer.J. Am. Chem. Soc.201613851166861669510.1021/jacs.6b0953827976881
    [Google Scholar]
  86. ShiL LinS ZhouF JiangH ZhangJ Recent advances in engineering prodrug-based nanomedicines for cancer therapy Mater Adv2024
    [Google Scholar]
  87. IshizukaM. KaiboriM. SumiyamaF. Photodynamic therapy with paclitaxel-encapsulated indocyanine green-modified liposomes for breast cancer.Front. Oncol.202414136530510.3389/fonc.2024.136530538515576
    [Google Scholar]
  88. LecotN. Fernández-LomónacoM. CerecettoH. GambiniJ.P. CabralP. GlisoniR. Indocyanine green within glycosylated polymeric micelles as potential image agents to map sentinel lymph nodes and breast cancer.RSC Pharmaceutics202411576710.1039/D3PM00053B
    [Google Scholar]
  89. LiuF. ChenY. LiY. Folate-receptor-targeted laser-activable poly(lactide-co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.Int. J. Nanomedicine2018135139515810.2147/IJN.S16704330233177
    [Google Scholar]
  90. YangX. HuC. TongF. Tumor microenvironment-responsive dual drug dimer-loaded pegylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer.Adv. Funct. Mater.20192932190189610.1002/adfm.201901896
    [Google Scholar]
  91. Molanouri ShamsiM. ChekachakS. SoudiS. Effects of exercise training and supplementation with selenium nanoparticle on T-helper 1 and 2 and cytokine levels in tumor tissue of mice bearing the 4 T1 mammary carcinoma.Nutrition20195714114710.1016/j.nut.2018.05.02230170303
    [Google Scholar]
  92. XuC. YuY. SunY. Transformable nanoparticle‐enabled synergistic elicitation and promotion of immunogenic cell death for triple‐negative breast cancer immunotherapy.Adv. Funct. Mater.20192945190521310.1002/adfm.201905213
    [Google Scholar]
  93. AtukoraleP.U. RaghunathanS.P. RaguveerV. Nanoparticle encapsulation of synergistic immune agonists enables systemic codelivery to tumor sites and IFNβ-driven antitumor immunity.Cancer Res.201979205394540610.1158/0008‑5472.CAN‑19‑038131431457
    [Google Scholar]
  94. CastroF. PintoM.L. PereiraC.L. Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer.Biomaterials202025712021810.1016/j.biomaterials.2020.12021832736253
    [Google Scholar]
  95. FengB. NiuZ. HouB. ZhouL. LiY. YuH. Enhancing triple negative breast cancer immunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles.Adv. Funct. Mater.2020306190660510.1002/adfm.201906605
    [Google Scholar]
  96. JiaY.P. ShiK. YangF. Multifunctional nanoparticle loaded injectable thermoresponsive hydrogel as NIR controlled release platform for local photothermal immunotherapy to prevent breast cancer postoperative recurrence and metastases.Adv. Funct. Mater.20203025200105910.1002/adfm.202001059
    [Google Scholar]
  97. GurunathanS. HanJ.W. EppakayalaV. JeyarajM. KimJ.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA‐MB‐231 human breast cancer cells.BioMed Res. Int.201320131535796
    [Google Scholar]
  98. IqbalH. RazzaqA. UzairB. Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice.Materials202114123155
    [Google Scholar]
  99. UmarH. KavazD. RizanerN. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines.Int. J. Nanomedicine20191487100
    [Google Scholar]
  100. SuryaC. LakshminarayanaA.B. RameshS.H. Advancements in breast cancer therapy: The promise of copper nanoparticles.J. Trace Elem. Med. Biol.202486127526
    [Google Scholar]
  101. HulloM. GrallR. PerrotY. Radiation enhancer effect of platinum nanoparticles in breast cancer cell lines: In vitro and in silico analyses.Int. J. Mol. Sci.20212294436
    [Google Scholar]
  102. HathoutAS AljawishA SabryBA Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties.J Appl Pharma Sci.20177108692
    [Google Scholar]
  103. ZhuD. ZhuX.H. RenS.Z. LuY.D. ZhuH.L. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics.J. Drug Target.2021299911924
