Skip to content
2000
Volume 14, Issue 2
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Paper-Based Diagnostic Devices (PBDDs) represent a breakthrough in affordable, rapid, and point-of-care diagnostics, particularly in low-resource settings. These devices utilize simple materials such as paper combined with microfluidics and colorimetric or electrochemical detection methods to provide accessible and cost-effective diagnostic solutions for a wide range of diseases. This review explores the development, applications, and advancements of PBDDs in various disease categories, including cardiovascular diseases, infectious diseases, cancer, neurological and psychological disorders, and other chronic conditions. The paper highlights the challenges PBDDs face, including issues related to sensitivity, specificity, and scalability, while also examining their future prospects driven by advances in nanotechnology, digital integration, and manufacturing techniques. As technological innovations continue to improve the sensitivity, multiplexing capabilities, and digital connectivity of PBDDs, their potential to transform healthcare delivery, especially in underserved areas, becomes even more significant. This review also discusses the regulatory, environmental, and operational challenges PBDDs encounter and suggests potential solutions that could support their wider adoption. The future of PBDDs lies in overcoming current limitations and leveraging their advantages in low-resource environments, with the goal of expanding access to high-quality diagnostics globally.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501356874250311074358
2025-03-19
2025-12-11
Loading full text...

Full text loading...

References

  1. SharmaS. Zapatero-RodríguezJ. EstrelaP. O’KennedyR. Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics.Biosensors (Basel)20155357760110.3390/bios503057726287254
    [Google Scholar]
  2. WeiglB. DomingoG. LaBarreP. GerlachJ. Towards non- and minimally instrumented, microfluidics-based diagnostic devices.Lab Chip200881999201410.1039/b811314a
    [Google Scholar]
  3. MartinezA.W. PhillipsS.T. ButteM.J. WhitesidesG.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays.Angew. Chem. Int. Ed.20074681318132010.1002/anie.20060381717211899
    [Google Scholar]
  4. YetisenA.K. AkramM.S. LoweC.R. Paper-based microfluidic point-of-care diagnostic devices.Lab Chip2013132210225110.1039/c3lc50169h
    [Google Scholar]
  5. LimH. JafryA.T. LeeJ. Fabrication, flow control, and applications of microfluidic paper-based analytical devices.Molecules20192416286910.3390/molecules2416286931394856
    [Google Scholar]
  6. EvansD. PapadimitriouK. VasilakisN. PantelidisP. KelleherP. MorganH. ProdromakisT. A novel microfluidic point-of-care biosensor system on printed circuit board for cytokine detection.Sensors (Basel)20181811401110.3390/s1811401130453609
    [Google Scholar]
  7. ChengC.M. MartinezA.W. GongJ. MaceC.R. PhillipsS.T. CarrilhoE. MiricaK.A. WhitesidesG.M. Paper-Based ELISA.Angew. Chem. Int. Ed.201049284771477410.1002/anie.20100100520512830
    [Google Scholar]
  8. HuB. HuangS. YinL. The cytokine storm and COVID-19.J. Med. Virol.202193125025610.1002/jmv.2623232592501
    [Google Scholar]
  9. PandeyM. SrivastavaM. ShahareK. BhattacharyaS. Paper microfluidic-based devices for infectious disease diagnostics. BhattacharyaS. KumarS. AgarwalA. Advanced Functional Materials and SensorsSpringerSingapore201910.1007/978‑981‑15‑0489‑1_13
    [Google Scholar]
  10. Diagnostics - GlobalAvailable from: https://www.who.int/health-topics/diagnostics#tab=tab_3 (Accessed December 17, 2024).
  11. Microfluidic diagnostic technologies for global public health.NatureAvailable from: https://www.nature.com/articles/nature05064 (Accessed December 17, 2024).
    [Google Scholar]
  12. Patterned paper as a platform for inexpensive, low-volume, portable bioassays - martinez - angewandte chemie - wiley online library.2007Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.200603817 (Accessed December 17, 2024).
  13. Paper-based nanobiosensors for diagnostics - Chemical Society Reviews (RSC Publishing).Available from: https://pubs.rsc.org/en/content/articlelanding/2013/cs/c2cs35255a/unauth (Accessed December 18, 2024).
  14. CateD.M. AdkinsJ.A. MettakoonpitakJ. HenryC.S. Recent developments in paper-based microfluidic devices.Anal. Chem.2015871194110.1021/ac503968p25375292
    [Google Scholar]
  15. DuponchelL. Exploring hyperspectral imaging data sets with topological data analysis.Anal. Chim. Acta2018100012313110.1016/j.aca.2017.11.02929289301
    [Google Scholar]
  16. MartinezA.W. PhillipsS.T. WhitesidesG.M. CarrilhoE. Diagnostics for the developing world: Microfluidic paper-based analytical devices.Anal. Chem.201082131010.1021/ac901398920000334
    [Google Scholar]
  17. Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges.Available from: https://www.mdpi.com/1424-8220/22/4/1620 (Accessed December 18, 2024).
