Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Despite the major advancements in cancer treatment, colon cancer (CC) is still one of the most lethal malignancies worldwide. Among various type of cancer, it is the third largest prevailing kind of cancer affecting both men and women equally. Metastatic development is particularly common in individuals with advanced stages and frequently associated with subpar response of chemotherapy and severe morbidity. The unfavorable effects of intense chemotherapy on normal cells and emergence of multidrug resistance are the two main reasons for treatment failure. Recent research in nanotechnology enables the use of advanced natural and synthetic biomaterials alone or in combination to target cancer cells with anticancer medications without affecting healthy cells. Anticancer drug laden nanocarriers improve the drug distribution, bioavailability and accumulation of cytotoxic therapeutic concentration at tumor site along with reduced side effects. Additionally, upon oral administration, polymeric vehicles shield the medication from premature release, degradation in upper gastrointestinal tract and facilitate controlled release at cancerous site of colon. Here, we primarily focus on the present situation and possible advantages of polymeric biomaterials either owned or in conjunction with other therapeutics to develop ideal drug carrier systems to treat colon carcinoma.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X299780240905141609
2024-12-24
2025-10-19
Loading full text...

Full text loading...

References

  1. MatthewsH.K. BertoliC. de BruinR.A.M. Cell cycle control in cancer.Nat. Rev. Mol. Cell Biol.2022231748810.1038/s41580‑021‑00404‑334508254
    [Google Scholar]
  2. PacalI. KarabogaD. BasturkA. AkayB. NalbantogluU. A comprehensive review of deep learning in colon cancer.Comput. Biol. Med.202012610400310403610.1016/j.compbiomed.2020.10400332987202
    [Google Scholar]
  3. SawickiT. RuszkowskaM. DanielewiczA. NiedźwiedzkaE. ArłukowiczT. PrzybyłowiczK.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers20211392025204810.3390/cancers1309202533922197
    [Google Scholar]
  4. LabiancaR. BerettaG.D. KildaniB. MilesiL. MerlinF. MosconiS. PessiM.A. ProchiloT. QuadriA. GattaG. de BraudF. WilsJ. Colon cancer.Crit. Rev. Oncol. Hematol.201074210613310.1016/j.critrevonc.2010.01.01020138539
    [Google Scholar]
  5. UlanjaM.B. RishiM. BeutlerB.D. SharmaM. PattersonD.R. GullapalliN. AmbikaS. Colon cancer sidedness, presentation, and survival at different stages.J. Oncol.2019201911210.1155/2019/431503230915121
    [Google Scholar]
  6. TerzićJ. GrivennikovS. KarinE. KarinM. Inflammation and colon cancer.Gastroenterology2010138621012114.e510.1053/j.gastro.2010.01.05820420949
    [Google Scholar]
  7. KowA.W.C. Hepatic metastasis from colorectal cancer.J. Gastrointest. Oncol.20191061274129810.21037/jgo.2019.08.0631949948
    [Google Scholar]
  8. LakemeyerL. SanderS. WittauM. Henne-BrunsD. KornmannM. LemkeJ. Diagnostic and prognostic value of CEA and CA19-9 in colorectal cancer.Diseases202191212910.3390/diseases901002133802962
    [Google Scholar]
  9. ZhaoY. HuX. ZuoX. WangM. Chemopreventive effects of some popular phytochemicals on human colon cancer: a review.Food Funct.2018994548456810.1039/C8FO00850G30118121
    [Google Scholar]
  10. SaddikM.S. ElsayedM.M.A. AbdelkaderM.S.A. El-MokhtarM.A. Abdel-AleemJ.A. Abu-DiefA.M. Al-HakkaniM.F. FarghalyH.S. Abou-TalebH.A. Novel green biosynthesis of 5-fluorouracil chromium nanoparticles using harpullia pendula extract for treatment of colorectal cancer.Pharmaceutics202113222624310.3390/pharmaceutics1302022633562032
    [Google Scholar]
  11. HongY. RaoY. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis.Biomed. Pharmacother.201911410876410877410.1016/j.biopha.2019.10876430901717
    [Google Scholar]
  12. WangC.P.J. ByunM.J. KimS.N. ParkW. ParkH.H. KimT.H. LeeJ.S. ParkC.G. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment.J. Control. Release202234511910.1016/j.jconrel.2022.02.02835227764
    [Google Scholar]
  13. KalirajanC. DukleA. NathanaelA.J. OhT.H. ManivasagamG. A critical review on polymeric biomaterials for biomedical applications.Polymers202113173015304110.3390/polym1317301534503054
    [Google Scholar]
  14. ZhangL. SangY. FengJ. LiZ. ZhaoA. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.J. Drug Target.201624757958910.3109/1061186X.2015.112894126766303
    [Google Scholar]
  15. AminabhaviT.M. NadagoudaM.N. JoshiS.D. MoreU.A. Guar gum as platform for the oral controlled release of therapeutics.Expert Opin. Drug Deliv.201411575376610.1517/17425247.2014.89732624650099
    [Google Scholar]
  16. GargS.S. GuptaJ. Guar gum-based nanoformulations: Implications for improving drug delivery.Int. J. Biol. Macromol.202322947648510.1016/j.ijbiomac.2022.12.27136603711
    [Google Scholar]
  17. VermaD. SharmaS.K. Recent advances in guar gum based drug delivery systems and their administrative routes.Int. J. Biol. Macromol.202118165367110.1016/j.ijbiomac.2021.03.08733766594
    [Google Scholar]
  18. GeorgeA. ShahP.A. ShrivastavP.S. Guar gum: Versatile natural polymer for drug delivery applications.Eur. Polym. J.201911272273510.1016/j.eurpolymj.2018.10.042
    [Google Scholar]
  19. DodiG. PalaA. BarbuE. PeptanariuD. HritcuD. PopaM.I. TambaB.I. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations.Mater. Sci. Eng. C20166362863610.1016/j.msec.2016.03.03227040258