    [Google Scholar]
  104. Medina-CruzD SalehB Vernet-CruaA Bimetallic nanoparticles for biomedical applications: A review.Racing for the Surface: Antimicrobial and Interface Tissue Engineering.2020397434
    [Google Scholar]
  105. WangW. LiuX. DingL. JinH.J. LiX. Rna hydrogel combined with MnO2 nanoparticles as a nano-vaccine to treat triple negative breast cancer.Front Chem.2021249797094
    [Google Scholar]
  106. ShaoL. LiuD. LiuX. Glucose oxidase and MnO2 functionalized liposome for catalytic radiosensitization enhanced synergistic breast cancer therapy.Biomed. Pharmacother.2024179117402
    [Google Scholar]
  107. YangG. JiJ. LiuZ. Multifunctional MnO 2 nanoparticles for tumor microenvironment modulation and cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021136e172010.1002/wnan.172033908171
    [Google Scholar]
  108. PanW. GeY. YuZ. A cancer cell membrane-encapsulated MnO 2 nanoreactor for combined photodynamic-starvation therapy.Chem. Commun. (Camb.)201955355115511810.1039/C9CC01386E30969287
    [Google Scholar]
  109. ZhaoM. XieM. GuoJ. Facile phototherapeutic nanoplatform by integrating a multifunctional polymer and MnO2 for enhancing tumor synergistic therapy.Adv. Healthc. Mater.2019815190041410.1002/adhm.20190041431168955
    [Google Scholar]
  110. YangG. ZhangR. LiangC. Manganese dioxide coated WS 2 @Fe 3 O 4/sSiO 2 nanocomposites for ph‐responsive MR imaging and oxygen‐elevated synergetic therapy.Small2018142170266410.1002/smll.201702664
    [Google Scholar]
  111. WangX.S. ZengJ.Y. ZhangM.K. ZengX. ZhangX.Z. A versatile pt‐based core–shell nanoplatform as a nanofactory for enhanced tumor therapy.Adv. Funct. Mater.20182836180178310.1002/adfm.201801783
    [Google Scholar]
  112. LiangS. DengX. ChangY. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy.Nano Lett.20191964134414510.1021/acs.nanolett.9b0159531084016
    [Google Scholar]
  113. XuS. ZhuX. ZhangC. HuangW. ZhouY. YanD. Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor.Nat. Commun.201891205310.1038/s41467‑018‑04318‑129795534
    [Google Scholar]
  114. ZhangZ. NiuN. GaoX. A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy.Colloids Surf. B Biointerfaces201917333534510.1016/j.colsurfb.2018.10.00830316080
    [Google Scholar]
  115. ChenZ. NiuM. ChenG. Oxygen production of modified core–shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy.ACS Nano20181212127211273210.1021/acsnano.8b0774930512923
    [Google Scholar]
  116. KalamburV.S. LongmireE.K. BischofJ.C. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.Langmuir20072324123291233610.1021/la701100r17960940
    [Google Scholar]
  117. SamantaB. YanH. FischerN.O. ShiJ. JerryD.J. RotelloV.M. Protein-passivated Fe3O4 nanoparticles: Low toxicity and rapid heating for thermal therapy.J. Mater. Chem.200818111204120810.1039/b718745a19122852
    [Google Scholar]
  118. GannonC.J. PatraC.R. BhattacharyaR. MukherjeeP. CurleyS.A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells.J. Nanobiotechnology200861210.1186/1477‑3155‑6‑218234109
    [Google Scholar]
  119. CurleyS.A. CherukuriP. BriggsK. Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles.J. Exp. Ther. Oncol.20087431332619227011
    [Google Scholar]
  120. BuonerbaA. LapentaR. DonniacuoA. NIR multiphoton ablation of cancer cells, fluorescence quenching and cellular uptake of dansyl-glutathione-coated gold nanoparticles.Sci. Rep.20201011138010.1038/s41598‑020‑68397‑132647291
    [Google Scholar]
  121. EspinosaA. SilvaA.K.A. Sánchez-IglesiasA. Photothermal therapy: Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: Toward a plasmonic thermal fingerprint in tumoral environment.Adv. Healthc. Mater.201659111210.1002/adhm.201670046
    [Google Scholar]
