Skip to content
2000
image of Advancements and Challenges in Paper-Based Diagnostic Devices for Low-Resource Settings: A Comprehensive Review on Applications, Limitations, and Future Prospects

Abstract

Paper-Based Diagnostic Devices (PBDDs) represent a breakthrough in affordable, rapid, and point-of-care diagnostics, particularly in low-resource settings. These devices utilize simple materials such as paper combined with microfluidics and colorimetric or electrochemical detection methods to provide accessible and cost-effective diagnostic solutions for a wide range of diseases. This review explores the development, applications, and advancements of PBDDs in various disease categories, including cardiovascular diseases, infectious diseases, cancer, neurological and psychological disorders, and other chronic conditions. The paper highlights the challenges PBDDs face, including issues related to sensitivity, specificity, and scalability, while also examining their future prospects driven by advances in nanotechnology, digital integration, and manufacturing techniques. As technological innovations continue to improve the sensitivity, multiplexing capabilities, and digital connectivity of PBDDs, their potential to transform healthcare delivery, especially in underserved areas,becomes even more significant. This review also discusses the regulatory, environmental, and operational challenges PBDDs encounter and suggests potential solutions that could support their wider adoption. The future of PBDDs lies in overcoming current limitations and leveraging their advantages in low-resource environments, with the goal of expanding access to high-quality diagnostics globally.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501356874250311074358
2025-03-19
2025-08-18
Loading full text...

Full text loading...

References

  1. Sharma S. Zapatero-Rodríguez J. Estrela P. O’Kennedy R. Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics. Biosensors (Basel) 2015 5 3 577 601 10.3390/bios5030577 26287254
    [Google Scholar]
  2. Weigl B. Domingo G. LaBarre P. Gerlach J. Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 2008 8 1999 2014 10.1039/b811314a
    [Google Scholar]
  3. Martinez A.W. Phillips S.T. Butte M.J. Whitesides G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007 46 8 1318 1320 10.1002/anie.200603817 17211899
    [Google Scholar]
  4. Yetisen A.K. Akram M.S. Lowe C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013 13 2210 2251 10.1039/c3lc50169h
    [Google Scholar]
  5. Lim H. Jafry A.T. Lee J. Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 2019 24 16 2869 10.3390/molecules24162869 31394856
    [Google Scholar]
  6. Evans D. Papadimitriou K. Vasilakis N. Pantelidis P. Kelleher P. Morgan H. Prodromakis T. A novel microfluidic point-of-care biosensor system on printed circuit board for cytokine detection. Sensors (Basel) 2018 18 11 4011 10.3390/s18114011 30453609
    [Google Scholar]
  7. Cheng C.M. Martinez A.W. Gong J. Mace C.R. Phillips S.T. Carrilho E. Mirica K.A. Whitesides G.M. Paper-Based ELISA. Angew. Chem. Int. Ed. 2010 49 28 4771 4774 10.1002/anie.201001005 20512830
    [Google Scholar]
  8. Hu B. Huang S. Yin L. The cytokine storm and COVID-19. J. Med. Virol. 2021 93 1 250 256 10.1002/jmv.26232 32592501
    [Google Scholar]
  9. Pandey M. Srivastava M. Shahare K. Bhattacharya S. Paper microfluidic-based devices for infectious disease diagnostics. Bhattacharya S. Kumar S. Agarwal A. Advanced Functional Materials and Sensors Singapore: Springer 2019 10.1007/978‑981‑15‑0489‑1_13
    [Google Scholar]
  10. Diagnostics - Global Available from: https://www.who.int/health- topics/diagnostics#tab=tab_3 (Accessed December 17, 2024).
  11. Microfluidic diagnostic technologies for global public health. Nature Available from: https://www.nature.com/articles/nature05064 (Accessed December 17, 2024).
    [Google Scholar]
  12. Patterned paper as a platform for inexpensive, low-volume, portable bioassays - martinez - angewandte chemie - wiley online library. 2007 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.200603817 (Accessed December 17, 2024).
  13. Paper-based nanobiosensors for diagnostics - Chemical Society Reviews (RSC Publishing). Available from: https://pubs.rsc.org/en/content/articlelanding/2013/cs/c2cs35255a/unauth (Accessed December 18, 2024).
  14. Cate D.M. Adkins J.A. Mettakoonpitak J. Henry C.S. Recent developments in paper-based microfluidic devices. Anal. Chem. 2015 87 1 19 41 10.1021/ac503968p 25375292
    [Google Scholar]
  15. Duponchel L. Exploring hyperspectral imaging data sets with topological data analysis. Anal. Chim. Acta 2018 1000 123 131 10.1016/j.aca.2017.11.029 29289301
    [Google Scholar]
  16. Martinez A.W. Phillips S.T. Whitesides G.M. Carrilho E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010 82 1 3 10 10.1021/ac9013989 20000334
    [Google Scholar]
  17. Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges. Available from: https://www.mdpi.com/1424-8220/22/4/1620 (Accessed December 18, 2024).
