Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

CAR-T cell therapy has transformed cancer treatment by harnessing genetically engineered T cells to specifically target and destroy cancer cells, especially in blood cancers like leukemia and lymphoma. Despite its success, challenges such as serious side effect cytokine release syndrome, neurotoxicity and the high cost of treatment hinder widespread access. Research is ongoing to broaden its use to solid tumors and improve its safety, effectiveness, and affordability. Future efforts will focus on refining CAR constructs, reducing adverse effects, enhancing manufacturing efficiency, and ensuring equitable access through regulatory cooperation, facilitating its wider adoption in precision oncology.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X366863250331152051
2025-04-17
2025-09-27
Loading full text...

Full text loading...

References

  1. LustbergM. B. KudererN. M. DesaiA. BergerotC. LymanG. H. Mitigating long-term and delayed adverse events associated with cancer treatment: Implications for survivorship.Nat. Rev. Clin. Oncol.202320852754210.1038/s41571‑023‑00776‑9
    [Google Scholar]
  2. SchusterS.J. SvobodaJ. ChongE.A. NastaS.D. MatoA.R. AnakÖ. BrogdonJ.L. Pruteanu-MaliniciI. BhojV. LandsburgD. WasikM. LevineB.L. LaceyS.F. MelenhorstJ.J. PorterD.L. JuneC.H. Chimeric antigen receptor T cells in refractory B-cell lymphomas.N. Engl. J. Med.2017377262545255410.1056/NEJMoa170856629226764
    [Google Scholar]
  3. ParkJ.H. RivièreI. GonenM. WangX. SénéchalB. CurranK.J. SauterC. WangY. SantomassoB. MeadE. RoshalM. MaslakP. DavilaM. BrentjensR.J. SadelainM. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia.N. Engl. J. Med.2018378544945910.1056/NEJMoa170991929385376
    [Google Scholar]
  4. “CAR T Cells: Engineering Immune Cells to Treat Cancer - NCI.”Available from: https://www.cancer.gov/about-cancer/treatment/research/car-t-cells [Accessed: Jan. 09, 2025].
    [Google Scholar]
  5. BandaraV. FoengJ. GundsambuuB. NortonT.S. NapoliS. McPeakeD.J. TyllisT.S. Rohani-RadE. AbbottC. MillsS.J. TanL.Y. ThompsonE.J. WilletV.M. NikitarasV.J. ZhengJ. ComerfordI. JohnsonA. CoombsJ. OehlerM.K. RicciardelliC. CowinA.J. BonderC.S. JensenM. SadlonT.J. McCollS.R. BarryS.C. Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7.Nat. Commun.2023141554610.1038/s41467‑023‑41338‑y37684239
    [Google Scholar]
  6. MaudeS.L. LaetschT.W. BuechnerJ. RivesS. BoyerM. BittencourtH. BaderP. VernerisM.R. StefanskiH.E. MyersG.D. QayedM. MoerlooseD.B. HiramatsuH. SchlisK. DavisK.L. MartinP.L. NemecekE.R. YanikG.A. PetersC. BaruchelA. BoisselN. MechinaudF. BalduzziA. KruegerJ. JuneC.H. LevineB.L. WoodP. TaranT. LeungM. MuellerK.T. ZhangY. SenK. LebwohlD. PulsipherM.A. GruppS.A. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.N. Engl. J. Med.2018378543944810.1056/NEJMoa170986629385370
    [Google Scholar]
  7. BraendstrupP. LevineB.L. RuellaM. The long road to the first FDA-approved gene therapy: Chimeric antigen receptor T cells targeting CD19.Cytotherapy2020222576910.1016/j.jcyt.2019.12.00432014447
    [Google Scholar]
  8. NeelapuS.S. LockeF.L. BartlettN.L. LekakisL.J. MiklosD.B. JacobsonC.A. BraunschweigI. OluwoleO.O. SiddiqiT. LinY. TimmermanJ.M. StiffP.J. FriedbergJ.W. FlinnI.W. GoyA. HillB.T. SmithM.R. DeolA. FarooqU. McSweeneyP. MunozJ. AviviI. CastroJ.E. WestinJ.R. ChavezJ.C. GhobadiA. KomanduriK.V. LevyR. JacobsenE.D. WitzigT.E. ReaganP. BotA. RossiJ. NavaleL. JiangY. AycockJ. EliasM. ChangD. WiezorekJ. GoW.Y. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma.N. Engl. J. Med.2017377262531254410.1056/NEJMoa170744729226797
    [Google Scholar]
  9. BuiT.A. MeiH. SangR. OrtegaD.G. DengW. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment.EBioMedicine202410610526610.1016/j.ebiom.2024.10526639094262
    [Google Scholar]
  10. “T-cell Transfer Therapy - Immunotherapy - NCI.”Available from: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/t-cell-transfer-therapy [Accessed: Jan. 09, 2025].