  122. HuangZ. GaoL. KongL. ZhangH.H. YangJ.X. LiL. In vivo two-photon imaging/excited photothermal therapy strategy of a silver-nanohybrid.J. Mater. Chem. B Mater. Biol. Med.20197467377738610.1039/C9TB01769K31696197
    [Google Scholar]
  123. ZhaoZ. ShiS. HuangY. TangS. ChenX. Simultaneous photodynamic and photothermal therapy using photosensitizer-functionalized Pd nanosheets by single continuous wave laser.ACS Appl. Mater. Interfaces20146118878888510.1021/am501608c24801639
    [Google Scholar]
  124. WangY. WanJ. MironR.J. ZhaoY. ZhangY. Antibacterial properties and mechanisms of gold–silver nanocages.Nanoscale2016821111431115210.1039/C6NR01114D27180869
    [Google Scholar]
  125. Al-FahdawiM.Q. Al-DoghachiF.A.J. AbdullahQ.K. Oxidative stress cytotoxicity induced by platinum-doped magnesia nanoparticles in cancer cells.Biomed. Pharmacother.202113811148310.1016/j.biopha.2021.11148333744756
    [Google Scholar]
  126. DeyA. MannaS. KumarS. ChattopadhyayS. SahaB. RoyS. Immunostimulatory effect of chitosan conjugated green copper oxide nanoparticles in tumor immunotherapy.Cytokine202012715495810.1016/j.cyto.2019.15495831923815
    [Google Scholar]
  127. WahabR. KaushikN.K. KaushikN. ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells.J. Biomed. Nanotechnol.2013971181118910.1166/jbn.2013.165223909132
    [Google Scholar]
  128. WahabR. SiddiquiM.A. SaquibQ. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity.Colloids Surf. B Biointerfaces201411726727610.1016/j.colsurfb.2014.02.03824657613
    [Google Scholar]
  129. AkhtarM.J. AhamedM. AlhadlaqH.A. AlrokayanS.A. MgO nanoparticles cytotoxicity caused primarily by GSH depletion in human lung epithelial cells.J. Trace Elem. Med. Biol.20185028329010.1016/j.jtemb.2018.07.01630262293
    [Google Scholar]
  130. LinL.S. SongJ. SongL. Simultaneous fenton‐like ion delivery and glutathione depletion by MnO 2 ‐based nanoagent to enhance chemodynamic therapy.Angew. Chem. Int. Ed.201857184902490610.1002/anie.20171202729488312
    [Google Scholar]
  131. WangC. CaoF. RuanY. JiaX. ZhenW. JiangX. Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by CU‐TCPP nanosheets for cancer therapy.Angew. Chem. Int. Ed.201958299846985010.1002/anie.20190398131077533
    [Google Scholar]
  132. GuH. HuangT. ShenY. Reactive oxygen species‐mediated tumor microenvironment transformation: The mechanism of radioresistant gastric cancer.Oxid. Med. Cell. Longev.201820181580120910.1155/2018/580120929770167
    [Google Scholar]
  133. YuZ. LiQ. WangJ. Reactive oxygen species-related nanoparticle toxicity in the biomedical field.Nanoscale Res. Lett.202015111510.1186/s11671‑020‑03344‑732436107
    [Google Scholar]
  134. SoenenS.J. Rivera-GilP. MontenegroJ.M. ParakW.J. De SmedtS.C. BraeckmansK. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation.Nano Today20116544646510.1016/j.nantod.2011.08.001
    [Google Scholar]
  135. GuoS. YaoX. JiangQ. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced chemodynamic therapy.Front. Pharmacol.20201122610.3389/fphar.2020.0022632210814
    [Google Scholar]
  136. Ranji-BurachalooH. GurrP.A. DunstanD.E. QiaoG.G. Cancer treatment through nanoparticle-facilitated fenton reaction.ACS Nano20181212118191183710.1021/acsnano.8b0763530457834
    [Google Scholar]
  137. YaoX. YangB. WangS. A novel multifunctional FePt/BP nanoplatform for synergistic photothermal/photodynamic/chemo] dynamic cancer therapies and photothermally-enhanced immuno] therapy.J. Mater. Chem. B Mater. Biol. Med.20208358010802110.1039/D0TB00411A32766612
    [Google Scholar]
  138. DingB. ShaoS. JiangF. MnO 2 -disguised upconversion hybrid nanocomposite: An ideal architecture for tumor microenvironment-triggered UCL/MR bioimaging and enhanced chemodynamic therapy.Chem. Mater.20193172651266010.1021/acs.chemmater.9b00893
