Skip to content
2000
image of Prognostic Assessment of Aquaporins in Pancreatic Adenocarcinoma: An In Silico Analysis

Abstract

Introduction

Pancreatic cancer is the sixth leading cause of death with a limited validated biomarker. Finding and validating diagnostic/prognostic markers can be improved by combining both forms of data in a multi-omics approach, which can offer a more comprehensive outcome.

Methods

GEO datasets were utilized to identify differentially expressed aquaporins in pancreatic cancer and validated through TCGA-PAAD data. Protein Data Commons (PDC) was used to analyse differentially expressed proteins in PAAD. Functional enrichment analysis and immune cell infiltration analysis were conducted through SRplot and TIMER database, respectively. Survival association was studied using Cox proportional regression and Kaplan-Meier analysis.

Result

A significant downregulation of AQP1, AQP8, AQP11, AQP12A and AQP12B expression and upregulation of AQP5, AQP6 and AQP9 expression were observed in PAAD (-value = 0.0001). This analysis revealed that overexpression of AQP6 was significantly associated with the poor outcome of the PAAD patients (HR=1.8399, =0.037). Additionally, we found that alcohol history and low expression of AQP1 and AQP9 were associated with low survival among the PAAD patients and these aquaporins were strongly correlated with immune infiltrates.

Discussion

Our research underscores the important role of aquaporins, especially AQP6, in pancreatic adenocarcinoma prognosis. The correlation of AQP1 and AQP9 with immune cell infiltration and patient survival indicates their promise as immuno-oncological markers. These results validate the use of aquaporins as diagnostic and prognostic targets in PAAD treatment.