    [Google Scholar]
  11. BenmebarekM.R. KarchesC.H. CadilhaB.L. LeschS. EndresS. KoboldS. Killing mechanisms of chimeric antigen receptor (CAR) T cells.Int. J. Mol. Sci.2019206128310.3390/ijms2006128330875739
    [Google Scholar]
  12. Visserd.K.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  13. RedekerA. ArensR. Improving adoptive T cell therapy: The particular role of T cell costimulation, cytokines, and post-transfer vaccination.Front. Immunol.20167SEP34510.3389/fimmu.2016.0034527656185
    [Google Scholar]
  14. KazemiM.H. SadriM. NajafiA. RahimiA. BaghernejadanZ. KhorramdelazadH. FalakR. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango?Front. Immunol.202213101896210.3389/fimmu.2022.101896236389779
    [Google Scholar]
  15. LinP. LinY. MaiZ. ZhengY. ZhengJ. ZhouZ. ZhaoX. CuiL. Targeting cancer with precision: Strategical insights into TCR-engineered T cell therapies.Theranostics202515130032310.7150/thno.10459439744228
    [Google Scholar]
  16. HensenL. IllingP.T. RowntreeL.C. DaviesJ. MillerA. TongS.Y.C. HabelJ.R. van de SandtC.E. FlanaganK.L. PurcellA.W. KedzierskaK. ClemensE.B. T cell epitope discovery in the context of distinct and unique indigenous HLA profiles.Front. Immunol.20221381239310.3389/fimmu.2022.81239335603215
    [Google Scholar]
  17. MitraA. BaruaA. HuangL. GangulyS. FengQ. HeB. From bench to bedside: The history and progress of CAR T cell therapy.Front. Immunol.202314118804910.3389/fimmu.2023.118804937256141
    [Google Scholar]
  18. LonezC. BremanE. Allogeneic car-T therapy technologies: Has the promise been met?Cells202413214610.3390/cells1302014638247837
    [Google Scholar]
  19. CapitaniN. BaldariC.T. The immunological synapse: An emerging target for immune evasion by bacterial pathogens.Front. Immunol.20221394334410.3389/fimmu.2022.94334435911720
    [Google Scholar]
  20. JoshiH. MorleyS.C. Efficient T cell migration and activation require L-plastin.Front. Immunol.20221391613710.3389/fimmu.2022.91613735844504
    [Google Scholar]
  21. KnörckA. SchäferG. AlansaryD. RichterJ. ThurnerL. HothM. SchwarzE.C. Cytotoxic efficiency of human CD8+ T cell memory subtypes.Front. Immunol.20221383848410.3389/fimmu.2022.83848435493468
    [Google Scholar]
  22. DustinM.L. LongE.O. Cytotoxic immunological synapses.Immunol. Rev.20102351243410.1111/j.0105‑2896.2010.00904.x20536553
    [Google Scholar]
  23. Pores-FernandoA.T. ZweifachA. Calcium influx and signaling in cytotoxic T‐lymphocyte lytic granule exocytosis.Immunol. Rev.2009231116017310.1111/j.1600‑065X.2009.00809.x19754896
    [Google Scholar]
  24. McKenzieC. El-KholyM. ParekhF. RobsonM. LambK. AllenC. SillibourneJ. CordobaS. ThomasS. PuleM. Novel Fas-TNFR chimeras that prevent Fas ligand-mediated kill and signal synergistically to enhance CAR T cell efficacy.Mol. Ther. Nucleic Acids20233260362110.1016/j.omtn.2023.04.01737200859
    [Google Scholar]
  25. KorellF. BergerT.R. MausM.V. Understanding CAR T cell-tumor interactions: Paving the way for successful clinical outcomes.Med20223853856410.1016/j.medj.2022.05.00135963235
    [Google Scholar]