  18. Tenda K. van Gerven B. Arts R. Hiruta Y. Merkx M. Citterio D. Paper-based antibody detection devices using bioluminescent BRET-switching sensor proteins. Angew. Chem. Int. Ed. 2018 57 47 15369 15373 10.1002/anie.201808070 30168634
    [Google Scholar]
  19. Benjamin S. de Lima F. Nascimento V. de Andrade G. Oriá R. Advancement in paper-based electrochemical biosensing and emerging diagnostic methods. Biosensors (Basel) 2023 13 7 689 10.3390/bios13070689 37504088
    [Google Scholar]
  20. Gong M.M. Sinton D. Turning the page: Advancing paper-based microfluidics for broad diagnostic application. Chem. Rev. 2017 117 12 8447 8480 10.1021/acs.chemrev.7b00024 28627178
    [Google Scholar]
  21. Dungchai W. Chailapakul O. Henry C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009 81 14 5821 5826 10.1021/ac9007573 19485415
    [Google Scholar]
  22. Carrell C. Kava A. Nguyen M. Menger R. Munshi Z. Call Z. Nussbaum M. Henry C. Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectron. Eng. 2019 206 45 54 10.1016/j.mee.2018.12.002
    [Google Scholar]
  23. Apilux A. Ukita Y. Chikae M. Chailapakul O. Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 2013 13 1 126 135 10.1039/C2LC40690J 23165591
    [Google Scholar]
  24. Yao Z. Coatsworth P. Shi X. Zhi J. Hu L. Yan R. Güder F. Yu H.-D. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens. Diagn. 2022 1 312 342 10.1039/D2SD00017B
    [Google Scholar]
  25. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  26. Thygesen K. Alpert J.S. Jaffe A.S. Chaitman B.R. Bax J.J. Morrow D.A. White H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction Fourth universal definition of myocardial infarction (2018). Circulation 2018 138 20 e618 e651 10.1161/CIR.0000000000000617 30571511
    [Google Scholar]
  27. Ruddy K. Mayer E. Partridge A. Patient adherence and persistence with oral anticancer treatment. CA Cancer J. Clin. 2009 59 1 56 66 10.3322/caac.20004 19147869
    [Google Scholar]
  28. Organization WH Framework for the evaluation of new tests for tuberculosis infection. World Health Organization 2020
    [Google Scholar]
  29. Ofori B. Twum S. Yeboah S.N. Ansah F. Sarpong K.A.N. Towards the development of cost-effective point-of-care diagnostic tools for poverty-related infectious diseases in sub-Saharan Africa. PeerJ 2024 12 e17198 10.7717/peerj.17198 38915381
    [Google Scholar]
  30. Bertão A.R. Dong T. Stability of colorimetric results in the detection of urine biomarkers using a paper-based analytical device. Annu Int Conf IEEE Eng Med Biol Soc. 2017 2017 185 188 10.1109/EMBC.2017.8036793 29059841
    [Google Scholar]
  31. Li X. Ballerini D.R. Shen W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012 6 1 011301 10.1063/1.3687398 22662067
    [Google Scholar]
  32. Wong R. Lateral flow immunoassay.Humana Press, Springer 2008
    [Google Scholar]
  33. Posthuma-Trumpie G.A. Korf J. van Amerongen A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 2009 393 2 569 582 10.1007/s00216‑008‑2287‑2 18696055
    [Google Scholar]
  34. Quesada-González D. Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015 73 47 63 10.1016/j.bios.2015.05.050 26043315
    [Google Scholar]
  35. Qi H. Zhang C. Electrogenerated chemiluminescence biosensing. Anal. Chem. 2020 92 1 524 534 10.1021/acs.analchem.9b03425
    [Google Scholar]
  36. Lewis G.G. Robbins J.S. Phillips S.T. A prototype point-of-use assay for measuring heavy metal contamination in water using time as a quantitative readout. Chem. Commun. (Camb.) 2014 50 40 5352 5354 10.1039/C3CC47698G 24275801
    [Google Scholar]
  37. Mudanyali O. Oztoprak C. Tseng D. Erlinger A. Ozcan A. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy. Lab Chip 2010 10 18 2419 2423 10.1039/c004829a 20694255
    [Google Scholar]
  38. Song Q. Sun X. Dai Z. Gao Y. Gong X. Zhou B. Wu J. Wen W. Point-of-care testing detection methods for COVID-19. Lab Chip 2021 21 1634 1660 10.1039/D0LC01156H
    [Google Scholar]
  39. Deng C. Peng Y. Su L. Liu Y.N. Zhou F. On-line removal of redox-active interferents by a porous electrode before amperometric blood glucose determination. Anal. Chim. Acta 2012 719 52 56 10.1016/j.aca.2012.01.008 22340530
    [Google Scholar]