Conclusion

Our results suggested that AQP6 might be a novel prognostic marker in PAAD patients. Additionally, AQP12A and AQP12B may act as distinctive diagnostic markers to detect pancreatic adenocarcinoma.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501371592250411055637
2025-04-17
2025-10-09
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Mizrahi J.D. Surana R. Valle J.W. Shroff R.T. Pancreatic cancer. Lancet 2020 395 10242 2008 2020 10.1016/S0140‑6736(20)30974‑0 32593337
    [Google Scholar]
  3. Ballehaninna U.K. Chamberlain R.S. Serum CA 19-9 as a biomarker for pancreatic cancer: A comprehensive review. Indian J. Surg. Oncol. 2011 2 2 88 100 10.1007/s13193‑011‑0042‑1 22693400
    [Google Scholar]
  4. Dajani S. Saripalli A. Sharma-Walia N. Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget 2018 9 91 36392 36405 10.18632/oncotarget.26351 30555637
    [Google Scholar]
  5. Direito I. Paulino J. Vigia E. Brito M.A. Soveral G. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. J. Surg. Oncol. 2017 115 8 980 996 10.1002/jso.24605 28471475
    [Google Scholar]
  6. Bruun-Sørensen A.S. Edamana S. Login F.H. Borgquist S. Nejsum L.N. Aquaporins in pancreatic ductal adenocarcinoma. Acta Pathol. Microbiol. Scand. Suppl. 2021 129 12 700 705 10.1111/apm.13184 34582595
    [Google Scholar]
  7. Magouliotis D.E. Tasiopoulou V.S. Dimas K. Sakellaridis N. Svokos K.A. Svokos A.A. Zacharoulis D. Transcriptomic analysis of the Aquaporin (AQP) gene family interactome identifies a molecular panel of four prognostic markers in patients with pancreatic ductal adenocarcinoma. Pancreatology 2019 19 3 436 442 10.1016/j.pan.2019.02.006 30826259
    [Google Scholar]
  8. da Silva I.V. Garra S. Calamita G. Soveral G. The multifaceted role of aquaporin-9 in health and its potential as a clinical biomarker. Biomolecules 2022 12 7 897 10.3390/biom12070897 35883453
    [Google Scholar]
  9. Liu X. Xu Q. Li Z. Xiong B. Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers. Sci. Rep. 2020 10 1 20795 10.1038/s41598‑020‑77657‑z 33247170
    [Google Scholar]
  10. Colaprico A. Silva T.C. Olsen C. Garofano L. Cava C. Garolini D. Sabedot T.S. Malta T.M. Pagnotta S.M. Castiglioni I. Ceccarelli M. Bontempi G. Noushmehr H. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016 44 8 e71 10.1093/nar/gkv1507 26704973
    [Google Scholar]
  11. Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. Hasz R. Walters G. Garcia F. Young N. Foster B. Moser M. Karasik E. Gillard B. Ramsey K. Sullivan S. Bridge J. Magazine H. Syron J. Fleming J. Siminoff L. Traino H. Mosavel M. Barker L. Jewell S. Rohrer D. Maxim D. Filkins D. Harbach P. Cortadillo E. Berghuis B. Turner L. Hudson E. Feenstra K. Sobin L. Robb J. Branton P. Korzeniewski G. Shive C. Tabor D. Qi L. Groch K. Nampally S. Buia S. Zimmerman A. Smith A. Burges R. Robinson K. Valentino K. Bradbury D. Cosentino M. Diaz-Mayoral N. Kennedy M. Engel T. Williams P. Erickson K. Ardlie K. Winckler W. Getz G. DeLuca D. MacArthur D. Kellis M. Thomson A. Young T. Gelfand E. Donovan M. Meng Y. Grant G. Mash D. Marcus Y. Basile M. Liu J. Zhu J. Tu Z. Cox N.J. Nicolae D.L. Gamazon E.R. Im H.K. Konkashbaev A. Pritchard J. Stevens M. Flutre T. Wen X. Dermitzakis E.T. Lappalainen T. Guigo R. Monlong J. Sammeth M. Koller D. Battle A. Mostafavi S. McCarthy M. Rivas M. Maller J. Rusyn I. Nobel A. Wright F. Shabalin A. Feolo M. Sharopova N. Sturcke A. Paschal J. Anderson J.M. Wilder E.L. Derr L.K. Green E.D. Struewing J.P. Temple G. Volpi S. Boyer J.T. Thomson E.J. Guyer M.S. Ng C. Abdallah A. Colantuoni D. Insel T.R. Koester S.E. Little A.R. Bender P.K. Lehner T. Yao Y. Compton C.C. Vaught J.B. Sawyer S. Lockhart N.C. Demchok J. Moore H.F. GTEx Consortium The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  12. Thangudu R.R. Rudnick P.A. Holck M. Singhal D. MacCoss M.J. Edwards N.J. Ketchum K.A. Kinsinger C.R. Kim E. Basu A. Abstract LB-242: Proteomic data commons: A resource for proteogenomic analysis. Cancer Res. 2020 80 16_Supplement LB-242 [abstract]. 10.1158/1538‑7445.AM2020‑LB‑242