  18. TendaK. van GervenB. ArtsR. HirutaY. MerkxM. CitterioD. Paper-based antibody detection devices using bioluminescent BRET-switching sensor proteins.Angew. Chem. Int. Ed.20185747153691537310.1002/anie.20180807030168634
    [Google Scholar]
  19. BenjaminS. de LimaF. NascimentoV. de AndradeG. OriáR. Advancement in paper-based electrochemical biosensing and emerging diagnostic methods.Biosensors (Basel)202313768910.3390/bios1307068937504088
    [Google Scholar]
  20. GongM.M. SintonD. Turning the page: Advancing paper-based microfluidics for broad diagnostic application.Chem. Rev.2017117128447848010.1021/acs.chemrev.7b0002428627178
    [Google Scholar]
  21. DungchaiW. ChailapakulO. HenryC.S. Electrochemical detection for paper-based microfluidics.Anal. Chem.200981145821582610.1021/ac900757319485415
    [Google Scholar]
  22. CarrellC. KavaA. NguyenM. MengerR. MunshiZ. CallZ. NussbaumM. HenryC. Beyond the lateral flow assay: A review of paper-based microfluidics.Microelectron. Eng.2019206455410.1016/j.mee.2018.12.002
    [Google Scholar]
  23. ApiluxA. UkitaY. ChikaeM. ChailapakulO. TakamuraY. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing.Lab Chip201313112613510.1039/C2LC40690J23165591
    [Google Scholar]
  24. YaoZ. CoatsworthP. ShiX. ZhiJ. HuL. YanR. GüderF. YuH.-D. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection.Sens. Diagn.2022131234210.1039/D2SD00017B
    [Google Scholar]
  25. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  26. ThygesenK. AlpertJ.S. JaffeA.S. ChaitmanB.R. BaxJ.J. MorrowD.A. WhiteH.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction Fourth universal definition of myocardial infarction (2018).Circulation201813820e618e65110.1161/CIR.000000000000061730571511
    [Google Scholar]
  27. RuddyK. MayerE. PartridgeA. Patient adherence and persistence with oral anticancer treatment.CA Cancer J. Clin.2009591566610.3322/caac.2000419147869
    [Google Scholar]
  28. Organization WHFramework for the evaluation of new tests for tuberculosis infection.World Health Organization2020
    [Google Scholar]
  29. OforiB. TwumS. YeboahS.N. AnsahF. SarpongK.A.N. Towards the development of cost-effective point-of-care diagnostic tools for poverty-related infectious diseases in sub-Saharan Africa.PeerJ202412e1719810.7717/peerj.1719838915381
    [Google Scholar]
  30. BertãoA.R. DongT. Stability of colorimetric results in the detection of urine biomarkers using a paper-based analytical device.Annu Int Conf IEEE Eng Med Biol Soc.2017201718518810.1109/EMBC.2017.803679329059841
    [Google Scholar]
  31. LiX. BalleriniD.R. ShenW. A perspective on paper-based microfluidics: Current status and future trends.Biomicrofluidics20126101130110.1063/1.368739822662067
    [Google Scholar]
  32. WongR. Lateral flow immunoassay.Humana Press, Springer2008
    [Google Scholar]
  33. Posthuma-TrumpieG.A. KorfJ. van AmerongenA. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey.Anal. Bioanal. Chem.2009393256958210.1007/s00216‑008‑2287‑218696055
    [Google Scholar]
  34. Quesada-GonzálezD. MerkoçiA. Nanoparticle-based lateral flow biosensors.Biosens. Bioelectron.201573476310.1016/j.bios.2015.05.05026043315
    [Google Scholar]
  35. QiH. ZhangC. Electrogenerated chemiluminescence biosensing.Anal. Chem.202092152453410.1021/acs.analchem.9b03425
    [Google Scholar]
  36. LewisG.G. RobbinsJ.S. PhillipsS.T. A prototype point-of-use assay for measuring heavy metal contamination in water using time as a quantitative readout.Chem. Commun. (Camb.)201450405352535410.1039/C3CC47698G24275801
    [Google Scholar]
  37. MudanyaliO. OztoprakC. TsengD. ErlingerA. OzcanA. Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy.Lab Chip201010182419242310.1039/c004829a20694255
    [Google Scholar]
  38. SongQ. SunX. DaiZ. GaoY. GongX. ZhouB. WuJ. WenW. Point-of-care testing detection methods for COVID-19.Lab Chip2021211634166010.1039/D0LC01156H
    [Google Scholar]
  39. DengC. PengY. SuL. LiuY.N. ZhouF. On-line removal of redox-active interferents by a porous electrode before amperometric blood glucose determination.Anal. Chim. Acta2012719525610.1016/j.aca.2012.01.00822340530