  26. VojdaniA. KoksoyS. VojdaniE. EngelmanM. BenzviC. LernerA. Natural killer cells and cytotoxic T Cells: Complementary partners against microorganisms and cancer.Microorganisms202412123010.3390/microorganisms1201023038276215
    [Google Scholar]
  27. CappellK. M. KochenderferJ. N. Long-term outcomes following CAR T cell therapy: What we know so far.Nat. Rev. Clin. Oncol.202320635937110.1038/s41571‑023‑00754‑1
    [Google Scholar]
  28. MeirazA. GarberO.G. HarariS. HassinD. BerkeG. Switch from perforin‐expressing to perforin‐deficient CD8 + T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo.Immunology20091281698210.1111/j.1365‑2567.2009.03072.x19689737
    [Google Scholar]
  29. SchäferD. HenzeJ. PfeiferR. SchleicherA. BraunerJ. Mockel-TenbrinckN. BarthC. GudertD. RawashdehA.W. JohnstonI.C.D. HardtO. A novel siglec-4 derived spacer improves the functionality of CAR T cells against membrane-proximal epitopes.Front. Immunol.202011170410.3389/fimmu.2020.0170432849600
    [Google Scholar]
  30. MazinaniM. RahbarizadehF. CAR-T cell potency: From structural elements to vector backbone components.Biomark. Res.20221017010.1186/s40364‑022‑00417‑w36123710
    [Google Scholar]
  31. MarcucciK.T. JadlowskyJ.K. HwangW.T. Suhoski-DavisM. GonzalezV.E. KulikovskayaI. GuptaM. LaceyS.F. PlesaG. ChewA. MelenhorstJ.J. LevineB.L. JuneC.H. Retroviral and lentiviral safety analysis of gene-modified T cell products and infused hiv and oncology patients.Mol. Ther.201826126927910.1016/j.ymthe.2017.10.01229203150
    [Google Scholar]
  32. DagarG. GuptaA. MasoodiT. NisarS. DagarM. MirzaS. Harnessing the potential of CAR-T cell therapy: Progress, challenges, and future directions in hematological and solid tumor treatmentsJ. Transl. Med.202321144910.1186/s12967‑023‑04292‑3
    [Google Scholar]
  33. WestinJ.R. KerstenM.J. SallesG. AbramsonJ.S. SchusterS.J. LockeF.L. AndreadisC. Efficacy and safety of CD19 ‐directed CAR‐T cell therapies in patients with relapsed/refractory aggressive B‐cell lymphomas: Observations from the JULIET, ZUMA ‐1, and TRANSCEND trials.Am. J. Hematol.202196101295131210.1002/ajh.2630134310745
    [Google Scholar]
  34. VeraG.D. WaghelaH. NuhM. PanJ. LullaP. Approved CAR-T therapies have reproducible efficacy and safety in clinical practice.Hum. Vaccin. Immunother.2024201237854310.1080/21645515.2024.237854339104200
    [Google Scholar]
  35. VerdunN. MarksP. Secondary cancers after chimeric antigen receptor T-cell therapy.N. Engl. J. Med.2024390758458610.1056/NEJMp240020938265704
    [Google Scholar]
  36. GuzmanG. ReedM.R. BielamowiczK. KossB. RodriguezA. CAR-T therapies in solid tumors: Opportunities and challenges.Curr. Oncol. Rep.202325547948910.1007/s11912‑023‑01380‑x36853475
    [Google Scholar]
  37. SzlasaW. SztuderA. Kaczmar-DybkoA. MaciejczykA. DybkoJ. Efficient combination of radiotherapy and CAR-T – A systematic review.Biomed. Pharmacother.202417411653210.1016/j.biopha.2024.11653238574625
    [Google Scholar]
  38. MaalejK. M. MerhiM. InchakalodyV.P. MestiriS. AlamM. MaccalliC. CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances.Mol. Cancer20232212010.1186/s12943‑023‑01723‑z
    [Google Scholar]