  40. Kung C.T. Hou C.Y. Wang Y.N. Fu L.M. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sens. Actuators B Chem. 2019 301 126855 10.1016/j.snb.2019.126855
    [Google Scholar]
  41. Fan Z. Yao B. Ding Y. Zhao J. Xie M. Zhang K. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens. Bioelectron. 2021 178 113015 10.1016/j.bios.2021.113015 33493896
    [Google Scholar]
  42. Zhang L. Lian W. Li P. Ma H. Han X. Zhao B. Chen Z. Crocein Orange G mediated detection and modulation of amyloid fibrillation revealed by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 2020 148 111816 10.1016/j.bios.2019.111816 31678823
    [Google Scholar]
  43. McGuire H. Weigl B.H. Medical devices and diagnostics for cardiovascular diseases in low-resource settings. J Cardiovasc Transl Res. 2014 7 8 737 748 10.1007/s12265‑014‑9591‑3 25294168
    [Google Scholar]
  44. Klasner S.A. Price A.K. Hoeman K.W. Wilson R.S. Bell K.J. Culbertson C.T. Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal. Bioanal. Chem. 2010 397 5 1821 1829 10.1007/s00216‑010‑3718‑4 20425107
    [Google Scholar]
  45. Qin X. Li D. Qin X. Chen F. Guo H. Gui Y. Zhao J. Jiang L. Luo D. Electrochemical detection of the cardiac biomarker cardiac troponin I. View Wiley Online Library 2024;5: 5 20240025 10.1002/VIW.20240025
    [Google Scholar]
  46. Shi C. Xie H. Ma Y. Yang Z. Zhang J. Nanoscale technologies in highly sensitive diagnosis of cardiovascular diseases. Front. Bioeng. Biotechnol. 2020 8 531 10.3389/fbioe.2020.00531 32582663
    [Google Scholar]
  47. Singh N. Rai P. Ali A. Kumar R. Sharma A. Malhotra B.D. John R. A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. J. Mater. Chem. B 2019 7 3826 3839 10.1039/C9TB00126C
    [Google Scholar]
  48. Apple F.S. Ler R. Murakami M.M. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin. Chem. 2012 58 11 1574 1581 10.1373/clinchem.2012.192716 22983113
    [Google Scholar]
  49. Lou D. Fan L. Ji Y. Gu N. Zhang Y. A signal amplifying fluorescent nanoprobe and lateral flow assay for ultrasensitive detection of cardiac biomarker troponin I. Anal. Methods 2019 11 28 3506 3513 10.1039/C9AY01039D
    [Google Scholar]
  50. Koenig W. Sund M. Fröhlich M. Fischer H.G. Löwel H. Döring A. Hutchinson W.L. Pepys M.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: Results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 1999 99 2 237 242 10.1161/01.CIR.99.2.237 9892589
    [Google Scholar]
  51. Du Clos T.W. Function of C-reactive protein. Ann. Med. 2000 32 4 274 278 10.3109/07853890009011772 10852144
    [Google Scholar]
  52. Pepys M.B. C-reactive protein fifty years on. Lancet 1981 317 8221 653 657 10.1016/S0140‑6736(81)91565‑8 6110874
    [Google Scholar]
  53. Januzzi J.L. Jr Camargo C.A. Anwaruddin S. Baggish A.L. Chen A.A. Krauser D.G. Tung R. Cameron R. Nagurney J.T. Chae C.U. Lloyd-Jones D.M. Brown D.F. Foran-Melanson S. Sluss P.M. Lee-Lewandrowski E. Lewandrowski K.B. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am. J. Cardiol. 2005 95 8 948 954 10.1016/j.amjcard.2004.12.032 15820160
    [Google Scholar]
  54. Kevadiya B.D. Machhi J. Herskovitz J. Oleynikov M.D. Blomberg W.R. Bajwa N. Soni D. Das S. Hasan M. Patel M. Senan A.M. Gorantla S. McMillan J. Edagwa B. Eisenberg R. Gurumurthy C.B. Reid S.P.M. Punyadeera C. Chang L. Gendelman H.E. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021 20 5 593 605 10.1038/s41563‑020‑00906‑z 33589798
    [Google Scholar]
  55. Kwon J.A. Lee J.E. Huh W. Peck K.R. Kim Y.G. Kim D.J. Oh H.Y. Predictors of acute kidney injury associated with intravenous colistin treatment. Int. J. Antimicrob. Agents 2010 35 5 473 477 10.1016/j.ijantimicag.2009.12.002 20089383
    [Google Scholar]
  56. Cornberg M. Razavi H.A. Alberti A. Bernasconi E. Buti M. Cooper C. Dalgard O. Dillion J.F. Flisiak R. Forns X. Frankova S. Goldis A. Goulis I. Halota W. Hunyady B. Lagging M. Largen A. Makara M. Manolakopoulos S. Marcellin P. Marinho R.T. Pol S. Poynard T. Puoti M. Sagalova O. Sibbel S. Simon K. Wallace C. Young K. Yurdaydin C. Zuckerman E. Negro F. Zeuzem S. A systematic review of hepatitis C virus epidemiology in Europe, Canada and Israel. Liver Int. 2011 31 s2 Suppl. 2 30 60 10.1111/j.1478‑3231.2011.02539.x 21651702