    [Google Scholar]
  13. Gao J. Aksoy B.A. Dogrusoz U. Dresdner G. Gross B. Sumer S.O. Sun Y. Jacobsen A. Sinha R. Larsson E. Cerami E. Sander C. Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013 6 269 pl1 10.1126/scisignal.2004088 23550210
    [Google Scholar]
  14. Ng P.C. Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003 31 13 3812 3814 10.1093/nar/gkg509 12824425
    [Google Scholar]
  15. Choi Y. Chan A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015 31 16 2745 2747 10.1093/bioinformatics/btv195 25851949
    [Google Scholar]
  16. Adzhubei I Jordan DM Sunyaev SR Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013 76 7.20.1 10.1002/0471142905.hg0720s76
    [Google Scholar]
  17. Capriotti E. Fariselli P. PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res. 2017 45 W1 W247 W252 10.1093/nar/gkx369 28482034
    [Google Scholar]
  18. Kang J. Tang Q. He J. Li L. Yang N. Yu S. Wang M. Zhang Y. Lin J. Cui T. Hu Y. Tan P. Cheng J. Zheng H. Wang D. Su X. Chen W. Huang Y. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 2022 50 D1 D326 D332 10.1093/nar/gkab997 34718726
    [Google Scholar]
  19. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  20. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  21. Li T. Fu J. Zeng Z. Cohen D. Li J. Chen Q. Li B. Liu X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020 48 W1 W509 W514 10.1093/nar/gkaa407 32442275
    [Google Scholar]
  22. Terry M.T. Patricia M.G. Modeling Survival Data: Extending the Cox Model. New York Springer 2000
    [Google Scholar]
  23. Wang S. Zheng Y. Yang F. Zhu L. Zhu X.Q. Wang Z.F. Wu X.L. Zhou C.H. Yan J.Y. Hu B.Y. Kong B. Fu D.L. Bruns C. Zhao Y. Qin L.X. Dong Q.Z. The molecular biology of pancreatic adenocarcinoma: Translational challenges and clinical perspectives. Signal Transduct. Target. Ther. 2021 6 1 249 10.1038/s41392‑021‑00659‑4 34219130
    [Google Scholar]
  24. Vareedayah A.A. Alkaade S. Taylor J.R. Pancreatic adenocarcinoma. Mo. Med. 2018 115 3 230 235 30228728
    [Google Scholar]
  25. Kane L.E. Mellotte G.S. Mylod E. O’Brien R.M. O’Connell F. Buckley C.E. Arlow J. Nguyen K. Mockler D. Meade A.D. Ryan B.M. Maher S.G. Diagnostic accuracy of blood-based biomarkers for pancreatic cancer: A systematic review and meta-analysis. Cancer Res. Commun. 2022 2 10 1229 1243 10.1158/2767‑9764.CRC‑22‑0190 36969742
    [Google Scholar]
  26. Verkman A.S. Mammalian aquaporins: Diverse physiological roles and potential clinical significance. Expert Rev. Mol. Med. 2008 10 e13 10.1017/S1462399408000690 18482462
    [Google Scholar]
  27. Wang Z. Wang Y. He Y. Zhang N. Chang W. Niu Y. Aquaporin-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation. Anim. Cells Syst. 2020 24 5 253 259 10.1080/19768354.2020.1833985 33209198
    [Google Scholar]
  28. Sun W.J. Hu D.H. Wu H. Xiao H. Lu M.D. Guo W.J. Huang H. Yu Y.J. Hu T.Y. Zheng Z.Q. Expression of AQP1 was associated with apoptosis and survival of patients in gastric adenocarcinoma. Dig. Surg. 2016 33 3 190 196 10.1159/000443843 26866931
    [Google Scholar]
  29. Yun S. Sun P.L. Jin Y. Kim H. Park E. Park S.Y. Lee K. Lee K. Chung J.H. Aquaporin 1 is an independent marker of poor prognosis in lung adenocarcinoma. J. Pathol. Transl. Med. 2016 50 4 251 257 10.4132/jptm.2016.03.30 27271108
    [Google Scholar]
  30. Hoque M.O. Soria J.C. Woo J. Lee T. Lee J. Jang S.J. Upadhyay S. Trink B. Monitto C. Desmaze C. Mao L. Sidransky D. Moon C. Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am. J. Pathol. 2006 168 4 1345 1353 10.2353/ajpath.2006.050596 16565507
    [Google Scholar]
  31. Lopes P.A. Fonseca E. da Silva I.V. Vigia E. Paulino J. Soveral G. Aquaporins transcripts with potential prognostic value in pancreatic cancer. Genes 2023 14 9 1694 10.3390/genes14091694 37761834
    [Google Scholar]
  32. Wei M. Yu H. Zhang Y. Zeng J. Cai C. Shi R. Decreased expression of aquaporin 1 correlates with clinicopathological features of patients with cervical cancer. OncoTargets Ther. 2019 12 2843 2851 10.2147/OTT.S194650 31118662
    [Google Scholar]