    [Google Scholar]
  40. KungC.T. HouC.Y. WangY.N. FuL.M. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water.Sens. Actuators B Chem.201930112685510.1016/j.snb.2019.126855
    [Google Scholar]
  41. FanZ. YaoB. DingY. ZhaoJ. XieM. ZhangK. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds.Biosens. Bioelectron.202117811301510.1016/j.bios.2021.11301533493896
    [Google Scholar]
  42. ZhangL. LianW. LiP. MaH. HanX. ZhaoB. ChenZ. Crocein Orange G mediated detection and modulation of amyloid fibrillation revealed by surface-enhanced Raman spectroscopy.Biosens. Bioelectron.202014811181610.1016/j.bios.2019.11181631678823
    [Google Scholar]
  43. McGuireH. WeiglB.H. Medical devices and diagnostics for cardiovascular diseases in low-resource settings.J Cardiovasc Transl Res.20147873774810.1007/s12265‑014‑9591‑325294168
    [Google Scholar]
  44. KlasnerS.A. PriceA.K. HoemanK.W. WilsonR.S. BellK.J. CulbertsonC.T. Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva.Anal. Bioanal. Chem.201039751821182910.1007/s00216‑010‑3718‑420425107
    [Google Scholar]
  45. QinX. LiD. QinX. ChenF. GuoH. GuiY. ZhaoJ. JiangL. LuoD. Electrochemical detection of the cardiac biomarker cardiac troponin I.ViewWiley Online Library2024552024002510.1002/VIW.20240025
    [Google Scholar]
  46. ShiC. XieH. MaY. YangZ. ZhangJ. Nanoscale technologies in highly sensitive diagnosis of cardiovascular diseases.Front. Bioeng. Biotechnol.2020853110.3389/fbioe.2020.0053132582663
    [Google Scholar]
  47. SinghN. RaiP. AliA. KumarR. SharmaA. MalhotraB.D. JohnR. A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I.J. Mater. Chem. B201973826383910.1039/C9TB00126C
    [Google Scholar]
  48. AppleF.S. LerR. MurakamiM.M. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population.Clin. Chem.201258111574158110.1373/clinchem.2012.19271622983113
    [Google Scholar]
  49. LouD. FanL. JiY. GuN. ZhangY. A signal amplifying fluorescent nanoprobe and lateral flow assay for ultrasensitive detection of cardiac biomarker troponin I.Anal. Methods201911283506351310.1039/C9AY01039D
    [Google Scholar]
  50. KoenigW. SundM. FröhlichM. FischerH.G. LöwelH. DöringA. HutchinsonW.L. PepysM.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: Results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992.Circulation199999223724210.1161/01.CIR.99.2.2379892589
    [Google Scholar]
  51. Du ClosT.W. Function of C-reactive protein.Ann. Med.200032427427810.3109/0785389000901177210852144
    [Google Scholar]
  52. PepysM.B. C-reactive protein fifty years on.Lancet1981317822165365710.1016/S0140‑6736(81)91565‑86110874
    [Google Scholar]
  53. JanuzziJ.L.Jr CamargoC.A. AnwaruddinS. BaggishA.L. ChenA.A. KrauserD.G. TungR. CameronR. NagurneyJ.T. ChaeC.U. Lloyd-JonesD.M. BrownD.F. Foran-MelansonS. SlussP.M. Lee-LewandrowskiE. LewandrowskiK.B. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study.Am. J. Cardiol.200595894895410.1016/j.amjcard.2004.12.03215820160
    [Google Scholar]
  54. KevadiyaB.D. MachhiJ. HerskovitzJ. OleynikovM.D. BlombergW.R. BajwaN. SoniD. DasS. HasanM. PatelM. SenanA.M. GorantlaS. McMillanJ. EdagwaB. EisenbergR. GurumurthyC.B. ReidS.P.M. PunyadeeraC. ChangL. GendelmanH.E. Diagnostics for SARS-CoV-2 infections.Nat. Mater.202120559360510.1038/s41563‑020‑00906‑z33589798
    [Google Scholar]
  55. KwonJ.A. LeeJ.E. HuhW. PeckK.R. KimY.G. KimD.J. OhH.Y. Predictors of acute kidney injury associated with intravenous colistin treatment.Int. J. Antimicrob. Agents201035547347710.1016/j.ijantimicag.2009.12.00220089383
    [Google Scholar]
  56. CornbergM. RazaviH.A. AlbertiA. BernasconiE. ButiM. CooperC. DalgardO. DillionJ.F. FlisiakR. FornsX. FrankovaS. GoldisA. GoulisI. HalotaW. HunyadyB. LaggingM. LargenA. MakaraM. ManolakopoulosS. MarcellinP. MarinhoR.T. PolS. PoynardT. PuotiM. SagalovaO. SibbelS. SimonK. WallaceC. YoungK. YurdaydinC. ZuckermanE. NegroF. ZeuzemS. A systematic review of hepatitis C virus epidemiology in Europe, Canada and Israel.Liver Int.201131s2Suppl. 2306010.1111/j.1478‑3231.2011.02539.x21651702