    [Google Scholar]
  57. Kamili S. Drobeniuc J. Araujo A.C. Hayden T.M. Laboratory diagnostics for hepatitis C virus infection. Clin. Infect. Dis. 2012 55 Suppl. 1 S43 S48 10.1093/cid/cis368 22715213
    [Google Scholar]
  58. Wang S. Li L. Jin H. Yang T. Bao W. Huang S. Wang J. Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosens. Bioelectron. 2013 41 205 210 10.1016/j.bios.2012.08.021 22947516
    [Google Scholar]
  59. Guzman M.G. Halstead S.B. Artsob H. Buchy P. Farrar J. Gubler D.J. Hunsperger E. Kroeger A. Margolis H.S. Martínez E. Nathan M.B. Pelegrino J.L. Simmons C. Yoksan S. Peeling R.W. Dengue: A continuing global threat. Nat. Rev. Microbiol. 2010 8 S12 Suppl. S7 S16 10.1038/nrmicro2460 21079655
    [Google Scholar]
  60. Brady O.J. Gething P.W. Bhatt S. Messina J.P. Brownstein J.S. Hoen A.G. Moyes C.L. Farlow A.W. Scott T.W. Hay S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012 6 8 e1760 10.1371/journal.pntd.0001760 22880140
    [Google Scholar]
  61. Hu D. Di B. Ding X. Wang Y. Chen Y. Pan Y. Wen K. Wang M. Che X. Kinetics of non-structural protein 1, IgM and IgG antibodies in dengue type 1 primary infection. Virol. J. 2011 8 1 47 10.1186/1743‑422X‑8‑47 21284891
    [Google Scholar]
  62. Raafat N. Blacksell S.D. Maude R.J. A review of dengue diagnostics and implications for surveillance and control. Trans. R. Soc. Trop. Med. Hyg. 2019 113 11 653 660 10.1093/trstmh/trz068 31365115
    [Google Scholar]
  63. Sri S. Dhand C. Rathee J. Ramakrishna S. Solanki P.R. Microfluidic based biosensors as point of care devices for infectious diseases management. Sens. Lett. 2019 17 1 4 16 10.1166/sl.2019.3976
    [Google Scholar]
  64. Prabowo M.H. Chatchen S. Rijiravanich P. Limkittikul K. Surareungchai W. Dengue NS1 detection in pediatric serum using microfluidic paper-based analytical devices. Anal. Bioanal. Chem. 2020 412 12 2915 2925 10.1007/s00216‑020‑02527‑6 32166444
    [Google Scholar]
  65. Grivard P. Le Roux K. Laurent P. Fianu A. Perrau J. Gigan J. Hoarau G. Grondin N. Staikowsky F. Favier F. Michault A. Molecular and serological diagnosis of Chikungunya virus infection. Pathol. Biol. (Paris) 2007 55 10 490 494 10.1016/j.patbio.2007.07.002 17920211
    [Google Scholar]
  66. Paquet C. Quatresous I. Solet J.L. Sissoko D. Renault P. Pierre V. Cordel H. Lassalle C. Thiria J. Zeller H. Schuffnecker I. Chikungunya outbreak in Reunion: Epidemiology and surveillance, 2005 to early January 2006. Euro Surveill 2006 11 2 E060202.3 10.2807/esw.11.05.02891‑en 16804203
    [Google Scholar]
  67. Singhal C. Dubey A. Mathur A. Pundir C.S. Narang J. Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process Biochem. 2018 74 35 42 10.1016/j.procbio.2018.08.020
    [Google Scholar]
  68. Isiguzo C. Anyanti J. Ujuju C. Nwokolo E. De La Cruz A. Schatzkin E. Modrek S. Montagu D. Liu J. Presumptive treatment of malaria from formal and informal drug vendors in Nigeria. PLoS One 2014 9 10 e110361 10.1371/journal.pone.0110361 25333909
    [Google Scholar]
  69. Deraney R.N. Mace C.R. Rolland J.P. Schonhorn J.E. Multiplexed, patterned-paper immunoassay for detection of malaria and dengue fever. Anal. Chem. 2016 88 12 6161 6165 10.1021/acs.analchem.6b00854 27186893
    [Google Scholar]
  70. Reboud J. Xu G. Garrett A. Adriko M. Yang Z. Tukahebwa E.M. Rowell C. Cooper J.M. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc. Natl. Acad. Sci. USA 2019 116 11 4834 4842 10.1073/pnas.1812296116 30782834
    [Google Scholar]
  71. Jia Y. Sun H. Tian J. Song Q. Zhang W. Paper-based point-of- care testing of SARS-CoV-2. Front. Bioeng. Biotechnol. 2021 9 773304 10.3389/fbioe.2021.773304 34912791
    [Google Scholar]
  72. Sharma V. Sharma M. Dhull D. Sharma Y. Kaushik S. Kaushik S. Zika virus: An emerging challenge to public health worldwide. Can. J. Microbiol. 2020 66 2 87 98 10.1139/cjm‑2019‑0331 31682478
    [Google Scholar]
  73. Meagher R.J. Negrete O.A. Van Rompay K.K. Engineering paper-based sensors for Zika virus. Trends Mol. Med. 2016 22 7 529 530 10.1016/j.molmed.2016.05.009 27255410
    [Google Scholar]
  74. Balasamy S. Atchudan R. Arya S. Gunasekaran B.M. Nesakumar N. Sundramoorthy A.K. Cortisol: Biosensing and detection strategies. Clin. Chim. Acta 2024 562 119888 10.1016/j.cca.2024.119888 39059481