  39. LiuZ. LeiW. WangH. LiuX. FuR. Challenges and strategies associated with CAR-T cell therapy in blood malignancies.Exp. Hematol. Oncol.20241312210.1186/s40164‑024‑00490‑x
    [Google Scholar]
  40. ZhangJ. LiJ. MaQ. YangH. SignorovitchJ. WuE. A review of two regulatory approved anti-cd19 car t-cell therapies in diffuse large B-cell lymphoma: Why are indirect treatment comparisons not feasible?Adv. Ther.20203773040305810.1007/s12325‑020‑01397‑932524498
    [Google Scholar]
  41. ChiorazziN. ChenS.S. RaiK.R. Chronic lymphocytic leukemia.Cold Spring Harb. Perspect. Med.2021112a03522010.1101/cshperspect.a03522032229611
    [Google Scholar]
  42. HuangZ. ChavdaV. P. BezbaruahR. DhamneH. YangD. H. ZhaoH. B. CAR T-Cell therapy for the management of mantle cell lymphoma.Mol. Cancer20232216710.1186/s12943‑023‑01755‑5
    [Google Scholar]
  43. WestinJ. SehnL.H. CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift?Blood2022139182737274610.1182/blood.202201578935240677
    [Google Scholar]
  44. DenlingerN. BondD. JaglowskiS. CAR T-cell therapy for B-cell lymphoma.Curr. Probl. Cancer202246110082610.1016/j.currproblcancer.2021.10082635012754
    [Google Scholar]
  45. WangC. WangJ. CheS. ZhaoH. CAR-T cell therapy for hematological malignancies: History, status and promise.Heliyon2023911e2177610.1016/j.heliyon.2023.e2177638027932
    [Google Scholar]
  46. VitaleC. StratiP. CAR T-Cell therapy for B-Cell non-hodgkin lymphoma and chronic lymphocytic leukemia: Clinical trials and real-world experiences.Front. Oncol.20201084910.3389/fonc.2020.0084932670869
    [Google Scholar]
  47. PatelU. AbernathyJ. SavaniB.N. CAR T cell therapy in solid tumors: A review of current clinical trials.EJHaem202131243110.1002/jha2.356
    [Google Scholar]
  48. MaccariM. BaekC. CacceseM. MandruzzatoS. FiorentinoA. InternòV. BosioA. CerrettiG. PadovanM. IdbaihA. LombardiG. Present and future of immunotherapy in patients with glioblastoma: Limitations and opportunities.Oncologist202429428930210.1093/oncolo/oyad32138048782
    [Google Scholar]
  49. ZhangC. WangZ. YangZ. WangM. LiS. LiY. ZhangR. XiongZ. WeiZ. ShenJ. LuoY. ZhangQ. LiuL. QinH. LiuW. WuF. ChenW. PanF. ZhangX. BieP. LiangH. PecherG. QianC. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers.Mol. Ther.20172551248125810.1016/j.ymthe.2017.03.01028366766
    [Google Scholar]
  50. DeSelmC.J. TanoZ.E. VargheseA.M. AdusumilliP.S. CAR T‐cell therapy for pancreatic cancer.J. Surg. Oncol.20171161637410.1002/jso.2462728346697
    [Google Scholar]
  51. ScavoneC. Maurod.G. MascoloA. BerrinoL. RossiF. CapuanoA. The new paradigms in clinical research: From early access programs to the novel therapeutic approaches for unmet medical needs.Front. Pharmacol.20191011110.3389/fphar.2019.0011130814951
    [Google Scholar]
  52. KnightA. KarapetyanL. KirkwoodJ.M. Immunotherapy in melanoma: Recent advances and future directions.Cancers2023154110610.3390/cancers1504110636831449
    [Google Scholar]
  53. “CAR T-cell Therapy and Its Side Effects | American Cancer Society.”Available from: https://www.cancer.org/cancer/managing-cancer/treatment-types/immunotherapy/car-t-cell1.html [Accessed: Jan. 11, 2025].