    [Google Scholar]
  57. KamiliS. DrobeniucJ. AraujoA.C. HaydenT.M. Laboratory diagnostics for hepatitis C virus infection.Clin. Infect. Dis.201255Suppl. 1S43S4810.1093/cid/cis36822715213
    [Google Scholar]
  58. WangS. LiL. JinH. YangT. BaoW. HuangS. WangJ. Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles.Biosens. Bioelectron.20134120521010.1016/j.bios.2012.08.02122947516
    [Google Scholar]
  59. GuzmanM.G. HalsteadS.B. ArtsobH. BuchyP. FarrarJ. GublerD.J. HunspergerE. KroegerA. MargolisH.S. MartínezE. NathanM.B. PelegrinoJ.L. SimmonsC. YoksanS. PeelingR.W. Dengue: A continuing global threat.Nat. Rev. Microbiol.20108S12Suppl.S7S1610.1038/nrmicro246021079655
    [Google Scholar]
  60. BradyO.J. GethingP.W. BhattS. MessinaJ.P. BrownsteinJ.S. HoenA.G. MoyesC.L. FarlowA.W. ScottT.W. HayS.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus.PLoS Negl Trop Dis.201268e176010.1371/journal.pntd.000176022880140
    [Google Scholar]
  61. HuD. DiB. DingX. WangY. ChenY. PanY. WenK. WangM. CheX. Kinetics of non-structural protein 1, IgM and IgG antibodies in dengue type 1 primary infection.Virol. J.2011814710.1186/1743‑422X‑8‑4721284891
    [Google Scholar]
  62. RaafatN. BlacksellS.D. MaudeR.J. A review of dengue diagnostics and implications for surveillance and control.Trans. R. Soc. Trop. Med. Hyg.20191131165366010.1093/trstmh/trz06831365115
    [Google Scholar]
  63. SriS. DhandC. RatheeJ. RamakrishnaS. SolankiP.R. Microfluidic based biosensors as point of care devices for infectious diseases management.Sens. Lett.201917141610.1166/sl.2019.3976
    [Google Scholar]
  64. PrabowoM.H. ChatchenS. RijiravanichP. LimkittikulK. SurareungchaiW. Dengue NS1 detection in pediatric serum using microfluidic paper-based analytical devices.Anal. Bioanal. Chem.2020412122915292510.1007/s00216‑020‑02527‑632166444
    [Google Scholar]
  65. GrivardP. Le RouxK. LaurentP. FianuA. PerrauJ. GiganJ. HoarauG. GrondinN. StaikowskyF. FavierF. MichaultA. Molecular and serological diagnosis of Chikungunya virus infection.Pathol. Biol. (Paris)2007551049049410.1016/j.patbio.2007.07.00217920211
    [Google Scholar]
  66. PaquetC. QuatresousI. SoletJ.L. SissokoD. RenaultP. PierreV. CordelH. LassalleC. ThiriaJ. ZellerH. SchuffneckerI. Chikungunya outbreak in Reunion: Epidemiology and surveillance, 2005 to early January 2006.Euro Surveill2006112E060202.310.2807/esw.11.05.02891‑en16804203
    [Google Scholar]
  67. SinghalC. DubeyA. MathurA. PundirC.S. NarangJ. Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes.Process Biochem.201874354210.1016/j.procbio.2018.08.020
    [Google Scholar]
  68. IsiguzoC. AnyantiJ. UjujuC. NwokoloE. De La CruzA. SchatzkinE. ModrekS. MontaguD. LiuJ. Presumptive treatment of malaria from formal and informal drug vendors in Nigeria.PLoS One2014910e11036110.1371/journal.pone.011036125333909
    [Google Scholar]
  69. DeraneyR.N. MaceC.R. RollandJ.P. SchonhornJ.E. Multiplexed, patterned-paper immunoassay for detection of malaria and dengue fever.Anal. Chem.201688126161616510.1021/acs.analchem.6b0085427186893
    [Google Scholar]
  70. ReboudJ. XuG. GarrettA. AdrikoM. YangZ. TukahebwaE.M. RowellC. CooperJ.M. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities.Proc. Natl. Acad. Sci. USA2019116114834484210.1073/pnas.181229611630782834
    [Google Scholar]
  71. JiaY. SunH. TianJ. SongQ. ZhangW. Paper-based point-of- care testing of SARS-CoV-2.Front. Bioeng. Biotechnol.2021977330410.3389/fbioe.2021.77330434912791
    [Google Scholar]
  72. SharmaV. SharmaM. DhullD. SharmaY. KaushikS. KaushikS. Zika virus: An emerging challenge to public health worldwide.Can. J. Microbiol.2020662879810.1139/cjm‑2019‑033131682478
    [Google Scholar]
  73. MeagherR.J. NegreteO.A. Van RompayK.K. Engineering paper-based sensors for Zika virus.Trends Mol. Med.201622752953010.1016/j.molmed.2016.05.00927255410
    [Google Scholar]
  74. BalasamyS. AtchudanR. AryaS. GunasekaranB.M. NesakumarN. SundramoorthyA.K. Cortisol: Biosensing and detection strategies.Clin. Chim. Acta202456211988810.1016/j.cca.2024.11988839059481