    [Google Scholar]
  75. Chamberlain M.C. Glantz M. Groves M.D. Wilson W.H. Diagnostic tools for neoplastic meningitis: Detecting disease, identifying patient risk, and determining benefit of treatment. Semin. Oncol. 2009 36 4 Suppl. 2 S35 S45 10.1053/j.seminoncol.2009.05.005 19660682
    [Google Scholar]
  76. Feagins A.R. Ronveaux O. Taha M.K. Caugant D.A. Smith V. Fernandez K. Glennie L. Fox L.M. Wang X. Next generation rapid diagnostic tests for meningitis diagnosis. J. Infect. 2020 81 5 712 718 10.1016/j.jinf.2020.08.049 32888978
    [Google Scholar]
  77. Tan E. Gouvas N. Nicholls R.J. Ziprin P. Xynos E. Tekkis P.P. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg. Oncol. 2009 18 1 15 24 10.1016/j.suronc.2008.05.008 18619834
    [Google Scholar]
  78. Michael J. Barry M.D. Prostate-specific–antigen testing for early diagnosis of prostate cancer. N Engl J Med 2001 344 1373 1377 10.1056/NEJM200105033441806
    [Google Scholar]
  79. Pourmadadi M. Moammeri A. Shamsabadipour A. Moghaddam Y.F. Rahdar A. Pandey S. Application of various optical and electrochemical nanobiosensors for detecting Cancer Antigen 125 (CA-125): A review. Biosensors (Basel) 2023 13 1 99 10.3390/bios13010099 36671934
    [Google Scholar]
  80. Umapathi R. Park B. Sonwal S. Rani G.M. Cho Y. Huh Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022 119 69 89 10.1016/j.tifs.2021.11.018
    [Google Scholar]
  81. Wang K. Yang J. Xu H. Cao B. Qin Q. Liao X. Wo Y. Jin Q. Cui D. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal. Bioanal. Chem. 2020 412 11 2517 2528 10.1007/s00216‑020‑02475‑1 32067065
    [Google Scholar]
  82. Chen Y. Chu W. Liu W. Guo X. Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice. Sens. Actuators B Chem. 2018 260 452 459 10.1016/j.snb.2017.12.197
    [Google Scholar]
  83. Alizadeh N. Salimi A. Hallaj R. Mimicking peroxidase activity of Co2(OH)2CO3-CeO2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice. Talanta 2018 189 100 110 10.1016/j.talanta.2018.06.034 30086892
    [Google Scholar]
  84. Liu W. Yang H. Ding Y. Ge S. Yu J. Yan M. Song X. Paper-based colorimetric immunosensor for visual detection of carcinoembryonic antigen based on the high peroxidase-like catalytic performance of ZnFe2O4–multiwalled carbon nanotubes. Analyst 2014 139 251 258 10.1039/C3AN01569F
    [Google Scholar]
  85. Liu W. Guo Y. Zhao M. Li H. Zhang Z. Ring-oven washing technique integrated paper-based immunodevice for sensitive detection of cancer biomarker. Anal Chem 2015 87 15 7951 7957 10.1021/acs.analchem.5b01814 26140306
    [Google Scholar]
  86. Thuo M.M. Martinez R.V. Lan W.-J. Liu X. Barber J. Atkinson M.B.J. Bandarage D. Bloch J.-F. Whitesides G.M. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem. Mater. 2014 26 14 4230 4237 10.1021/cm501596s
    [Google Scholar]
  87. Wang L.X. Fu J.J. Zhou Y. Chen G. Fang C. Lu Z.S. Yu L. On-chip RT-LAMP and colorimetric detection of the prostate cancer 3 biomarker with an integrated thermal and imaging box. Talanta 2020 208 120407 10.1016/j.talanta.2019.120407 31816706
    [Google Scholar]
  88. Ferrera A. Valladares W. Cabrera Y. de la Luz Hernandez M. Darragh T. Baena A. Almonte M. Herrero R. Performance of an HPV 16/18 E6 oncoprotein test for detection of cervical precancer and cancer. Int J Cancer 2019 145 8 2042 2050 10.1002/ijc.32156 30684396
    [Google Scholar]
  89. Mohammed S.I. Ren W. Flowers L. Rajwa B. Chibwesha C.J. Parham G.P. Irudayaraj J.M.K. Point-of-care test for cervical cancer in LMICs. Oncotarget 2016 7 14 18787 18797 10.18632/oncotarget.7709 26934314
    [Google Scholar]
  90. Hosu O. Ravalli A. Lo Piccolo G.M. Cristea C. Sandulescu R. Marrazza G. Smartphone-based immunosensor for CA125 detection. Talanta 2017 166 234 240 10.1016/j.talanta.2017.01.073 28213228
    [Google Scholar]
  91. Fu G. Li X. Wang W. Hou R. Multiplexed tri-mode visual outputs of immunoassay signals on a clip-magazine-assembled photothermal biosensing disk. Biosens. Bioelectron. 2020 170 112646 10.1016/j.bios.2020.112646 33032199
    [Google Scholar]