    [Google Scholar]
  20. PraphakarR.A. JeyarajM. MehnathS. HiguchiA. PonnammaD. SadasivuniK.K. RajanM. A pH-sensitive guar gum- grafted -lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells.J. Mater. Chem. B Mater. Biol. Med.20186101519153010.1039/C7TB02551C32254216
    [Google Scholar]
  21. KangR.K. MishrN. RaiV.K. Guar gum micro-particles for targeted co-delivery of doxorubicin and metformin HCL for improved specificity and efficacy against colon cancer: in vitro and in vivo studies.AAPS PharmSciTech20202124810.1208/s12249‑019‑1589‑331900731
    [Google Scholar]
  22. NoreenA. NazliZ.H. AkramJ. RasulI. ManshaA. YaqoobN. IqbalR. TabasumS. ZuberM. ZiaK.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review.Int. J. Biol. Macromol.201710125427210.1016/j.ijbiomac.2017.03.02928300586
    [Google Scholar]
  23. De Anda-FloresY. Carvajal-MillanE. Campa-MadaA. Lizardi-MendozaJ. Rascon-ChuA. Tanori-CordovaJ. Martínez-LópezA.L. Polysaccharide-based nanoparticles for colon-targeted drug delivery systems.Polysaccharides20212362664710.3390/polysaccharides2030038
    [Google Scholar]
  24. ZhangW. MahutaK.M. MikulskiB.A. HarvestineJ.N. CrouseJ.Z. LeeJ.C. KaltchevM.G. TrittC.S. Novel pectin-based carriers for colonic drug delivery.Pharm. Dev. Technol.201621112713010.3109/10837450.2014.96532725255173
    [Google Scholar]
  25. GadallaH.H. El-GibalyI. SolimanG.M. MohamedF.A. El-SayedA.M. Amidated pectin/sodium carboxymethylcellulose microspheres as a new carrier for colonic drug targeting: Development and optimization by factorial design.Carbohydr. Polym.201615352653410.1016/j.carbpol.2016.08.01827561525
    [Google Scholar]
  26. CheewatanakornkoolK. NiratisaiS. ManchunS. DassC.R. SriamornsakP. Thiolated pectin–doxorubicin conjugates: Synthesis, characterization and anticancer activity studies.Carbohydr. Polym.201717449350610.1016/j.carbpol.2017.06.11528821097
    [Google Scholar]
  27. MohamedJ.M. AlqahtaniA. AhmadF. KrishnarajuV. KalpanaK. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer.Carbohydr. Polym.202125211718011719510.1016/j.carbpol.2020.11718033183627
    [Google Scholar]
  28. GiriS. DuttaP. GiriT.K. Inulin-based carriers for colon drug targeting.J. Drug Deliv. Sci. Technol.20216410259510260910.1016/j.jddst.2021.102595
    [Google Scholar]
  29. WalzM. HirthT. WeberA. Investigation of chemically modified inulin as encapsulation material for pharmaceutical substances by spray-drying in colloids and surfaces a: physicochemical and engineering aspects.Elsevier B.V20185364752
    [Google Scholar]
  30. ShivhareK. GargC. PriyamA. GuptaA. SharmaA.K. KumarP. Enzyme sensitive smart inulin-dehydropeptide conjugate self-assembles into nanostructures useful for targeted delivery of ornidazole.Int. J. Biol. Macromol.201810677578310.1016/j.ijbiomac.2017.08.07128818724
    [Google Scholar]
  31. WalzM. HagemannD. TrentzschM. WeberA. HenleT. Degradation studies of modified inulin as potential encapsulation material for colon targeting and release of mesalamine.Carbohydr. Polym.201819910210810.1016/j.carbpol.2018.07.01530143109
    [Google Scholar]
  32. JangidA.K. SolankiR. PatelS. PoojaD. KulhariH. Genistein encapsulated inulin-stearic acid bioconjugate nanoparticles: Formulation development, characterization and anticancer activity.Int. J. Biol. Macromol.202220621322110.1016/j.ijbiomac.2022.02.03135181329
    [Google Scholar]
  33. Shahdadi SardouH. AkhgariA. MohammadpourA.H. Beheshti NamdarA. KamaliH. JafarianA.H. Afrasiabi GarekaniH. SadeghiF. Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis.Eur. J. Pharm. Sci.202216810607210.1016/j.ejps.2021.10607234774715
    [Google Scholar]
  34. AzumaK. OsakiT. MinamiS. OkamotoY. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides.J. Funct. Biomater.201561334910.3390/jfb601003325594943
    [Google Scholar]
  35. SmithaK.T. AnithaA. FuruikeT. TamuraH. NairS.V. JayakumarR. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.Colloids Surf. B Biointerfaces201310424525310.1016/j.colsurfb.2012.11.03123337120
    [Google Scholar]
  36. SatitsriS. MuanprasatC. Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications.Molecules202025245961598610.3390/molecules2524596133339290
    [Google Scholar]
  37. ShanmuganathanR. EdisonT.N.J.I. LewisOscarF. KumarP. ShanmugamS. PugazhendhiA. Chitosan nanopolymers: An overview of drug delivery against cancer.Int. J. Biol. Macromol.201913072773610.1016/j.ijbiomac.2019.02.06030771392
    [Google Scholar]
  38. Bernkop-SchnürchA. DünnhauptS. Chitosan-based drug delivery systems.Eur. J. Pharm. Biopharm.201281346346910.1016/j.ejpb.2012.04.00722561955
    [Google Scholar]
  39. MittalH. RayS.S. KaithB.S. BhatiaJ.K. Sukriti SharmaJ. AlhassanS.M. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields.Eur. Polym. J.201810940243410.1016/j.eurpolymj.2018.10.013
    [Google Scholar]
  40. BashalA.H. KhalilK.D. Abu-DiefA.M. El-AtawyM.A. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications.Int. J. Biol. Macromol.2023253Pt 412685610.1016/j.ijbiomac.2023.12685637714231
    [Google Scholar]
  41. NegmN.A. HefniH.H.H. Abd-ElaalA.A.A. BadrE.A. Abou KanaM.T.H. Advancement on modification of chitosan biopolymer and its potential applications.Int. J. Biol. Macromol.202015268170210.1016/j.ijbiomac.2020.02.19632084486
    [Google Scholar]