    [Google Scholar]
  139. WuS. LiuX. RenJ. QuX. Glutathione depletion in a benign manner by MoS 2 ‐based nanoflowers for enhanced hypoxia‐irrelevant free‐radical‐based cancer therapy.Small20191551190487010.1002/smll.20190487031750615
    [Google Scholar]
  140. VitoA. El-SayesN. MossmanK. Hypoxia-driven immune escape in the tumor microenvironment.Cells20209499210.3390/cells904099232316260
    [Google Scholar]
  141. LinT. ZhaoX. ZhaoS. O2 -generating MnO 2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia.Theranostics201884990100410.7150/thno.2246529463995
    [Google Scholar]
  142. SweeneyE.E. Cano-MejiaJ. FernandesR. Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma.Small20181420180067810.1002/smll.20180067829665282
    [Google Scholar]
  143. MohapatraA. UthamanS. ParkI.K. External and internal stimuli-responsive metallic nanotherapeutics for enhanced anticancer therapy.Front. Mol. Biosci.2021759763410.3389/fmolb.2020.59763433505987
    [Google Scholar]
  144. ShenZ. XiaJ. MaQ. Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy.Theranostics202010209132915210.7150/thno.4607632802183
    [Google Scholar]
  145. SongM. LiuT. ShiC. ZhangX. ChenX. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia.ACS Nano201610163364710.1021/acsnano.5b0677926650065
    [Google Scholar]
  146. LvM. ChenM. ZhangR. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.Cell Res.2020301196697910.1038/s41422‑020‑00395‑432839553
    [Google Scholar]
  147. SunX. ZhangY. LiJ. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy.Nat. Nanotechnol.202116111260127010.1038/s41565‑021‑00962‑934594005
    [Google Scholar]
  148. SchmidtM. RaghavanB. MüllerV. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel.Nat. Immunol.201011981481910.1038/ni.191920711192
    [Google Scholar]
  149. CuiY. LiuH. ZhouM. Signaling pathway of inflammatory responses in the mouse liver caused by TiO 2 nanoparticles.J. Biomed. Mater. Res. A201196A122122910.1002/jbm.a.3297621105171
    [Google Scholar]
  150. JangE.S. ShinJ.H. RenG. The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles.Biomaterials201233225584559210.1016/j.biomaterials.2012.04.04122575830
    [Google Scholar]
  151. ZhaoY. ZhaoX. ChengY. GuoX. YuanW. Iron oxide nanoparticles-based vaccine delivery for cancer treatment.Mol. Pharm.20181551791179910.1021/acs.molpharmaceut.7b0110329570298
    [Google Scholar]
  152. ChakrabortyB. PalR. AliM. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma.Cell. Mol. Immunol.201613219120510.1038/cmi.2015.0525938978
    [Google Scholar]
  153. PillarisettiS. UthamanS. HuhK.M. KohY.S. LeeS. ParkI.K. Multimodal composite iron oxide nanoparticles for biomedical applications.Tissue Eng. Regen. Med.201916545146510.1007/s13770‑019‑00218‑731624701
    [Google Scholar]
  154. Toraya-BrownS. SheenM.R. ZhangP. Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors.Nanomedicine20141061273128510.1016/j.nano.2014.01.01124566274
    [Google Scholar]
  155. GardnerA. de Mingo PulidoÁ. RuffellB. Dendritic cells and their role in immunotherapy.Front. Immunol.20201192410.3389/fimmu.2020.0092432508825
    [Google Scholar]
  156. ShortmanK. LiuY.J. Mouse and human dendritic cell subtypes.Nat. Rev. Immunol.20022315116110.1038/nri74611913066
    [Google Scholar]
  157. GardnerA. RuffellB. Dendritic cells and cancer immunity.Trends Immunol.2016371285586510.1016/j.it.2016.09.00627793569
    [Google Scholar]
  158. JiaJ. ZhangY. XinY. JiangC. YanB. ZhaiS. Interactions between nanoparticles and dendritic cells: From the perspective of cancer immunotherapy.Front. Oncol.2018840410.3389/fonc.2018.0040430319969
    [Google Scholar]
  159. KangS. AhnS. LeeJ. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses.J. Control. Release2017256566710.1016/j.jconrel.2017.04.02428428066