    [Google Scholar]
  54. ChehelgerdiM. ChehelgerdiM. Khorramian-GhahfarokhiM. ShafieizadehM. MahmoudiE. EskandariF. RashidiM. ArshiA. Mokhtari-FarsaniA. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy.Mol. Cancer2024231910.1186/s12943‑023‑01925‑538195537
    [Google Scholar]
  55. WangX. ZengX. LiD. ZhuC. GuoX. FengL. YuZ. PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications.Biomed. Pharmacother.202215311345810.1016/j.biopha.2022.11345836076571
    [Google Scholar]
  56. DuZ. LovlyC.M. Mechanisms of receptor tyrosine kinase activation in cancer.Mol. Cancer20181711310.1186/s12943‑018‑0782‑4
    [Google Scholar]
  57. KolanuN.D. CRISPR–Cas9 gene editing: Curing genetic diseases by inherited epigenetic modifications.Glob. Med. Genet.202411111312210.1055/s‑0044‑178523438560484
    [Google Scholar]
  58. LeiT. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy.Leukemia202438122517254310.1038/s41375‑024‑02444‑y
    [Google Scholar]
  59. LiX. YouJ. HongL. LiuW. GuoP. HaoX. Neoantigen cancer vaccines: A new star on the horizon.Cancer Biol. Med.202321413810.20892/j.issn.2095‑3941.2023.039538164734
    [Google Scholar]
  60. D’OraziG. CironeM. Cancer chemotherapy: Combination with inhibitors (Volume I).Cancers202416360710.3390/cancers1603060738339356
    [Google Scholar]
  61. HeJ. ZhangH. Research progress and treatment status of malignant ascites.Front. Oncol.202414139042610.3389/fonc.2024.139042639737405
    [Google Scholar]
  62. FreyN. PorterD. Cytokine release syndrome with chimeric antigen receptor T cell therapy.Biol. Blood Marrow Transplant.2019254e123e12710.1016/j.bbmt.2018.12.75630586620
    [Google Scholar]
  63. WeiZ. XuJ. ZhaoC. ZhangM. XuN. KangL. LouX. YuL. FengW. Prediction of severe CRS and determination of biomarkers in B cell-acute lymphoblastic leukemia treated with CAR-T cells.Front. Immunol.202314127350710.3389/fimmu.2023.127350737854590
    [Google Scholar]
  64. PhilippisD.C. ManninaD. GiordanoL. CostantiniE. MarcheselliS. MariottiJ. SarinaB. TaurinoD. SantoroA. BramantiS. Impact of preemptive use of tocilizumab on chimeric antigen receptor T cell outcomes in non-hodgkin lymphoma.Transplant. Cell. Ther.2023297429.e1429.e610.1016/j.jtct.2023.03.01936966874
    [Google Scholar]
  65. JainM.D. SmithM. ShahN.N. How I treat refractory CRS and ICANS after CAR T-cell therapy.Blood202314120blood.202201741410.1182/blood.202201741436989488
    [Google Scholar]
  66. TallantyreE.C. EvansN.A. Parry-JonesJ. MorganM.P.G. JonesC.H. IngramW. Neurological updates: Neurological complications of CAR-T therapy.J. Neurol.202126841544155410.1007/s00415‑020‑10237‑333140239
    [Google Scholar]
  67. MorrisE.C. NeelapuS.S. GiavridisT. SadelainM. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy.Nat. Rev. Immunol.2022222859610.1038/s41577‑021‑00547‑634002066
    [Google Scholar]
  68. HuY. SunJ. WuZ. YuJ. CuiQ. PuC. LiangB. LuoY. ShiJ. JinA. XiaoL. HuangH. Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy.J. Hematol. Oncol.2016917010.1186/s13045‑016‑0299‑527526682
    [Google Scholar]
  69. FlugelC.L. MajznerR.G. KrenciuteG. DottiG. RiddellS.R. WagnerD.L. Abou-el-EneinM. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours.Nat. Rev. Clin. Oncol.2023201496210.1038/s41571‑022‑00704‑336418477
    [Google Scholar]
  70. MaudeS.L. TeacheyD.T. PorterD.L. GruppS.A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia.Blood2015125264017402310.1182/blood‑2014‑12‑58006825999455
    [Google Scholar]