  42. WangW. MengQ. LiQ. LiuJ. ZhouM. JinZ. ZhaoK. Chitosan derivatives and their application in biomedicine.Int. J. Mol. Sci.202021248751310.3390/ijms2102048731940963
    [Google Scholar]
  43. LiuW. WangF. ZhuY. LiX. LiuX. PangJ. PanW. Galactosylated chitosan-functionalized mesoporous silica nanoparticle loading by calcium leucovorin for colon cancer cell-targeted drug delivery.Molecules201823123082310010.3390/molecules2312308230486276
    [Google Scholar]
  44. AnithaA. SreeranganathanM. ChennazhiK.P. LakshmananV.K. JayakumarR. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies.Eur. J. Pharm. Biopharm.201488123825110.1016/j.ejpb.2014.04.01724815764
    [Google Scholar]
  45. IqbalO. ShahS. AbbasG. RasulA. HanifM. AshfaqM. AfzalZ. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery.Int. J. Biol. Macromol.20211822087209610.1016/j.ijbiomac.2021.05.19934087298
    [Google Scholar]
  46. Le-VinhB. LeN.M.N. NazirI. MatuszczakB. Bernkop-SchnürchA. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery.Int. J. Biol. Macromol.201913364765510.1016/j.ijbiomac.2019.04.08130986465
    [Google Scholar]
  47. JiangX. DuZ. ZhangX. ZamanF. SongZ. GuanY. YuT. HuangY. Gelatin-based anticancer drug delivery nanosystems: A mini review.Front. Bioeng. Biotechnol.2023111158749115875610.3389/fbioe.2023.115874937025360
    [Google Scholar]
  48. LinL. RegensteinJ.M. LvS. LuJ. JiangS. An overview of gelatin derived from aquatic animals: Properties and modification.Trends Food Sci. Technol.20176810211210.1016/j.tifs.2017.08.012
    [Google Scholar]
  49. CampiglioC.E. Contessi NegriniN. FarèS. DraghiL. Cross-linking strategies for electrospun gelatin scaffolds.Materials201912152476249910.3390/ma1215247631382665
    [Google Scholar]
  50. ElzoghbyA.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research.J. Control. Release201317231075109110.1016/j.jconrel.2013.09.01924096021
    [Google Scholar]
  51. XieL. ShenM. HongY. YeH. HuangL. XieJ. Chemical modifications of polysaccharides and their anti-tumor activities.Carbohydr. Polym.202022911543611544810.1016/j.carbpol.2019.11543631826393
    [Google Scholar]
  52. FooxM. ZilbermanM. Drug delivery from gelatin-based systems.Expert Opin. Drug Deliv.20151291547156310.1517/17425247.2015.103727225943722
    [Google Scholar]
  53. AnirudhanT.S. MohanA.M. Novel pH switchable gelatin based hydrogel for the controlled delivery of the anti cancer drug 5-fluorouracil.RSC Adv.2014424121091211810.1039/c3ra47991a
    [Google Scholar]
  54. PooresmaeilM. NamaziH. pH-sensitive carboxymethyl starch-gelatin coated COF/5-Fu for colon cancer therapy.Ind. Crops Prod.202320211710211711910.1016/j.indcrop.2023.117102
    [Google Scholar]
  55. PadhiJ.R. NayakD. NandaA. RautaP.R. AsheS. NayakB. Development of highly biocompatible Gelatin i-Carrageenan based composite hydrogels: In depth physiochemical analysis for biomedical applications.Carbohydr. Polym.201615329230110.1016/j.carbpol.2016.07.09827561499
    [Google Scholar]
  56. SharmaR. KucheK. ThakorP. BhavanaV. SrivastavaS. MehraN.K. JainS. Chondroitin sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering.Carbohydr. Polym.202228611930511932010.1016/j.carbpol.2022.11930535337491
    [Google Scholar]
  57. ZhaoL. LiuM. WangJ. ZhaiG. Chondroitin sulfate-based nanocarriers for drug/gene delivery.Carbohydr. Polym.201513339139910.1016/j.carbpol.2015.07.06326344295
    [Google Scholar]
  58. YangJ. ShenM. WenH. LuoY. HuangR. RongL. XieJ. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate.Carbohydr. Polym.202023011565011565910.1016/j.carbpol.2019.11565031887904
    [Google Scholar]
  59. VolpiN. Chondroitin sulfate safety and quality.Molecules20192481447145810.3390/molecules2408144731013685
    [Google Scholar]
  60. KhanA.R. YangX. DuX. YangH. LiuY. KhanA.Q. ZhaiG. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery.Carbohydr. Polym.202023311583711585510.1016/j.carbpol.2020.11583732059890
    [Google Scholar]
  61. XieY. XuW. JinZ. ZhaoK. Chondroitin sulfate functionalized palmitic acid and cysteine cografted-quaternized chitosan for CD44 and gut microbiota dual-targeted delivery of curcumin.Mater. Today Bio20232010061710063610.1016/j.mtbio.2023.10061737441137
    [Google Scholar]
  62. CampeaM.A. LoftsA. XuF. YeganehM. KostashukM. HoareT. Disulfide-cross-linked nanogel-based nanoassemblies for chemotherapeutic drug delivery.ACS Appl. Mater. Interfaces20231521253242533810.1021/acsami.3c0257537192117
    [Google Scholar]
  63. TønnesenH.H. KarlsenJ. Alginate in drug delivery systems.Drug Dev. Ind. Pharm.200228662163010.1081/DDC‑12000385312149954
    [Google Scholar]
  64. NayaA.K. AraT.J. HasnainM.S. HodaN. Okra gum–alginate composites for controlled releasing drug delivery in applications of nanocomposite materials in drug delivery; Woodhead publishing series in biomaterials.ElsevierU.K.2018761785
    [Google Scholar]
  65. HasnainM.S. NayakA.K. KurakulaM. HodaM.N. Alginate nanoparticles in drug delivery in alginates in drug delivery.Academic Press2020129152
    [Google Scholar]
  66. ChiuH.I. LimV. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy.Int. J. Nanomed20211629953020
    [Google Scholar]
  67. ShanmugapriyaK. KimH. KangH.W. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy.Int. J. Biol. Macromol.20201581163117410.1016/j.ijbiomac.2020.05.00832387601
    [Google Scholar]
  68. VarshosazJ. Dextran conjugates in drug delivery.Expert Opin. Drug Deliv.20129550952310.1517/17425247.2012.67358022432550