  92. Yokchom R. Laiwejpithaya S. Maneeprakorn W. Tapaneeyakorn S. Rabablert J. Dharakul T. Paper-based immunosensor with signal amplification by enzyme-labeled anti-p16INK4a multifunctionalized gold nanoparticles for cervical cancer screening. Nanomedicine 2018 14 3 1051 1058 10.1016/j.nano.2018.01.016 29407199
    [Google Scholar]
  93. Mazzu-Nascimento T. Leão P.A.G.C. Catai J.R. Morbioli G.G. Carrilho E. Towards low-cost bioanalytical tools for sarcosine assays for cancer diagnostics. Anal. Methods 2016 8 7312 7318 10.1039/C6AY01848C
    [Google Scholar]
  94. Prasad K.S. Abugalyon Y. Li C. Xu F. Li X. A new method to amplify colorimetric signals of paper-based nanobiosensors for simple and sensitive pancreatic cancer biomarker detection. Analyst 2020 145 5113 5117 10.1039/D0AN00704H
    [Google Scholar]
  95. Fu A.C. Hu Y. Zhao Z.H. Su R. Song Y. Zhu D. Functionalized paper microzone plate for colorimetry and up-conversion fluorescence dual-mode detection of telomerase based on elongation and capturing amplification. Sens. Actuators B Chem. 2018 259 642 649 10.1016/j.snb.2017.12.124
    [Google Scholar]
  96. Resmi P.E. Stanley J. Kumar S. Soman K.P. Ramachandran T. Satheesh Babu T.G. Fabrication of paper microfluidics POCT device for the colorimetric assay of alkaline phosphatase. 2018 15th IEEE India Council International Conference (INDICON) Coimbatore, India: IEEE 2018 1 4 10.1109/INDICON45594.2018.8987193
    [Google Scholar]
  97. Gajdosova V. Lorencova L. Kasak P. Tkac J. Electrochemical nanobiosensors for detection of breast cancer biomarkers. Sensors (Basel) 2020 20 14 4022 10.3390/s20144022 32698389
    [Google Scholar]
  98. de Planell-Saguer M. Rodicio M.C. Analytical aspects of microRNA in diagnostics: A review. Anal. Chim. Acta 2011 699 2 134 152 10.1016/j.aca.2011.05.025 21704768
    [Google Scholar]
  99. Naorungroj S. Teengam P. Vilaivan T. Chailapakul O. Paper-based DNA sensor enabling colorimetric assay integrated with smartphone for human papillomavirus detection. New J. Chem. 2021 45 6960 6967 10.1039/D1NJ00417D
    [Google Scholar]
  100. Santos M. Mariz M. Tiago I. Martins J. Alarico S. Ferreira P. A review on urinary tract infections diagnostic methods: Laboratory-based and point-of-care approaches. J. Pharm. Biomed. Anal. 2022 219 114889 10.1016/j.jpba.2022.114889 35724611
    [Google Scholar]
  101. Fritzenwanker M. Imirzalioglu C. Chakraborty T. Wagenlehner F.M. Modern diagnostic methods for urinary tract infections. Expert Rev Anti Infect Ther. 2016 14 11 1047 1063 10.1080/14787210.2016.1236685 27624932
    [Google Scholar]
  102. Davenport M. Mach K.E. Shortliffe L.M.D. Banaei N. Wang T.H. Liao J.C. New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol. 2017 14 5 296 310 10.1038/nrurol.2017.20 28248946
    [Google Scholar]
  103. Kelley S.O. New technologies for rapid bacterial identification and antibiotic resistance profiling. SLAS Technol 2017 22 2 113 121 10.1177/2211068216680207 27879409
    [Google Scholar]
  104. Sung W.H. Cheng C.M. Urinalysis for diaper-wearing elderly people using a combination of cotton-based diagnostic devices and smartphone-based image analysis. Health Technol 2019 3 8 10.21037/ht.2019.08.02
    [Google Scholar]
  105. Aguirre F. Brown A. Cho N.H. Dahlquist G. Dodd S. Dunning T. IDF Diabetes Atlas. (6th ed.) International Diabetes Federation 2013
    [Google Scholar]
  106. Riddy D.M. Delerive P. Summers R.J. Sexton P.M. Langmead C.J. G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol Rev. 2018 70 1 39 67 10.1124/pr.117.014373 29233848
    [Google Scholar]
  107. Jiang Y. Zhao H. Lin Y. Zhu N. Ma Y. Mao L. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew Chem Int Ed Engl. 2010 49 28 4800 4804 10.1002/anie.201001057 20533481
    [Google Scholar]
  108. Li B. Fu L. Zhang W. Feng W. Chen L. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle. Electrophoresis 2014 35 8 1152 1159 10.1002/elps.201300583 24375226
    [Google Scholar]
  109. Mohammadi S. Maeki M.M. Mohamadi R. Ishida A. Tani H. Tokeshi M. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst 2015 140 6493 6499 10.1039/C5AN00909J
    [Google Scholar]
  110. Hong J.I. Chang B.-Y. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 2014 14 1725 1732 10.1039/C3LC51451J