    [Google Scholar]
  75. ChamberlainM.C. GlantzM. GrovesM.D. WilsonW.H. Diagnostic tools for neoplastic meningitis: Detecting disease, identifying patient risk, and determining benefit of treatment.Semin. Oncol.2009364Suppl. 2S35S4510.1053/j.seminoncol.2009.05.00519660682
    [Google Scholar]
  76. FeaginsA.R. RonveauxO. TahaM.K. CaugantD.A. SmithV. FernandezK. GlennieL. FoxL.M. WangX. Next generation rapid diagnostic tests for meningitis diagnosis.J. Infect.202081571271810.1016/j.jinf.2020.08.04932888978
    [Google Scholar]
  77. TanE. GouvasN. NichollsR.J. ZiprinP. XynosE. TekkisP.P. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer.Surg. Oncol.2009181152410.1016/j.suronc.2008.05.00818619834
    [Google Scholar]
  78. MichaelJ. BarryM.D. Prostate-specific–antigen testing for early diagnosis of prostate cancer.N Engl J Med20013441373137710.1056/NEJM200105033441806
    [Google Scholar]
  79. PourmadadiM. MoammeriA. ShamsabadipourA. MoghaddamY.F. RahdarA. PandeyS. Application of various optical and electrochemical nanobiosensors for detecting Cancer Antigen 125 (CA-125): A review.Biosensors (Basel)20231319910.3390/bios1301009936671934
    [Google Scholar]
  80. UmapathiR. ParkB. SonwalS. RaniG.M. ChoY. HuhY.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods.Trends Food Sci. Technol.2022119698910.1016/j.tifs.2021.11.018
    [Google Scholar]
  81. WangK. YangJ. XuH. CaoB. QinQ. LiaoX. WoY. JinQ. CuiD. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen.Anal. Bioanal. Chem.2020412112517252810.1007/s00216‑020‑02475‑132067065
    [Google Scholar]
  82. ChenY. ChuW. LiuW. GuoX. Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice.Sens. Actuators B Chem.201826045245910.1016/j.snb.2017.12.197
    [Google Scholar]
  83. AlizadehN. SalimiA. HallajR. Mimicking peroxidase activity of Co2(OH)2CO3-CeO2 nanocomposite for smartphone based detection of tumor marker using paper-based microfluidic immunodevice.Talanta201818910011010.1016/j.talanta.2018.06.03430086892
    [Google Scholar]
  84. LiuW. YangH. DingY. GeS. YuJ. YanM. SongX. Paper-based colorimetric immunosensor for visual detection of carcinoembryonic antigen based on the high peroxidase-like catalytic performance of ZnFe2O4–multiwalled carbon nanotubes.Analyst201413925125810.1039/C3AN01569F
    [Google Scholar]
  85. LiuW. GuoY. ZhaoM. LiH. ZhangZ. Ring-oven washing technique integrated paper-based immunodevice for sensitive detection of cancer biomarker.Anal Chem201587157951795710.1021/acs.analchem.5b0181426140306
    [Google Scholar]
  86. ThuoM.M. MartinezR.V. LanW.-J. LiuX. BarberJ. AtkinsonM.B.J. BandarageD. BlochJ.-F. WhitesidesG.M. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods.Chem. Mater.201426144230423710.1021/cm501596s
    [Google Scholar]
  87. WangL.X. FuJ.J. ZhouY. ChenG. FangC. LuZ.S. YuL. On-chip RT-LAMP and colorimetric detection of the prostate cancer 3 biomarker with an integrated thermal and imaging box.Talanta202020812040710.1016/j.talanta.2019.12040731816706
    [Google Scholar]
  88. FerreraA. ValladaresW. CabreraY. de la Luz HernandezM. DarraghT. BaenaA. AlmonteM. HerreroR. Performance of an HPV 16/18 E6 oncoprotein test for detection of cervical precancer and cancer.Int J Cancer201914582042205010.1002/ijc.3215630684396
    [Google Scholar]
  89. MohammedS.I. RenW. FlowersL. RajwaB. ChibweshaC.J. ParhamG.P. IrudayarajJ.M.K. Point-of-care test for cervical cancer in LMICs.Oncotarget2016714187871879710.18632/oncotarget.770926934314
    [Google Scholar]
  90. HosuO. RavalliA. Lo PiccoloG.M. CristeaC. SandulescuR. MarrazzaG. Smartphone-based immunosensor for CA125 detection.Talanta201716623424010.1016/j.talanta.2017.01.07328213228
    [Google Scholar]
  91. FuG. LiX. WangW. HouR. Multiplexed tri-mode visual outputs of immunoassay signals on a clip-magazine-assembled photothermal biosensing disk.Biosens. Bioelectron.202017011264610.1016/j.bios.2020.11264633032199
    [Google Scholar]