    [Google Scholar]
  69. ChenF. HuangG. HuangH. Preparation and application of dextran and its derivatives as carriers.Int. J. Biol. Macromol.202014582783410.1016/j.ijbiomac.2019.11.15131756474
    [Google Scholar]
  70. HuQ. LuY. LuoY. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications.Carbohydr. Polym.202126411799910.1016/j.carbpol.2021.11799933910733
    [Google Scholar]
  71. WasiakI. KulikowskaA. JanczewskaM. MichalakM. CymermanI.A. NagalskiA. KallingerP. SzymanskiW.W. CiachT. Dextran nanoparticle synthesis and properties.PLoS One2016111e014623710.1371/journal.pone.014623726752182
    [Google Scholar]
  72. ZahiriM. BabaeiM. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Hybrid nanoreservoirs based on dextran‐capped dendritic mesoporous silica nanoparticles for CD133‐targeted drug delivery.J. Cell. Physiol.202023521036105010.1002/jcp.2901931276199
    [Google Scholar]
  73. AbidM. NaveedM. AzeemI. FaisalA. Faizan NazarM. YameenB. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil.Int. J. Pharm.202058611960511962810.1016/j.ijpharm.2020.11960532650112
    [Google Scholar]
  74. TiryakiE. Başaran ElalmışY. Karakuzu İkizlerB. YücelS. Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels.J. Drug Deliv. Sci. Technol.20205610151710.1016/j.jddst.2020.101517
    [Google Scholar]
  75. KianiM. TekieF.S. DinarvandM. SoleimaniM. DinarvandR. AtyabiF. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study.J. mater. sci. eng.201662771778
    [Google Scholar]
  76. YahoumM.M. ToumiS. HentabliS. TahraouiH. LefnaouiS. HadjsadokA. AmraneA. KebirM. MoulaN. AssadiA.A. ZhangJ. MouniL. Experimental analysis and neural network modeling of the rheological behavior of xanthan gum and its derivatives.Materials20231672565258910.3390/ma1607256537048859
    [Google Scholar]
  77. JadavM. PoojaD. AdamsD.J. KulhariH. Advances in xanthan gum-based systems for the delivery of therapeutic agents.Pharmaceutics202315240241810.3390/pharmaceutics1502040236839724
    [Google Scholar]
  78. Abu ElellaM.H. GodaE.S. Gab-AllahM.A. HongS.E. PanditB. LeeS. GamalH. RehmanA. YoonK.R. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review.J. Environ. Chem. Eng.20219110470210472910.1016/j.jece.2020.104702
    [Google Scholar]
  79. PatelJ. MajiB. MoorthyN.S.H.N. MaitiS. Xanthan gum derivatives: review of synthesis, properties and diverse applications.RSC Advances20201045271032713610.1039/D0RA04366D35515783
    [Google Scholar]
  80. SinghviG. HansN. ShivaN. DubeyS.K. Xanthan gum in drug delivery applications.Natural polysaccharides in drug delivery and biomedical applications.Academic Press201912114410.1016/B978‑0‑12‑817055‑7.00005‑4
    [Google Scholar]
  81. RiazT. IqbalM.W. JiangB. ChenJ. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum.Int. J. Biol. Macromol.202118647248910.1016/j.ijbiomac.2021.06.19634217744
    [Google Scholar]
  82. SaraH. YahoumM.M. LefnaouiS. AbdelkaderH. Moulai-MostefaN. New alkylated xanthan gum as amphiphilic derivatives: Synthesis, physicochemical and rheological studies.J. Mol. Struct.2020120712776810.1016/j.molstruc.2020.127768
    [Google Scholar]
  83. AnwarM. PervaizF. ShoukatH. NoreenS. ShabbirK. MajeedA. IjazS. Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system.Polym. Bull.2021781598010.1007/s00289‑019‑03092‑4
    [Google Scholar]
  84. AnjumF. BukhariS.A. SiddiqueM. ShahidM. PotgieterJ.H. JaafarH.Z.E. ErcisliS. Zia-Ul-HaqM. Microwave irradiated copolymerization of xanthan gum with acrylamide for colonic drug delivery.BioResources20151011434145110.15376/biores.10.1.1434‑1451
    [Google Scholar]
  85. TianB. HuaS. LiuJ. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review.Carbohydr. Polym.202023211580510.1016/j.carbpol.2019.11580531952603
    [Google Scholar]
  86. ChuH.M. ZhangR.X. HuangQ. BaiC.C. WangZ.Z. Chemical conjugation with cyclodextrins as a versatile tool for drug delivery.J. Incl. Phenom. Macrocycl. Chem.2017891-2293810.1007/s10847‑017‑0743‑3
    [Google Scholar]
  87. HaimhofferÁ. RusznyákÁ. Réti-NagyK. VasváriG. VáradiJ. VecsernyésM. BácskayI. FehérP. UjhelyiZ. FenyvesiF. Cyclodextrins in drug delivery systems and their effects on biological barriers.Sci. Pharm.2019874335710.3390/scipharm87040033
    [Google Scholar]
  88. AmeliH. AlizadehN. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin.RSC Advances20221284681469110.1039/D1RA07791K35425510
    [Google Scholar]
  89. CobanO. AytacZ. YildizZ.I. UyarT. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers.Colloids Surf. B Biointerfaces202119711139111139810.1016/j.colsurfb.2020.11139133129100
    [Google Scholar]
  90. ChandelD. UppalS. MehtaS.K. ShuklaG. Preparation and characterization of celecoxib entrapped guar gum nanoparticles targeted for oral drug delivery against colon cancer: an in-vitro study.J. Drug Deliv. Ther.2020102-s142110.22270/jddt.v10i2‑s.3951
    [Google Scholar]
  91. S KumarV. RijoJ. MS. Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery.Int. J. Biol. Macromol.201811031832710.1016/j.ijbiomac.2018.01.08229378277
    [Google Scholar]
  92. ZarbabA. SajjadA. RasulA. JabeenF. Javaid IqbalM. Synthesis and characterization of Guar gum based biopolymeric hydrogels as carrier materials for controlled delivery of methotrexate to treat colon cancer.Saudi J. Biol. Sci.202330810373110374210.1016/j.sjbs.2023.10373137483836
    [Google Scholar]