    [Google Scholar]
  160. ZhouQ. ZhangY. DuJ. Different-sized gold nanoparticle activator/antigen increases dendritic cells accumulation in liver-draining lymph nodes and CD8+ T Cell responses.ACS Nano20161022678269210.1021/acsnano.5b0771626771692
    [Google Scholar]
  161. VangK.B. SafinaI. DarriguesE. Modifying dendritic cell activation with plasmonic nano vectors.Sci. Rep.201771551310.1038/s41598‑017‑04459‑128710434
    [Google Scholar]
  162. SchanenB.C. DasS. ReillyC.M. Immunomodulation and T helper TH1/TH2 response polarization by CeO2 and TiO2 nanoparticles.PLoS One201385e6281610.1371/journal.pone.006281623667525
    [Google Scholar]
  163. ChengH.W. TsaoH.Y. ChiangC.S. ChenS.Y. Advances in magnetic nanoparticle‐mediated cancer immune‐theranostics.Adv. Healthc. Mater.2021101200145110.1002/adhm.20200145133135398
    [Google Scholar]
  164. RobinsonB.D. SicaG.L. LiuY.F. Tumor microenvironment of metastasis in human breast carcinoma: A potential prognostic marker linked to hematogenous dissemination.Clin. Cancer Res.20091572433244110.1158/1078‑0432.CCR‑08‑217919318480
    [Google Scholar]
  165. VarneyM.L. JohanssonS.L. SinghR.K. Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: Role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A.Melanoma Res.200515541742510.1097/00008390‑200510000‑0001016179869
    [Google Scholar]
  166. KawamuraK. KomoharaY. TakaishiK. KatabuchiH. TakeyaM. Detection of M2 macrophages and colony‐stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors.Pathol. Int.200959530030510.1111/j.1440‑1827.2009.02369.x19432671
    [Google Scholar]
  167. KangJ.C. ChenJ.S. LeeC.H. ChangJ.J. ShiehY.S. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer.J. Surg. Oncol.2010102324224810.1002/jso.2161720740582
    [Google Scholar]
  168. YangS. LiuQ. LiaoQ. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: Origin, polarization, function, and reprogramming.Front. Cell Dev. Biol.2021860720910.3389/fcell.2020.60720933505964
    [Google Scholar]
  169. ChattopadhyayS. DashS.K. MandalD. Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine.Vaccine201634795796710.1016/j.vaccine.2015.12.05326772632
    [Google Scholar]
  170. TomićS. ĐokićJ. VasilijićS. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro.PLoS One201495e9658410.1371/journal.pone.009658424802102
    [Google Scholar]
  171. MoY. MoY. ZhuX. Cytokine and NO release from peripheral blood neutrophils after exposure to metal nanoparticles: in vitro and ex vivo studies.Nanotoxicology200822798710.1080/17435390802112874
    [Google Scholar]
  172. ShariatzadehS. MoghimiN. KhalafiF. Metallic nanoparticles for the modulation of tumor microenvironment; a new horizon.Front. Bioeng. Biotechnol.20221084743310.3389/fbioe.2022.84743335252155
    [Google Scholar]
  173. ChoiB. ChoiH. YuB. KimD.H. Synergistic local combination of radiation and anti-programmed death ligand 1 immunotherapy using radiation-responsive splintery metallic nanocarriers.ACS Nano20201410131151312610.1021/acsnano.0c0470132885958
    [Google Scholar]
  174. KorangathP BarnettJD SharmaA Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer.Sci Adv2020613eaay160110.1126/sciadv.aay1601
    [Google Scholar]
  175. ZhuJ. ZhiQ. ZhouB.P. TaoM. LiuJ. LiW. The role of tumor associated macrophages in the tumor microenvironment: Mechanism and functions.Anti Ccancer Agents Med Chem (Former Curr Med Chem Anti Cancer Agents)2016161133114110.2174/187152061666616052011262227198986
    [Google Scholar]
  176. LinY. XuJ. LanH. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications.J. Hematol. Oncol.20191217610.1186/s13045‑019‑0760‑331300030
    [Google Scholar]