  71. JuneC.H. O’ConnorR.S. KawalekarO.U. GhassemiS. MiloneM.C. CAR T cell immunotherapy for human cancer.Science201835963821361136510.1126/science.aar671129567707
    [Google Scholar]
  72. HeczeyA. XuX. CourtneyA.N. TianG. BarraganG.A. GuoL. AmadorC.M. GhatwaiN. RathiP. WoodM.S. LiY. ZhangC. DembergT. PierroD.E.J. SherA.C. ZhangH. MehtaB. ThakkarS.G. GrilleyB. WangT. WeissB.D. MontalbanoA. SubramaniamM. XuC. SacharC. WellsD.K. DottiG. MetelitsaL.S. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: Updated phase 1 trial interim results.Nat. Med.20232961379138810.1038/s41591‑023‑02363‑y37188782
    [Google Scholar]
  73. WangS. YangY. MaP. ZhaY. ZhangJ. LeiA. LiN. CAR-macrophage: An extensive immune enhancer to fight cancer.EBioMedicine20227610387310.1016/j.ebiom.2022.10387335152151
    [Google Scholar]
  74. KinkhabwalaA. HerbelC. PankratzJ. YushchenkoD.A. RübergS. PraveenP. ReißS. RodriguezF.C. SchäferD. KolletJ. DittmerV. Martinez-OsunaM. MinnerupL. ReinhardC. DzionekA. RockelT.D. BorbeS. BüscherM. KriegJ. NederlofM. JungblutM. EckardtD. HardtO. DoseC. SchumannE. PetersR.P. MiltenyiS. SchmitzJ. MüllerW. BosioA. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors.Sci. Rep.2022121191110.1038/s41598‑022‑05841‑435115587
    [Google Scholar]
  75. GajraA. ZalenskiA. SannareddyA. Jeune-SmithY. KapinosK. KansagraA. Barriers to chimeric antigen receptor T-Cell (CAR-T) therapies in clinical practice.Pharmaceut. Med.202236316317110.1007/s40290‑022‑00428‑w35672571
    [Google Scholar]
  76. GautamS. GautamB. ShilpakarR. CK.S. KurmiO.P. CAR-T cell therapy in developing countries: How long should we wait?J. Immunother. Cancer20241212e00961110.1136/jitc‑2024‑00961139794933
    [Google Scholar]
  77. JagannathS. JosephN. CriveraC. KharatA. JacksonC.C. ValluriS. CostP. PhelpsH. SlowikR. KleinT. SmolenL. YuX. CohenA.D. Component costs of CAR-T therapy in addition to treatment acquisition costs in patients with multiple myeloma.Oncol. Ther.202311226327510.1007/s40487‑023‑00228‑537014590
    [Google Scholar]
  78. WakaseS. TeshimaT. ZhangJ. MaQ. WatanabeY. YangH. QiC.Z. ChaiX. XieY. WuE.Q. IgarashiA. Cost-effectiveness analysis of tisagenlecleucel for the treatment of pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia in japan.Transplant. Cell. Ther.2021273241.e1241.e1110.1016/j.jtct.2020.12.02333781519
    [Google Scholar]
  79. HenryD.A. CarlessP.A. MoxeyA.J. O’ConnellD. StokesB.J. FergussonD.A. KerK. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion.Cochrane Database Syst. Rev.201120113CD00188610.1002/14651858.CD001886.pub421412876
    [Google Scholar]
  80. DiasJ. GarciaJ. AgliardiG. RoddieC. CAR-T cell manufacturing landscape—Lessons from the past decade and considerations for early clinical development.Mol. Ther. Methods Clin. Dev.202432210125010.1016/j.omtm.2024.10125038737799
    [Google Scholar]
  81. ShahM. KrullA. OdonnellL. Limad.M.J. BezerraE. Promises and challenges of a decentralized CAR T-cell manufacturing model.Front. Transplant.20232123853510.3389/frtra.2023.123853538993860
    [Google Scholar]
  82. Chen S, van den Brink MRM. Allogeneic "Off-the-Shelf" CAR-T cells: Challenges and advances. Best Pract Res Clin Haematol. 2024; Sep; 37(3): 101566.10.1016/j.beha.2024.101566.Epub 2024 Jul 25.39396256
/content/journals/ccand/10.2174/012212697X366863250331152051
Loading
/content/journals/ccand/10.2174/012212697X366863250331152051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test