  93. ZhuH. ZhangL. KouF. ZhaoJ. LeiJ. HeJ. Targeted therapeutic effects of oral magnetically driven pectin nanoparticles containing chlorogenic acid on colon cancer.Particuology202484535910.1016/j.partic.2023.02.021
    [Google Scholar]
  94. AbbasN. RasulA. AbbasG. ShahS. HanifM. Targeted delivery of aspirin and metformin to colorectal cancer using disulfide bridged nanoparticles of thiolated pectin and thiolated Eudragit RL100.Mater. Today Commun.20233510558610559610.1016/j.mtcomm.2023.105586
    [Google Scholar]
  95. SabraR. BillaN. RobertsC.J. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer.Int. J. Pharm.201957211877510.1016/j.ijpharm.2019.11877531678385
    [Google Scholar]
  96. HouY. JinJ. DuanH. LiuC. ChenL. HuangW. GaoZ. JinM. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer.Biomaterials202228312144012145910.1016/j.biomaterials.2022.12144035245731
    [Google Scholar]
  97. AfinjuomoF. FouladianP. ParikhA. BarclayT.G. SongY. GargS. Preparation and characterization of oxidized inulin hydrogel for controlled drug delivery.Pharmaceutics201911735637710.3390/pharmaceutics1107035631336580
    [Google Scholar]
  98. JangidA.K. PatelK. JainP. PatelS. GuptaN. PoojaD. KulhariH. Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol.Carbohydr. Polym.202024711673011674110.1016/j.carbpol.2020.11673032829852
    [Google Scholar]
  99. WoraphatphadungT. SajomsangW. RojanarataT. NgawhirunpatT. TonglairoumP. OpanasopitP. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery.AAPS PharmSciTech2018193991100010.1208/s12249‑017‑0906‑y29110292
    [Google Scholar]
  100. FengC. LiJ. KongM. LiuY. ChengX.J. LiY. ParkH.J. ChenX.G. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery.Colloids Surf. B Biointerfaces201512843944710.1016/j.colsurfb.2015.02.04225769283
    [Google Scholar]
  101. ZhengX.F. LianQ. YangH. WangX. Surface molecularly imprinted polymer of chitosan grafted poly (methyl methacrylate) for 5-fluorouracil and controlled release.Sci. Rep.201661214092142010.1038/srep2140926892676
    [Google Scholar]
  102. YusefiM. ShameliK. Lee-KiunM.S. TeowS.Y. MoeiniH. AliR.R. KiaP. JieC.J. AbdullahN.H. Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment.Int. J. Biol. Macromol.202323312338812340110.1016/j.ijbiomac.2023.12338836706873
    [Google Scholar]
  103. AnirudhanT.S. Sekhar VC. NairS.S. Polyelectrolyte complexes of carboxymethyl chitosan/alginate based drug carrier for targeted and controlled release of dual drug.J. Drug Deliv. Sci. Technol.20195156958210.1016/j.jddst.2019.03.036
    [Google Scholar]
  104. XuL. SuT. XuX. ZhuL. ShiL. Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy.J. Drug Deliv. Sci. Technol.20195310119010120410.1016/j.jddst.2019.101190
    [Google Scholar]
  105. NazeriM.T. JavanbakhtS. ShaabaniA. GhorbaniM. 5-aminopyrazole-conjugated gelatin hydrogel: A controlled 5-fluorouracil delivery system for rectal administration.J. Drug Deliv. Sci. Technol.20205710166910.1016/j.jddst.2020.101669
    [Google Scholar]
  106. TramontanoC. MartinsJ.P. De StefanoL. KemellM. CorreiaA. TerraccianoM. BorboneN. ReaI. SantosH.A. Microfluidic‐assisted production of gastro‐resistant active‐targeted diatomite nanoparticles for the local release of galunisertib in metastatic colorectal cancer cells.Adv. Healthc. Mater.2023126220267210.1002/adhm.20220267236459471
    [Google Scholar]
  107. GunjiS. ObamaK. MatsuiM. TabataY. SakaiY. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin.Surgery2013154599199910.1016/j.surg.2013.04.05424008088
    [Google Scholar]
  108. ZuM. MaL. ZhangX. XieD. KangY. XiaoB. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy.Colloids Surf. B Biointerf.201917739940610.1016/j.colsurfb.2019.02.03130785037
    [Google Scholar]
  109. SoeZ.C. PoudelB.K. NguyenH.T. ThapaR.K. OuW. GautamM. PoudelK. JinS.G. JeongJ.H. KuS.K. ChoiH.G. YongC.S. KimJ.O. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells.Asian J. Pharmaceu. Sci.2019141405110.1016/j.ajps.2018.09.00432104437
    [Google Scholar]
  110. OommenO.P. DuehrkopC. NilssonB. HilbornJ. VargheseO.P. Multifunctional hyaluronic acid and chondroitin sulfate nanoparticles: impact of glycosaminoglycan presentation on receptor mediated cellular uptake and immune activation.ACS Appl. Mater. Interfaces2016832206142062410.1021/acsami.6b0682327468113
    [Google Scholar]
  111. ParkW. BaeB. NaK. A highly tumor-specific light-triggerable drug carrier responds to hypoxic tumor conditions for effective tumor treatment.Biomaterials20167722723410.1016/j.biomaterials.2015.11.01426606448
    [Google Scholar]
  112. AyubA.D. ChiuH.I. Mat YusufS.N.A. Abd KadirE. NgalimS.H. LimV. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery.Artif. Cells Nanomed. Biotechnol.201947135336910.1080/21691401.2018.155767230691309
    [Google Scholar]
  113. HosseinifarT. SheybaniS. AbdoussM. Hassani NajafabadiS.A. Shafiee ArdestaniM. Pressure responsive nanogel base on Alginate‐Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery.J. Biomed. Mater. Res. A2018106234935910.1002/jbm.a.3624228940736
    [Google Scholar]
  114. UpadhyayM. AdenaS.K.R. VardhanH. YadavS.K. MishraB. Locust bean gum and sodium alginate based interpenetrating polymeric network microbeads encapsulating Capecitabine: Improved pharmacokinetics, cytotoxicity in vivo antitumor activity.Mater. Sci. Eng. C201910410995810.1016/j.msec.2019.10995831500043
    [Google Scholar]