  92. YokchomR. LaiwejpithayaS. ManeeprakornW. TapaneeyakornS. RabablertJ. DharakulT. Paper-based immunosensor with signal amplification by enzyme-labeled anti-p16INK4a multifunctionalized gold nanoparticles for cervical cancer screening.Nanomedicine20181431051105810.1016/j.nano.2018.01.01629407199
    [Google Scholar]
  93. Mazzu-NascimentoT. LeãoP.A.G.C. CataiJ.R. MorbioliG.G. CarrilhoE. Towards low-cost bioanalytical tools for sarcosine assays for cancer diagnostics.Anal. Methods201687312731810.1039/C6AY01848C
    [Google Scholar]
  94. PrasadK.S. AbugalyonY. LiC. XuF. LiX. A new method to amplify colorimetric signals of paper-based nanobiosensors for simple and sensitive pancreatic cancer biomarker detection.Analyst20201455113511710.1039/D0AN00704H
    [Google Scholar]
  95. FuA.C. HuY. ZhaoZ.H. SuR. SongY. ZhuD. Functionalized paper microzone plate for colorimetry and up-conversion fluorescence dual-mode detection of telomerase based on elongation and capturing amplification.Sens. Actuators B Chem.201825964264910.1016/j.snb.2017.12.124
    [Google Scholar]
  96. ResmiP.E. StanleyJ. KumarS. SomanK.P. RamachandranT. Satheesh BabuT.G. Fabrication of paper microfluidics POCT device for the colorimetric assay of alkaline phosphatase.2018 15th IEEE India Council International Conference (INDICON)IEEECoimbatore, India20181410.1109/INDICON45594.2018.8987193
    [Google Scholar]
  97. GajdosovaV. LorencovaL. KasakP. TkacJ. Electrochemical nanobiosensors for detection of breast cancer biomarkers.Sensors (Basel)20202014402210.3390/s2014402232698389
    [Google Scholar]
  98. de Planell-SaguerM. RodicioM.C. Analytical aspects of microRNA in diagnostics: A review.Anal. Chim. Acta2011699213415210.1016/j.aca.2011.05.02521704768
    [Google Scholar]
  99. NaorungrojS. TeengamP. VilaivanT. ChailapakulO. Paper-based DNA sensor enabling colorimetric assay integrated with smartphone for human papillomavirus detection.New J. Chem.2021456960696710.1039/D1NJ00417D
    [Google Scholar]
  100. SantosM. MarizM. TiagoI. MartinsJ. AlaricoS. FerreiraP. A review on urinary tract infections diagnostic methods: Laboratory-based and point-of-care approaches.J. Pharm. Biomed. Anal.202221911488910.1016/j.jpba.2022.11488935724611
    [Google Scholar]
  101. FritzenwankerM. ImirzaliogluC. ChakrabortyT. WagenlehnerF.M. Modern diagnostic methods for urinary tract infections.Expert Rev Anti Infect Ther.201614111047106310.1080/14787210.2016.123668527624932
    [Google Scholar]
  102. DavenportM. MachK.E. ShortliffeL.M.D. BanaeiN. WangT.H. LiaoJ.C. New and developing diagnostic technologies for urinary tract infections.Nat Rev Urol.201714529631010.1038/nrurol.2017.2028248946
    [Google Scholar]
  103. KelleyS.O. New technologies for rapid bacterial identification and antibiotic resistance profiling.SLAS Technol201722211312110.1177/221106821668020727879409
    [Google Scholar]
  104. SungW.H. ChengC.M. Urinalysis for diaper-wearing elderly people using a combination of cotton-based diagnostic devices and smartphone-based image analysis.Health Technol20193810.21037/ht.2019.08.02
    [Google Scholar]
  105. AguirreF. BrownA. ChoN.H. DahlquistG. DoddS. DunningT. IDF Diabetes Atlas.6th edInternational Diabetes Federation2013
    [Google Scholar]
  106. RiddyD.M. DeleriveP. SummersR.J. SextonP.M. LangmeadC.J. G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus.Pharmacol Rev.2018701396710.1124/pr.117.01437329233848
    [Google Scholar]
  107. JiangY. ZhaoH. LinY. ZhuN. MaY. MaoL. Colorimetric detection of glucose in rat brain using gold nanoparticles.Angew Chem Int Ed Engl.201049284800480410.1002/anie.20100105720533481
    [Google Scholar]
  108. LiB. FuL. ZhangW. FengW. ChenL. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle.Electrophoresis20143581152115910.1002/elps.20130058324375226
    [Google Scholar]
  109. MohammadiS. MaekiM.M. MohamadiR. IshidaA. TaniH. TokeshiM. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.Analyst20151406493649910.1039/C5AN00909J
    [Google Scholar]
  110. HongJ.I. ChangB.-Y. Development of the smartphone-based colorimetry for multi-analyte sensing arrays.Lab Chip2014141725173210.1039/C3LC51451J
    [Google Scholar]