  177. SicaA. SchioppaT. MantovaniA. AllavenaP. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy.Eur. J. Cancer200642671772710.1016/j.ejca.2006.01.00316520032
    [Google Scholar]
  178. HeathW.R. KatoY. SteinerT.M. CaminschiI. Antigen presentation by dendritic cells for B cell activation.Curr. Opin. Immunol.201958445210.1016/j.coi.2019.04.00331071588
    [Google Scholar]
  179. BezuL. Gomes-de-SilvaL.C. DewitteH. Combinatorial strategies for the induction of immunogenic cell death.Front. Immunol.2015618710.3389/fimmu.2015.0018725964783
    [Google Scholar]
  180. ShaoD. LiJ. ZhengX. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy.Biomaterials201610011813310.1016/j.biomaterials.2016.05.03027258482
    [Google Scholar]
  181. GreppiM. TabelliniG. PatriziO. Strengthening the antitumor NK cell function for the treatment of ovarian cancer.Int. J. Mol. Sci.201920489010.3390/ijms2004089030791364
    [Google Scholar]
  182. ChenL. MaX. DangM. Simultaneous T cell activation and macrophage polarization to promote potent tumor suppression by iron oxide‐embedded large‐pore mesoporous organosilica core–shell nanospheres.Adv. Healthc. Mater.201989190003910.1002/adhm.20190003930838801
    [Google Scholar]
  183. YuG.T. RaoL. WuH. Myeloid‐derived suppressor cell membrane‐coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death.Adv. Funct. Mater.20182837180138910.1002/adfm.201801389
    [Google Scholar]
  184. ZhangW. CaoS. LiangS. Differently charged super-paramagnetic iron oxide nanoparticles preferentially induced m1-like phenotype of macrophages.Front. Bioeng. Biotechnol.2020853710.3389/fbioe.2020.0053732548111
    [Google Scholar]
  185. GuZ. LiuT. TangJ. Mechanism of iron oxide-induced macrophage activation: The impact of composition and the underlying signaling pathway.J. Am. Chem. Soc.2019141156122612610.1021/jacs.8b1090430933483
    [Google Scholar]
  186. SchanenB.C. KarakotiA.S. SealS. DrakeD.R.III WarrenW.L. SelfW.T. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct.ACS Nano2009392523253210.1021/nn900403h19769402
    [Google Scholar]
  187. ShenC.C. LiangH.J. WangC.C. LiaoM.H. JanT.R. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression.Int. J. Nanomedicine201162791279822114506
    [Google Scholar]
  188. ZhouB. WuQ. WangM. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment.Chem. Eng. J.202039612523910.1016/j.cej.2020.12523932523422
    [Google Scholar]
  189. ZhouB. SongJ. WangM. BSA-bioinspired gold nanorods loaded with immunoadjuvant for the treatment of melanoma by combined photothermal therapy and immunotherapy.Nanoscale20181046216402164710.1039/C8NR05323E30232481
    [Google Scholar]
  190. LiuX. ZhengJ. SunW. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis.ACS Nano20191388811882510.1021/acsnano.9b0197931328922
    [Google Scholar]
  191. IshigamiS. NatsugoeS. TokudaK. Prognostic value of intratumoral natural killer cells in gastric carcinoma.Cancer200088357758310.1002/(SICI)1097‑0142(20000201)88:3<577:AID‑CNCR13>3.0.CO;2‑V10649250
    [Google Scholar]
  192. WuL. ZhangF. WeiZ. Magnetic delivery of Fe 3 O 4 @polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment.Biomater. Sci.20186102714272510.1039/C8BM00588E30151523
    [Google Scholar]
  193. le GuévelX. PalomaresF. TorresM.J. BlancaM. FernandezT.D. MayorgaC. Nanoparticle size influences the proliferative responses of lymphocyte subpopulations.RSC Advances20155104853058530910.1039/C5RA16164A
    [Google Scholar]
  194. HaghighatF. KimY. SourinejadI. YuI.J. JohariS.A. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio).Chemosphere202126212780510.1016/j.chemosphere.2020.12780532750593
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X334574250107090812
Loading
/content/journals/ccand/10.2174/012212697X334574250107090812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test