  115. RajpootK. JainS.K. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach.Int. J. Biol. Macromol.202015183084410.1016/j.ijbiomac.2020.02.13232061847
    [Google Scholar]
  116. ShengY. GaoJ. YinZ.Z. KangJ. KongY. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment.Carbohydr. Polym.202126911832510.1016/j.carbpol.2021.11832534294337
    [Google Scholar]
  117. VarshosazJ. HassanzadehF. Sadeghi-AliabadiH. FirozianF. Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles.Biomed Res Int.2014201470859310.1155/2014/708593
    [Google Scholar]
  118. ZhangX. ZhangR. HuangJ. LuoM. ChenX. KangY. WuJ. Albumin enhances dextran NP’s delivery and therapeutic efficacy of PTX for colorectal cancer.J. Mater. Chem. B Mater. Biol. Med.201973537354510.1039/C9TB00181F
    [Google Scholar]
  119. SinghS. KotlaN.G. TomarS. MaddiboyinaB. WebsterT.J. SharmaD. SunnapuO. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil.Int. J. Nanomed.2015107175718226648721
    [Google Scholar]
  120. KeramatiZ. MotallebG. RahdarA. KerachianM.A. Anticancer effect of fluorouracil and gum-based cerium oxide nanoparticles on human malignant colon carcinoma cell line (Caco2).Cell J.202325319420237038699
    [Google Scholar]
  121. TrombinoS. SeriniS. CassanoR. CalvielloG. Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation.Carbohydr. Polym.201920843144010.1016/j.carbpol.2019.01.00130658821
    [Google Scholar]
  122. SunD. ZouY. SongL. HanS. YangH. ChuD. DaiY. MaJ. O’DriscollC.M. YuZ. GuoJ. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer.Acta Pharm. Sin. B202212137839310.1016/j.apsb.2021.06.00535127393
    [Google Scholar]
  123. BaiH. WangJ. PhanC.U. ChenQ. HuX. ShaoG. ZhouJ. LaiL. TangG. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment.Nat. Commun.202112175978210.1038/s41467‑021‑21071‑033536421
    [Google Scholar]
  124. SohailM. Mudassir MinhasM.U. KhanS. HussainZ. de MatasM. ShahS.A. KhanS. KousarM. UllahK. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects.Drug Deliv. Transl. Res.20199259561410.1007/s13346‑018‑0512‑x29611113
    [Google Scholar]
  125. SharmaM. SharmaV. PandaA.K. MajumdarD.K. Development of enteric submicron particles formulation of α-amylase for oral delivery.Pharm. Dev. Technol.201318356056910.3109/10837450.2011.60478221870905
    [Google Scholar]
  126. SilvaA.T. CardosoB.C. SilvaM.E. FreitasR.F. SousaR.G. Synthesis, characterization, and study of PLGA copolymer in vitro degradation.J. Biomater. Nanobiotechnol.20156181910.4236/jbnb.2015.61002
    [Google Scholar]
  127. RezvantalabS. DrudeN.I. MoravejiM.K. GüvenerN. KoonsE.K. ShiY. LammersT. KiesslingF. PLGA-based nanoparticles in cancer treatment.Front. Pharmacol.201891260127910.3389/fphar.2018.0126030450050
    [Google Scholar]
  128. WuP. ZhouQ. ZhuH. ZhuangY. BaoJ. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon.BMC Cancer202020135410.1186/s12885‑020‑06803‑732345258
    [Google Scholar]
  129. El-HammadiM.M. DelgadoÁ.V. MelguizoC. PradosJ.C. AriasJ.L. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil.Int. J. Pharm.20175161-2617010.1016/j.ijpharm.2016.11.01227825867
    [Google Scholar]
  130. MostafaM.M. AminM.M. ZakariaM.Y. HusseinM.A. ShamaaM.M. Abd El-HalimS.M. Chitosan surface-modified PLAnanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells.Pharmaceutics202315260662810.3390/pharmaceutics1502060636839928
    [Google Scholar]
  131. Cruz-NovaP. Ancira-CortezA. Ferro-FloresG. Ocampo-GarcíaB. Gibbens-BandalaB. Controlled-release nanosystems with a dual function of targeted therapy and radiotherapy in colorectal cancer.Pharmaceutics20221451095111910.3390/pharmaceutics1405109535631681
    [Google Scholar]
  132. GigmesD. TrimailleT. Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery.Adv. Colloid Interface Sci.202129410248310241810.1016/j.cis.2021.10248334274723
    [Google Scholar]
  133. AfsharzadehM. AbnousK. Yazdian-RobatiR. AtaranzadehA. RamezaniM. HashemiM. Formulation and evaluation of anticancer and antiangiogenesis efficiency of PLA–PEG nanoparticles loaded with galbanic acid in C26 colon carcinoma, in vitro and in vivo.J. Cell. Physiol.201923456099610710.1002/jcp.2734630378118
    [Google Scholar]
  134. ShenK. LiD. GuanJ. DingJ. WangZ. GuJ. LiuT. ChenX. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle.Nanomedicine20171331279128810.1016/j.nano.2016.12.02228064009
    [Google Scholar]
  135. ParkS.B. SungM.H. UyamaH. HanD.K. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer.Prog. Polym. Sci.202111310134110.1016/j.progpolymsci.2020.101341
    [Google Scholar]
  136. LiG. WuJ. WangB. YanS. ZhangK. DingJ. YinJ. Self-healing supramolecular self-assembled hydrogels based on poly (L-glutamic acid).Biomacromolecules201516113508351810.1021/acs.biomac.5b0128726414083
    [Google Scholar]
  137. SalmanpourM. YousefiG. SamaniS.M. MohammadiS. AnbardarM.H. TamaddonA. Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer.Eur. J. Pharm. Sci.201913610494110.1016/j.ejps.2019.05.01931136788
    [Google Scholar]
  138. QiuR. QianF. WangX. LiH. WangL. Targeted delivery of 20(S)-ginsenoside Rg3-based polypeptide nanoparticles to treat colon cancer.Biomed. Microdevices20192111810.1007/s10544‑019‑0374‑030783757
    [Google Scholar]
  139. AhangaranF. NavarchianA.H. PicchioniF. Material encapsulation in poly(methyl methacrylate) shell: A review.J. Appl. Polym. Sci.2019136414803910.1002/app.48039
    [Google Scholar]