    [Google Scholar]
  111. Biswas P.C. Rani S. Hossain M.A. Islam M.R. Canning J. Simultaneous multi-analyte sensing using a 2D quad-beam diffraction smartphone imaging spectrometer. Sens. Actuators B Chem. 2022 352 130994 10.1016/j.snb.2021.130994
    [Google Scholar]
  112. Oliveira K.A. Medrado e Silva P.B. de Souza F.R. Martins F.T. Coltro W.K.T. Kinetic study of glucose oxidase on microfluidic toner-based analytical devices for clinical diagnostics with image-based detection. Anal. Methods 2014 6 4995 5000 10.1039/C4AY00260A
    [Google Scholar]
  113. Boobphahom S. Ly M.N. Soum V. Pyun N. Kwon O.-S. Rodthongkum N. Shin K. Recent advances in microfluidic paper-based analytical devices toward high-throughput screening. Molecules 2020 25 13 2970 10.3390/molecules25132970 32605281
    [Google Scholar]
  114. Wang S. Ge L. Song X. Yu J. Ge S. Huang J. Zeng F. Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 2012 31 1 212 218 10.1016/j.bios.2011.10.019 22051546
    [Google Scholar]
  115. Tan W. Zhang L. Doery J.C.G. Shen W. Study of paper-based assaying system for diagnosis of total serum bilirubin by colorimetric diazotization method. Sens. Actuators B Chem. 2020 305 127448 10.1016/j.snb.2019.127448
    [Google Scholar]
  116. Haketa A. Soma M. Nakayama T. Kosuge K. Aoi N. Hishiki M. Hatanaka Y. Ueno T. Doba N. Hinohara S. Association between SIRT2 gene polymorphism and height in healthy, elderly Japanese subjects. Transl. Res. 2013 161 1 57 58 10.1016/j.trsl.2012.07.002 22857867
    [Google Scholar]
  117. Vera-Estrada I.L. Olivares-Ramírez J.M. Rodríguez-Reséndiz J. Dector A. Mendiola-Santibañez J.D. Amaya-Cruz D.M. Sosa-Domínguez A. Ortega-Díaz D. Dector D. Ovando-Medina V.M. Antonio-Carmona I.D. Digital pregnancy test powered by an air-breathing paper-based microfluidic fuel cell stack using human urine as fuel. Sensors (Basel) 2022 22 17 6641 10.3390/s22176641 36081100
    [Google Scholar]
  118. Sempionatto J.R. Nakagawa T. Pavinatto A. Mensah S.T. Imani S. Mercier P. Wang J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 2017 17 1834 1842 10.1039/C7LC00192D
    [Google Scholar]
  119. Huang R. Su C. Fang L. Lu J. Chen J. Ding Y. Dry eye syndrome: Comprehensive etiologies and recent clinical trials. Int Ophthalmol 2022 42 10 3253 3272 10.1007/s10792‑022‑02320‑7 35678897
    [Google Scholar]
  120. De Paiva C.S. Chen Z. Koch D.D. Hamill M.B. Manuel F.K. Hassan S.S. Wilhelmus K.R. Pflugfelder S.C. The incidence and risk factors for developing dry eye after myopic LASIK. Am. J. Ophthalmol. 2006 141 3 438 445 10.1016/j.ajo.2005.10.006 16490488
    [Google Scholar]
  121. Sambursky R. Davitt W.F. III Friedberg M. Tauber S. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea 2014 33 8 812 818 10.1097/ICO.0000000000000175 24977985
    [Google Scholar]
  122. Cook G.C. Zumla A. Manson’s Tropical Diseases. Elsevier Health Sciences 2009
    [Google Scholar]
  123. Fu E. Liang T. Spicar-Mihalic P. Houghtaling J. Ramachandran S. Yager P. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 2012 84 10 4574 4579 10.1021/ac300689s 22537313
    [Google Scholar]
  124. Berry S.B. Fernandes S.C. Rajaratnam A. DeChiara N.S. Mace C.R. Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip 2016 16 3689 3694 10.1039/C6LC00895J
    [Google Scholar]
  125. Pierrakos C. Vincent J.-L. Sepsis biomarkers: A review. Crit Care 2010 14 1 R15 10.1186/cc8872 20144219
    [Google Scholar]
  126. Sinha M. Jupe J. Mack H. Coleman T.P. Lawrence S.M. Fraley S.I. Emerging technologies for molecular diagnosis of sepsis. Clin Microbiol Rev. 2018 31 2 e00089 10.1021/ac300689s 22537313
    [Google Scholar]
  127. Pogacean F. Varodi C. Coros M. Kacso I. Radu T. Cozar B.I. Mirel V. Pruneanu S. Investigation of L-tryptophan electrochemical oxidation with a graphene-modified electrode. Biosensors (Basel) 2021 11 2 36 10.3390/bios11020036 33525714
    [Google Scholar]
  128. Lee W.-C. Ng H.-Y. Hou C.-Y. Lee C.-T. Fu L.-M. Recent advances in lab-on-paper diagnostic devices using blood samples. Lab Chip 2021 21 1433 1453 10.1039/D0LC01304H
    [Google Scholar]