  33. Lee S. Kim B. Jung M. Moon K.C. Loss of aquaporin-1 expression is associated with worse clinical outcomes in clear cell renal cell carcinoma: an immunohistochemical study. J. Pathol. Transl. Med. 2023 57 4 232 237 10.4132/jptm.2023.06.17 37460397
    [Google Scholar]
  34. Guo K. Jin F. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression. Biochem. Biophys. Res. Commun. 2015 465 3 644 649 10.1016/j.bbrc.2015.08.078 26299924
    [Google Scholar]
  35. Pust A. Kylies D. Hube-Magg C. Kluth M. Minner S. Koop C. Grob T. Graefen M. Salomon G. Tsourlakis M.C. Izbicki J. Wittmer C. Huland H. Simon R. Wilczak W. Sauter G. Steurer S. Krech T. Schlomm T. Melling N. Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence. Hum. Pathol. 2016 48 102 110 10.1016/j.humpath.2015.09.026 26614400
    [Google Scholar]
  36. Zhou J. Dong Y. Liu J. Ren J. Wu J. Zhu N. AQP5 regulates the proliferation and differentiation of epidermal stem cells in skin aging. Braz. J. Med. Biol. Res. 2020 53 11 e10009 10.1590/1414‑431x202010009 32965322
    [Google Scholar]
  37. Login F.H. Palmfeldt J. Cheah J.S. Yamada S. Nejsum L.N. Aquaporin-5 regulation of cell–cell adhesion proteins: An elusive “tail” story. Am. J. Physiol. Cell Physiol. 2021 320 3 C282 C292 10.1152/ajpcell.00496.2020 33175575
    [Google Scholar]
  38. Chen C. Ma T. Zhang C. Zhang H. Bai L. Kong L. Luo J. Down-regulation of aquaporin 5- mediated epithelial-mesenchymal transition and anti-metastatic effect by natural product Cairicoside E in colorectal cancer. Mol. Carcinog. 2017 56 12 2692 2705 10.1002/mc.22712 28833571
    [Google Scholar]
  39. Chen G. Song H. Yang Z. Du T. Zheng Y. Lu Z. Zhang K. Wei D. AQP5 is a novel prognostic biomarker in pancreatic adenocarcinoma. Front. Oncol. 2022 12 890193 10.3389/fonc.2022.890193 35619903
    [Google Scholar]
  40. Pellavio G. Martinotti S. Patrone M. Ranzato E. Laforenza U. Aquaporin-6 may increase the resistance to oxidative stress of malignant pleural mesothelioma cells. Cells 2022 11 12 1892 10.3390/cells11121892 35741021
    [Google Scholar]
  41. Ma J. Zhou C. Yang J. Ding X. Zhu Y. Chen X. Expression of AQP6 and AQP8 in epithelial ovarian tumor. J. Mol. Histol. 2016 47 2 129 134 10.1007/s10735‑016‑9657‑4 26779650
    [Google Scholar]
  42. Yamamoto E. Joo K. Lee J. Sansom M.S.P. Yasui M. Molecular mechanism of anion permeation through aquaporin 6. Biophys. J. 2024 123 16 2496 2505 10.1016/j.bpj.2024.06.013 38894539
    [Google Scholar]
  43. Ishibashi K. Kuwahara M. Gu Y. Kageyama Y. Tohsaka A. Suzuki F. Marumo F. Sasaki S. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J. Biol. Chem. 1997 272 33 20782 20786 10.1074/jbc.272.33.20782 9252401
    [Google Scholar]
  44. Dai C. Charlestin V. Wang M. Walker Z.T. Miranda-Vergara M.C. Facchine B.A. Wu J. Kaliney W.J. Dovichi N.J. Li J. Littlepage L.E. Aquaporin-7 regulates the response to cellular stress in breast cancer. Cancer Res. 2020 80 19 4071 4086 10.1158/0008‑5472.CAN‑19‑2269 32631905
    [Google Scholar]
  45. Bhattacharjee A. Jana A. Bhattacharjee S. Mitra S. De S. Alghamdi B.S. Alam M.Z. Mahmoud A.B. Al Shareef Z. Abdel-Rahman W.M. Woon-Khiong C. Alexiou A. Papadakis M. Ashraf G.M. The role of Aquaporins in tumorigenesis: Implications for therapeutic development. Cell Commun. Signal. 2024 22 1 106 10.1186/s12964‑023‑01459‑9 38336645
    [Google Scholar]
  46. Moon C.S. Moon D. Kang S.K. Aquaporins in cancer biology. Front. Oncol. 2022 12 782829 10.3389/fonc.2022.782829 35847914
    [Google Scholar]
  47. Nagaraju G.P. Basha R. Rajitha B. Alese O.B. Alam A. Pattnaik S. El-Rayes B. Aquaporins: Their role in gastrointestinal malignancies. Cancer Lett. 2016 373 1 12 18 10.1016/j.canlet.2016.01.003 26780474
    [Google Scholar]
  48. Thapa S. Chetry M. Huang K. Peng Y. Wang J. Wang J. Zhou Y. Shen Y. Xue Y. Ji K. Significance of aquaporins’ expression in the prognosis of gastric cancer. Biosci. Rep. 2018 38 3 BSR20171687 10.1042/BSR20171687 29678898
    [Google Scholar]