  140. KhanF.A. AkhtarS. AlmohazeyD. AlomariM. AlmoftyS.A. BadrI. ElaissariA. Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation.Artif. Cells Nanomed. Biotechnol.20194711533154210.1080/21691401.2019.157788631007071
    [Google Scholar]
  141. ChangT. GosainP. StenzelM.H. LordM.S. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)—based micelles and mechanisms of uptake in colon carcinoma cells.Colloids Surf. B Biointerfaces201614425726410.1016/j.colsurfb.2016.04.01927100852
    [Google Scholar]
  142. BroughC. MillerD.A. KeenJ.M. KuceraS.A. LubdaD. WilliamsR.O.III Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1).AAPS PharmSciTech201617116717910.1208/s12249‑015‑0458‑y26637232
    [Google Scholar]
  143. Rivera-HernándezG. Antunes-RicardoM. Martínez-MoralesP. SánchezM.L. Polyvinyl alcohol based-drug delivery systems for cancer treatment.Int. J. Pharm.202160012047810.1016/j.ijpharm.2021.12047833722756
    [Google Scholar]
  144. AkhlaqM. AzadA.K. UllahI. NawazA. SafdarM. BhattacharyaT. UddinA.B.M.H. AbbasS.A. MathewsA. KunduS.K. MiretM.M. MurthyH.C.A. NagaswarupaH.P. Methotrexate-loaded gelatin and polyvinyl alcohol (Gel/PVA) hydrogel as a pH-sensitive matrix.Polymers202113142300231710.3390/polym1314230034301057
    [Google Scholar]
  145. RamnandanD. MokhosiS. DanielsA. SinghM. Chitosan.; Polyethylene glycol and Polyvinyl alcohol modified MgFe2O4 ferrite magnetic nanoparticles in Doxorubicin delivery: A comparative study in vitro.Molecules202126133893391610.3390/molecules2613389334202245
    [Google Scholar]
  146. MondalD. GriffithM. VenkatramanS.S. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges.Int. J. Polym. Mater.201665525526510.1080/00914037.2015.1103241
    [Google Scholar]
  147. DaşkınD. ErdoğarN. İskitA.B. BilensoyE. Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation.J. Drug Deliv. Sci. Technol.20238010416310.1016/j.jddst.2023.104163
    [Google Scholar]
  148. SultanaT. FahadM.A. ParkM. KwonS.H. LeeB.T. Physicochemical, in vitro and in vivo evaluation of VEGF loaded PCL‐mPEG and PDGF loaded PCL‐Chitosan dual layered vascular grafts.Biomaterials20231121e3532
    [Google Scholar]
  149. ChangS.H. LeeH.J. ParkS. KimY. JeongB. Fast degradable polycaprolactone for drug delivery.Biomacromolecules20181962302230710.1021/acs.biomac.8b0026629742350
    [Google Scholar]
  150. HuY. HeY. JiJ. ZhengS. ChengY. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy.Int. J. Nanomed.2020151239125210.2147/IJN.S23277732110020
    [Google Scholar]
  151. HoangT. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation.J. Polym.2020122298315
    [Google Scholar]
  152. ZhaoX. SiJ. HuangD. LiK. XinY. SuiM. Application of star poly(ethylene glycol) derivatives in drug delivery and controlled release.J. Control. Release202032356557710.1016/j.jconrel.2020.04.03932343992
    [Google Scholar]
  153. WeiY. GuX. SunY. MengF. StormG. ZhongZ. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo.J. Control. Release202031940741510.1016/j.jconrel.2020.01.01231923538
    [Google Scholar]
  154. AskarizadehA. MashreghiM. MirhadiE. MehrabianA. Heravi SharghV. BadieeA. AlavizadehS.H. ArabiL. KamaliH. JaafariM.R. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer.J. Liposome Res.202334222123837647288
    [Google Scholar]
  155. SharmaM. SharmaR. Implications of designing a bromelain loaded enteric nanoformulation on its stability and anti-inflammatory potential upon oral administration.RSC Advances2018852541255110.1039/C7RA13555F35541457
    [Google Scholar]
  156. ThakralS. ThakralN.K. MajumdarD.K. Eudragit®: a technology evaluation.Expert Opin. Drug Deliv.201310113114910.1517/17425247.2013.73696223102011
    [Google Scholar]
  157. SharmaM. SharmaV. PandaA.K. MajumdarD.K. Development of enteric submicron particle formulation of papain for oral delivery.Int. J. Nanomed.2011620972111
    [Google Scholar]
  158. SharmaM. GuptaN. Mucoadhesive cationic bromelain laden nanocarriers restore patency of airway hyperresponsive remodeling via nasal route.Adv. Ther.202366220030210.1002/adtp.202200302
    [Google Scholar]
  159. SheX. ChenL. VellemanL. LiC. ZhuH. HeC. WangT. ShigdarS. DuanW. KongL. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.J. Colloid Interfa. Sci.201544515116010.1016/j.jcis.2014.12.05325617610
    [Google Scholar]
  160. AishaA.F. AbdulmajidA.M. IsmailZ. AlrokayanS.A. Abu-SalahK.M. Development of polymeric nanoparticles of Garcinia mangostana xanthones in Eudragit RL100/RS100 for anti-colon cancer drug delivery.J. Nanomater.2016161385394
    [Google Scholar]
  161. ElmowafyM. ShalabyK. ElkomyM.H. AlsaidanO.A. GomaaH.A. HendawyO.M. AbdelgawadM.A. AliH.M. AhmedY.M. El-SayK.M. Exploring the potential of quercetin/aspirin-loaded chitosan nanoparticles coated with Eudragit L100 in the treatment of induced-colorectal cancer in rats.Drug Deliv. Transl. Res.202313102568258810.1007/s13346‑023‑01338‑337000409
    [Google Scholar]
  162. LiL. XiangD. ShigdarS. YangW. LiQ. LinJ. LiuK. DuanW. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.Int. J. Nanomedicine201491083109624591829
    [Google Scholar]
  163. LiL. LiC. ZhouJ. Effective sustained release of 5-FU-loaded PLGA implant for improving therapeutic index of 5-FU in colon tumor.Int. J. Pharm.20185501-238038710.1016/j.ijpharm.2018.07.04530040972
    [Google Scholar]