  111. BiswasP.C. RaniS. HossainM.A. IslamM.R. CanningJ. Simultaneous multi-analyte sensing using a 2D quad-beam diffraction smartphone imaging spectrometer.Sens. Actuators B Chem.202235213099410.1016/j.snb.2021.130994
    [Google Scholar]
  112. OliveiraK.A. Medrado e SilvaP.B. de SouzaF.R. MartinsF.T. ColtroW.K.T. Kinetic study of glucose oxidase on microfluidic toner-based analytical devices for clinical diagnostics with image-based detection.Anal. Methods201464995500010.1039/C4AY00260A
    [Google Scholar]
  113. BoobphahomS. LyM.N. SoumV. PyunN. KwonO.-S. RodthongkumN. ShinK. Recent advances in microfluidic paper-based analytical devices toward high-throughput screening.Molecules20202513297010.3390/molecules2513297032605281
    [Google Scholar]
  114. WangS. GeL. SongX. YuJ. GeS. HuangJ. ZengF. Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing.Biosens. Bioelectron.201231121221810.1016/j.bios.2011.10.01922051546
    [Google Scholar]
  115. TanW. ZhangL. DoeryJ.C.G. ShenW. Study of paper-based assaying system for diagnosis of total serum bilirubin by colorimetric diazotization method.Sens. Actuators B Chem.202030512744810.1016/j.snb.2019.127448
    [Google Scholar]
  116. HaketaA. SomaM. NakayamaT. KosugeK. AoiN. HishikiM. HatanakaY. UenoT. DobaN. HinoharaS. Association between SIRT2 gene polymorphism and height in healthy, elderly Japanese subjects.Transl. Res.20131611575810.1016/j.trsl.2012.07.00222857867
    [Google Scholar]
  117. Vera-EstradaI.L. Olivares-RamírezJ.M. Rodríguez-ReséndizJ. DectorA. Mendiola-SantibañezJ.D. Amaya-CruzD.M. Sosa-DomínguezA. Ortega-DíazD. DectorD. Ovando-MedinaV.M. Antonio-CarmonaI.D. Digital pregnancy test powered by an air-breathing paper-based microfluidic fuel cell stack using human urine as fuel.Sensors (Basel)20222217664110.3390/s2217664136081100
    [Google Scholar]
  118. SempionattoJ.R. NakagawaT. PavinattoA. MensahS.T. ImaniS. MercierP. WangJ. Eyeglasses based wireless electrolyte and metabolite sensor platform.Lab Chip2017171834184210.1039/C7LC00192D
    [Google Scholar]
  119. HuangR. SuC. FangL. LuJ. ChenJ. DingY. Dry eye syndrome: Comprehensive etiologies and recent clinical trials.Int Ophthalmol202242103253327210.1007/s10792‑022‑02320‑735678897
    [Google Scholar]
  120. De PaivaC.S. ChenZ. KochD.D. HamillM.B. ManuelF.K. HassanS.S. WilhelmusK.R. PflugfelderS.C. The incidence and risk factors for developing dry eye after myopic LASIK.Am. J. Ophthalmol.2006141343844510.1016/j.ajo.2005.10.00616490488
    [Google Scholar]
  121. SamburskyR. DavittW.F.III FriedbergM. TauberS. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease.Cornea201433881281810.1097/ICO.000000000000017524977985
    [Google Scholar]
  122. CookG.C. ZumlaA. Manson’s Tropical Diseases.Elsevier Health Sciences2009
    [Google Scholar]
  123. FuE. LiangT. Spicar-MihalicP. HoughtalingJ. RamachandranS. YagerP. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection.Anal. Chem.201284104574457910.1021/ac300689s22537313
    [Google Scholar]
  124. BerryS.B. FernandesS.C. RajaratnamA. DeChiaraN.S. MaceC.R. Measurement of the hematocrit using paper-based microfluidic devices.Lab Chip2016163689369410.1039/C6LC00895J
    [Google Scholar]
  125. PierrakosC. VincentJ.-L. Sepsis biomarkers: A review.Crit Care2010141R1510.1186/cc887220144219
    [Google Scholar]
  126. SinhaM. JupeJ. MackH. ColemanT.P. LawrenceS.M. FraleyS.I. Emerging technologies for molecular diagnosis of sepsis.Clin Microbiol Rev.2018312e0008910.1021/ac300689s22537313
    [Google Scholar]
  127. PogaceanF. VarodiC. CorosM. KacsoI. RaduT. CozarB.I. MirelV. PruneanuS. Investigation of L-tryptophan electrochemical oxidation with a graphene-modified electrode.Biosensors (Basel)20211123610.3390/bios1102003633525714
    [Google Scholar]
  128. LeeW.-C. NgH.-Y. HouC.-Y. LeeC.-T. FuL.-M. Recent advances in lab-on-paper diagnostic devices using blood samples.Lab Chip2021211433145310.1039/D0LC01304H
    [Google Scholar]
  129. NachegaJ.B. MusokeP. KilmarxP.H. GandhiM. GrinsztejnB. PozniakA. RawatA. WilsonL. MillsE.J. AlticeF.L. MellorsJ.W. QuinnT.C. Global HIV control: Is the glass half empty or half full?Lancet HIV2023109e617e62210.1016/S2352‑3018(23)00150‑937506723