  49. Sega F.V.D. Zambonin L. Fiorentini D. Rizzo B. Caliceti C. Landi L. Hrelia S. Prata C. Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. Biochim. Biophys. Acta Mol. Cell Res. 2014 1843 4 806 814 10.1016/j.bbamcr.2014.01.011 24440277
    [Google Scholar]
  50. Zhang L. Li J. Zong L. Chen X. Chen K. Jiang Z. Nan L. Li X. Li W. Shan T. Ma Q. Ma Z. Reactive oxygen species and targeted therapy for pancreatic cancer. Oxid. Med. Cell. Longev. 2016 2016 1 1616781 10.1155/2016/1616781 26881012
    [Google Scholar]
  51. Badaut J. Regli L. Distribution and possible roles of aquaporin 9 in the brain. Neuroscience 2004 129 4 969 979 10.1016/j.neuroscience.2004.06.035 15561412
    [Google Scholar]
  52. Ishibashi K. Kuwahara M. Gu Y. Tanaka Y. Marumo F. Sasaki S. Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem. Biophys. Res. Commun. 1998 244 1 268 274 10.1006/bbrc.1998.8252 9514918
    [Google Scholar]
  53. Xu W.H. Shi S.N. Xu Y. Wang J. Wang H.K. Cao D.L. Shi G.H. Qu Y.Y. Zhang H.L. Ye D.W. Prognostic implications of Aquaporin 9 expression in clear cell renal cell carcinoma. J. Transl. Med. 2019 17 1 363 10.1186/s12967‑019‑2113‑y 31703694
    [Google Scholar]
  54. Gao C. Shen J. Yao L. Xia Z. Liang X. Zhu R. Chen Z. Low expression of AQP9 and its value in hepatocellular carcinoma. Transl. Cancer Res. 2021 10 4 1826 1841 10.21037/tcr‑20‑3158 35116505
    [Google Scholar]
  55. Chen Q. Zhu L. Zheng B. Wang J. Song X. Zheng W. Wang L. Yang D. Wang J. Effect of AQP9 expression in androgen-independent prostate cancer cell PC3. Int. J. Mol. Sci. 2016 17 5 738 10.3390/ijms17050738 27187384
    [Google Scholar]
  56. Oliveira L.G. Souza-Testasicca M.C. Ricotta T.N.Q. Vago J.P. dos Santos L.M. Crepaldi F. Lima K.M. Queiroz-Junior C. Sousa L.P. Fernandes A.P. Temporary shutdown of ERK1/2 phosphorylation is associated with activation of adaptive immune cell responses and disease progression during Leishmania amazonensis infection in BALB/c Mice. Front. Immunol. 2022 13 762080 10.3389/fimmu.2022.762080 35145518
    [Google Scholar]
  57. Zhu X. Jin X. Li Z. Chen X. Zhao J. miR-152–3p facilitates cell adhesion and hepatic metastases in colorectal cancer via targeting AQP11. Pathol. Res. Pract. 2023 244 154389 10.1016/j.prp.2023.154389 36889174
    [Google Scholar]
  58. Kim H. Bhattacharya A. Qi L. Endoplasmic reticulum quality control in cancer: Friend or foe. Semin. Cancer Biol. 2015 33 25 33 10.1016/j.semcancer.2015.02.003 25794824
    [Google Scholar]
  59. Cutler C.P. Bender J. Conner S. Omoregie E. Aquaporin 12 is expressed in the stomach and liver of the spiny dogfish (Squalus acanthias). J. Mar. Sci. Eng. 2025 13 1 161 10.3390/jmse13010161
    [Google Scholar]
  60. Itoh T. Rai T. Kuwahara M. Ko S.B.H. Uchida S. Sasaki S. Ishibashi K. Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem. Biophys. Res. Commun. 2005 330 3 832 838 10.1016/j.bbrc.2005.03.046 15809071
    [Google Scholar]
  61. Park S.E. Kim N.D. Yoo Y.H. Acetylcholinesterase plays a pivotal role in apoptosome formation. Cancer Res. 2004 64 8 2652 2655 10.1158/0008‑5472.CAN‑04‑0649 15087373
    [Google Scholar]
  62. Hu J.X. Zhao C.F. Chen W.B. Liu Q.C. Li Q.W. Lin Y.Y. Gao F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J. Gastroenterol. 2021 27 27 4298 4321 10.3748/wjg.v27.i27.4298 34366606
    [Google Scholar]
  63. Edenberg H.J. The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health 2007 30 1 5 13 17718394
    [Google Scholar]
  64. Albertson D.G. Gene amplification in cancer. Trends Genet. 2006 22 8 447 455 10.1016/j.tig.2006.06.007 16787682
    [Google Scholar]
  65. Ngambenjawong C. Gustafson H.H. Pun S.H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 2017 114 206 221 10.1016/j.addr.2017.04.010 28449873
    [Google Scholar]
  66. Ren L. Li P. Li Z. Chen Q. AQP9 and ZAP70 as immune-related prognostic biomarkers suppress proliferation, migration and invasion of laryngeal cancer cells. BMC Cancer 2022 22 1 465 10.1186/s12885‑022‑09458‑8 35477402
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501371592250411055637
Loading
/content/journals/cbiot/10.2174/0122115501371592250411055637
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test