  164. RahmatiA. Homayouni TabriziM. KarimiE. ZareiB. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer.J. Biomater. Sci. Polym. Ed.202233101289130710.1080/09205063.2022.205169335260045
    [Google Scholar]
  165. ZhangR. JiangY. HaoL. YangY. GaoY. ZhangN. ZhangX. SongY. CD44/folate dual targeting receptor reductive response PLGA-based micelles for cancer therapy.Front. Pharmacol.20221382959010.3389/fphar.2022.82959035359873
    [Google Scholar]
  166. RenY. MuY. SongY. XieJ. YuH. GaoS. LiS. PengH. ZhouY. LuW. A new peptide ligand for colon cancer targeted delivery of micelles.Drug Deliv.20162351763177210.3109/10717544.2015.107729326289214
    [Google Scholar]
  167. WuP. ZhuH. ZhuangY. SunX. GuN. Combined therapeutic effects of 131I-labeled and 5Fu-loaded multifunctional nanoparticles in colorectal cancer.Int. J. Nanomedicine2020152777278710.2147/IJN.S21513732368054
    [Google Scholar]
  168. MayaS. SarmentoB. LakshmananV.K. MenonD. JayakumarR. Actively targeted cetuximab conjugated γ-poly(glutamic acid)-docetaxel nanomedicines for epidermal growth factor receptor over expressing colon cancer cells.J. Biomed. Nanotechnol.20141081416142810.1166/jbn.2014.184125016642
    [Google Scholar]
  169. BazylińskaU. PietkiewiczJ. RossowskaJ. ChodaczekG. GamianA. WilkK.A. Polyelectrolyte oil-core nanocarriers for localized and sustained delivery of daunorubicin to colon carcinoma MC38 cells: the case of polysaccharide multilayer film in relation to PEG‐ylated shell.Macromol. Biosci.2017175160035610.1002/mabi.20160035628094898
    [Google Scholar]
  170. BallestriM. CarusoE. GuerriniA. FerroniC. BanfiS. GariboldiM. MontiE. SotgiuG. VarchiG. Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy.J. Photochem. Photobiol. B201818616917710.1016/j.jphotobiol.2018.07.01330064063
    [Google Scholar]
  171. AbedanzadehM. SalmanpourM. FarjadianF. MohammadiS. TamaddonA.M. Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: Preparation and in-vitro characterization.J. Drug Deliv. Sci. Technol.20205810179310.1016/j.jddst.2020.101793
    [Google Scholar]
  172. AlnaimA.S. Formulation, characterization, and cytotoxic effect of pva incorporated iron oxide nanoparticles of gramine Using HCT-116 Cell Line in vitro.Indian J. Pharmacal. Edu. Resea.20235741021102810.5530/ijper.57.4.123
    [Google Scholar]
  173. BhusnureO.G. GholveS.B. GiramP.S. GaikwadA.V. UdumanshaU. ManiG. TaeJ.H. Novel 5-flurouracil-Embedded non-woven PVA - PVP electrospun nanofibers with enhanced anti-cancer efficacy: Formulation, evaluation and in vitro anti-cancer activity.J. Drug Deliv. Sci. Technol.20216410265410.1016/j.jddst.2021.102654
    [Google Scholar]
  174. SmruthiM.R. NallamuthuI. SingsitD. AnandT. Toxicological evaluation of PLA/PVA-naringenin nanoparticles: In vitro and in vivo studies.Open Nano20227100061
    [Google Scholar]
  175. ÖztürkK. MashalA.R. YeginB.A. ÇalışS. Preparation and in vitro evaluation of 5-fluorouracil-loaded PCL nanoparticles for colon cancer treatment.Pharm. Dev. Technol.201722563564110.3109/10837450.2015.111656526616273
    [Google Scholar]
  176. BhattacharyaS. SinghD. AichJ. Ajazuddin SheteM.B. Development and characterization of hyaluronic acid surface scaffolds Encorafenib loaded polymeric nanoparticles for colorectal cancer targeting.Mater. Today Commun.20223110375710.1016/j.mtcomm.2022.103757
    [Google Scholar]
  177. NiR. DuanD. LiB. LiZ. LiL. MingY. WangX. ChenJ. Dual-modified PCL-PEG nanoparticles for improved targeting and therapeutic efficacy of docetaxel against colorectal cancer.Pharm. Dev. Technol.202126891092110.1080/10837450.2021.195793034280065
    [Google Scholar]
  178. SzczepanowiczK. BzowskaM. KrukT. KarabaszA. BeretaJ. WarszynskiP. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting.Colloids Surf. B Biointerfa.201614346347110.1016/j.colsurfb.2016.03.06427037784
    [Google Scholar]
  179. DuanX. WangP. MenK. GaoX. HuangM. GouM. ChenL. QianZ. WeiY. Treating colon cancer with a suicide gene delivered by self-assembled cationic MPEG–PCL micelles.Nanoscale2012472400240710.1039/c2nr30079f22388488
    [Google Scholar]
  180. EmamiJ. MaghziP. HasanzadehF. SadeghiH. MirianM. RostamiM. PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan.Pharm. Dev. Technol.2018231415410.1080/10837450.2017.134095028608760
    [Google Scholar]
  181. SunoqrotS. AbujamousL. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine.J. Drug Deliv. Sci. Technol.20195267067610.1016/j.jddst.2019.05.035
    [Google Scholar]
  182. IbrahimB. MadyO.Y. TambuwalaM.M. HaggagY.A. pH-sensitive nanoparticles containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon cancer.Nanomedicine202217636738110.2217/nnm‑2021‑042335109714
    [Google Scholar]
  183. Pushpa SweetyJ. SowparaniS. MahalakshmiP. SelvasudhaN. YaminiD. GeethaK. RuckmaniK. Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – Insight into thymoquinone’s improved physicochemical properties.J. Drug Deliv. Sci. Technol.20205510133410.1016/j.jddst.2019.101334
    [Google Scholar]
  184. AsfourM.H. MohsenA.M. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line.J. Adv. Res.20189172610.1016/j.jare.2017.10.00330034879
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X299780240905141609
Loading
/content/journals/ccand/10.2174/012212697X299780240905141609
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomaterials; chemotherapy; Colon cancer; drug carrier; nanocarriers; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test