  129. Nachega J.B. Musoke P. Kilmarx P.H. Gandhi M. Grinsztejn B. Pozniak A. Rawat A. Wilson L. Mills E.J. Altice F.L. Mellors J.W. Quinn T.C. Global HIV control: Is the glass half empty or half full? Lancet HIV 2023 10 9 e617 e622 10.1016/S2352‑3018(23)00150‑9 37506723
    [Google Scholar]
  130. Chen L.C. Wang E. Tai C.S. Chiu Y.C. Li C.W. Lin Y.R. Lee T.H. Huang C.W. Chen J.C. Chen W.L. Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosens. Bioelectron. 2020 155 112111 10.1016/j.bios.2020.112111 32217334
    [Google Scholar]
  131. Koura K.G. Harries A.D. The trend of tuberculosis case notification rates from 1995 to 2022 by country income and world health organization region. Trop. Med. Infect. Dis. 2024 9 12 294 10.3390/tropicalmed9120294 39728821
    [Google Scholar]
  132. Barandiaran S. Pérez Aguirreburualde M.S. Marfil M.J. Martínez Vivot M. Aznar N. Zumárraga M. Perez A.M. Bayesian assessment of the accuracy of a PCR-based rapid diagnostic test for bovine tuberculosis in Swine. Front. Vet. Sci. 2019 6 10.3389/fvets.2019.00204
    [Google Scholar]
  133. Lange C. Mori T. Advances in the diagnosis of tuberculosis. Respirology 2010 15 2 220 240 10.1111/j.1440‑1843.2009.01692.x 20199641
    [Google Scholar]
  134. Acharya B. Acharya A. Gautam S. Ghimire S.P. Mishra G. Parajuli N. Sapkota B. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020 47 5 4065 4075 10.1007/s11033‑020‑05413‑7 32248381
    [Google Scholar]
  135. García-Basteiro A.L. DiNardo A. Saavedra B. Silva D.R. Palmero D. Gegia M. Migliori G.B. Duarte R. Mambuque E. Centis R. Cuevas L.E. Izco S. Theron G. Point of care diagnostics for tuberculosis. Pulmonology 2018 24 2 73 85 10.1016/j.rppnen.2017.12.002 29426581
    [Google Scholar]
  136. Ahmed M.U. Saaem I. Wu P.C. Brown A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014 34 2 180 196 10.3109/07388551.2013.778228 23607309
    [Google Scholar]
  137. Morse S.S. Public health surveillance and infectious disease detection. Biosecur. Bioterror. 2012 10 1 6 16 10.1089/bsp.2011.0088 22455675
    [Google Scholar]
  138. Anderson R.E. Hill R.B. Key C.R. The sensitivity and specificity of clinical diagnostics during five decades. Toward an understanding of necessary fallibility. JAMA 1989 261 11 1610 1617 10.1001/jama.1989.03420110086029 2645451
    [Google Scholar]
  139. Otoo J.A. Schlappi T.S. REASSURED multiplex diagnostics: A critical review and forecast. Biosensors (Basel) 2022 12 2 124 10.3390/bios12020124 35200384
    [Google Scholar]
  140. Jenkins D. Peck R. Fernando A. Development of an approach to monitor the manufacturing consistency of HIV rapid diagnostic tests: Panel qualification and potential impact on country programs. PLoS One 2023 18 4 e0284175 10.1371/journal.pone.0284175 37036848
    [Google Scholar]
  141. Gubala V. Harris L.F. Ricco A.J. Tan M.X. Williams D.E. Point of care diagnostics: Status and future. Anal. Chem. 2012 84 2 487 515 10.1021/ac2030199 22221172
    [Google Scholar]
  142. Sin M.L.Y. Mach K.E. Wong P.K. Liao J.C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2014 14 2 225 244 10.1586/14737159.2014.888313 24524681
    [Google Scholar]
  143. Rink S. Baeumner A.J. Progression of paper-based point-of-care testing toward being an indispensable diagnostic tool in future healthcare. Anal. Chem. 2023 95 3 1785 1793 10.1021/acs.analchem.2c04442 36608282
    [Google Scholar]
  144. Hernández-Neuta I. Neumann F. Brightmeyer J. Tis T.B. Madaboosi N. Wei Q. Ozcan A. Nilsson M. Smartphone-based clinical diagnostics: Towards democratization of evidence-based health care. J Intern Med. 2019 285 1 19 39 10.1111/joim.12820 30079527
    [Google Scholar]
  145. Srinivas S. Kale D. New approaches to learning and regulation in medical devices and diagnostics: Insights from Indian cancer care. Innov. Dev. 2023 13 2 361 384 10.1080/2157930X.2021.2000145
    [Google Scholar]
  146. Costa M.N. Veigas B. Jacob J.M. Santos D.S. Gomes J. Baptista P.V. Martins R. Inácio J. Fortunato E. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: Lab-on-paper. Nanotechnology 2014 25 9 094006 10.1088/0957‑4484/25/9/094006 24521980
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501356874250311074358
Loading
/content/journals/cbiot/10.2174/0122115501356874250311074358
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test