    [Google Scholar]
  130. ChenL.C. WangE. TaiC.S. ChiuY.C. LiC.W. LinY.R. LeeT.H. HuangC.W. ChenJ.C. ChenW.L. Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use.Biosens. Bioelectron.202015511211110.1016/j.bios.2020.11211132217334
    [Google Scholar]
  131. KouraK.G. HarriesA.D. The trend of tuberculosis case notification rates from 1995 to 2022 by country income and world health organization region.Trop. Med. Infect. Dis.202491229410.3390/tropicalmed912029439728821
    [Google Scholar]
  132. BarandiaranS. Pérez AguirreburualdeM.S. MarfilM.J. Martínez VivotM. AznarN. ZumárragaM. PerezA.M. Bayesian assessment of the accuracy of a PCR-based rapid diagnostic test for bovine tuberculosis in Swine.Front. Vet. Sci.2019610.3389/fvets.2019.00204
    [Google Scholar]
  133. LangeC. MoriT. Advances in the diagnosis of tuberculosis.Respirology201015222024010.1111/j.1440‑1843.2009.01692.x20199641
    [Google Scholar]
  134. AcharyaB. AcharyaA. GautamS. GhimireS.P. MishraG. ParajuliN. SapkotaB. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis.Mol. Biol. Rep.20204754065407510.1007/s11033‑020‑05413‑732248381
    [Google Scholar]
  135. García-BasteiroA.L. DiNardoA. SaavedraB. SilvaD.R. PalmeroD. GegiaM. MiglioriG.B. DuarteR. MambuqueE. CentisR. CuevasL.E. IzcoS. TheronG. Point of care diagnostics for tuberculosis.Pulmonology2018242738510.1016/j.rppnen.2017.12.00229426581
    [Google Scholar]
  136. AhmedM.U. SaaemI. WuP.C. BrownA.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine.Crit. Rev. Biotechnol.201434218019610.3109/07388551.2013.77822823607309
    [Google Scholar]
  137. MorseS.S. Public health surveillance and infectious disease detection.Biosecur. Bioterror.201210161610.1089/bsp.2011.008822455675
    [Google Scholar]
  138. AndersonR.E. HillR.B. KeyC.R. The sensitivity and specificity of clinical diagnostics during five decades. Toward an understanding of necessary fallibility.JAMA1989261111610161710.1001/jama.1989.034201100860292645451
    [Google Scholar]
  139. OtooJ.A. SchlappiT.S. REASSURED multiplex diagnostics: A critical review and forecast.Biosensors (Basel)202212212410.3390/bios1202012435200384
    [Google Scholar]
  140. JenkinsD. PeckR. FernandoA. Development of an approach to monitor the manufacturing consistency of HIV rapid diagnostic tests: Panel qualification and potential impact on country programs.PLoS One2023184e028417510.1371/journal.pone.028417537036848
    [Google Scholar]
  141. GubalaV. HarrisL.F. RiccoA.J. TanM.X. WilliamsD.E. Point of care diagnostics: Status and future.Anal. Chem.201284248751510.1021/ac203019922221172
    [Google Scholar]
  142. SinM.L.Y. MachK.E. WongP.K. LiaoJ.C. Advances and challenges in biosensor-based diagnosis of infectious diseases.Expert Rev. Mol. Diagn.201414222524410.1586/14737159.2014.88831324524681
    [Google Scholar]
  143. RinkS. BaeumnerA.J. Progression of paper-based point-of-care testing toward being an indispensable diagnostic tool in future healthcare.Anal. Chem.20239531785179310.1021/acs.analchem.2c0444236608282
    [Google Scholar]
  144. Hernández-NeutaI. NeumannF. BrightmeyerJ. TisT.B. MadaboosiN. WeiQ. OzcanA. NilssonM. Smartphone-based clinical diagnostics: Towards democratization of evidence-based health care.J Intern Med.20192851193910.1111/joim.1282030079527
    [Google Scholar]
  145. SrinivasS. KaleD. New approaches to learning and regulation in medical devices and diagnostics: Insights from Indian cancer care.Innov. Dev.202313236138410.1080/2157930X.2021.2000145
    [Google Scholar]
  146. CostaM.N. VeigasB. JacobJ.M. SantosD.S. GomesJ. BaptistaP.V. MartinsR. InácioJ. FortunatoE. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: Lab-on-paper.Nanotechnology201425909400610.1088/0957‑4484/25/9/09400624521980
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501356874250311074358
Loading
/content/journals/cbiot/10.2174/0122115501356874250311074358
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test