Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Amidohydrolases have long been known as a class of hydrolases that catalyze the hydrolysis of amide or ester functional groups in a broad range of substrates. They typically adopt the (β/α)-barrel structural folds, with metal cofactors in the active site, facilitating diverse hydrolytic and nonhydrolytic reactions. So far, the amidohydrolase superfamily has grown into one of the largest enzyme families with tens of thousands of members. The identification and application of amidohydrolases in the biodegradation of environmental pollutants, such as pesticides, have been extensively reported. In these cases, this article aims to present a systematic review of its classification, structure, and hydrolytic activities. The review describes the critical roles of amidohydrolases in the biodegradation of pesticides, such as amide herbicides. It further highlights the microbial metagenome could serve as an important source of novel amidohydrolases. Several major challenges of amidohydrolases during the identification and application processes are also discussed.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501362182241227100756
2024-12-31
2025-10-25
Loading full text...

Full text loading...

References

  1. Bailey-SerresJ. ParkerJ.E. AinsworthE.A. OldroydG.E.D. SchroederJ.I. Genetic strategies for improving crop yields.Nature2019575778110911810.1038/s41586‑019‑1679‑031695205
    [Google Scholar]
  2. TangF.H.M. LenzenM. McBratneyA. MaggiF. Risk of pesticide pollution at the global scale.Nat. Geosci.202114420621010.1038/s41561‑021‑00712‑5
    [Google Scholar]
  3. CandelJ. Pe’erG. FingerR. Science calls for ambitious European pesticide policies.Nat. Food20234427210.1038/s43016‑023‑00727‑837117539
    [Google Scholar]
  4. RuomengB. MeihaoO. SiruZ. ShichenG. YixianZ. JunhongC. RuijieM. YuanL. GezhiX. XingyuC. ShiyiZ. AihuiZ. BaishanF. Degradation strategies of pesticide residue: From chemicals to synthetic biology.Synth. Syst. Biotechnol.20238230231310.1016/j.synbio.2023.03.00537122957
    [Google Scholar]
  5. MalhotraH. KaurS. PhaleP.S. Conserved metabolic and evolutionary themes in microbial degradation of carbamate pesticides.Front. Microbiol.20211264886810.3389/fmicb.2021.64886834305823
    [Google Scholar]
  6. AhmadS. AhmadH.W. BhattP. Microbial adaptation and impact into the pesticide’s degradation.Arch. Microbiol.2022204528810.1007/s00203‑022‑02899‑635482163
    [Google Scholar]
  7. KumarP. SachanS.G. 3 - Exploring microbes as bioremediation tools for the degradation of pesticides. ShahM.P. Advanced Oxidation Processes for Effluent Treatment PlantsElsevier20215167
    [Google Scholar]
  8. RazaT. QadirM.F. KhanK.S. EashN.S. YousufM. ChatterjeeS. ManzoorR. RehmanS. OettingJ.N. Unraveling the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem.J. Environ. Manage.202334411852910.1016/j.jenvman.2023.11852937418912
    [Google Scholar]
  9. NarayananM. AliS.S. El-SheekhM. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects.J. Environ. Manage.202333411753210.1016/j.jenvman.2023.11753236801803
    [Google Scholar]
  10. EstiuG. MerzK.M.Jr The hydrolysis of amides and the proficiency of amidohydrolases. The burden borne by kw.J. Phys. Chem. B2007111236507651910.1021/jp067708617508734
    [Google Scholar]
  11. SeibertC.M. RaushelF.M. Structural and catalytic diversity within the amidohydrolase superfamily.Biochemistry200544176383639110.1021/bi047326v15850372
    [Google Scholar]
  12. SugrueE. FraserN.J. HopkinsD.H. CarrP.D. KhuranaJ.L. OakeshottJ.G. ScottC. JacksonC.J. Evolutionary expansion of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron.Appl. Environ. Microbiol.20158172612262410.1128/AEM.04016‑1425636851
    [Google Scholar]
  13. LiuA. HuoL. Amidohydrolase Superfamily.Encyclopedia of Life Sciences (eLS)John Wiley & Sons, Ltd201410.1002/9780470015902.a0020546.pub2
    [Google Scholar]
  14. PaceH.C. BrennerC. The nitrilase superfamily: Classification, structure and function.Genome Biol.200121REVIEWS000110.1186/gb‑2001‑2‑1‑reviews000111380987
    [Google Scholar]
  15. NeuD. LehmannT. ElleucheS. PollmannS. Arabidopsis amidase 1, a member of the amidase signature family.FEBS J.2007274133440345110.1111/j.1742‑4658.2007.05876.x17555521
    [Google Scholar]
  16. AgarwalR. BurleyS.K. SwaminathanS. Structural analysis of a ternary complex of allantoate amidohydrolase from Escherichia coli reveals its mechanics.J. Mol. Biol.2007368245046310.1016/j.jmb.2007.02.02817362992
    [Google Scholar]
  17. ShinoharaY. MiyanagaA. KudoF. EguchiT. The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates.FEBS Lett.20145886995100010.1016/j.febslet.2014.01.06024530530
    [Google Scholar]
  18. OskoJ.D. RooseB.W. ShinskyS.A. ChristiansonD.W. Structure and function of the acetylpolyamine amidohydrolase from the deep earth halophile Marinobacter subterrani.Biochemistry201958363755376610.1021/acs.biochem.9b0058231436969
    [Google Scholar]
  19. DaiL. NiuD. HuangJ.W. LiX. ShenP. LiH. XieZ. MinJ. HuY. YangY. GuoR.T. ChenC.C. Cryo-EM structure and rational engineering of a superefficient ochratoxin A-detoxifying amidohydrolase.J. Hazard. Mater.202345813183610.1016/j.jhazmat.2023.13183637331057
    [Google Scholar]
  20. HuY. DaiL. XuY. NiuD. YangX. XieZ. ShenP. LiX. LiH. ZhangL. MinJ. GuoR.T. ChenC.C. Functional characterization and structural basis of an efficient ochratoxin A-degrading amidohydrolase.Int. J. Biol. Macromol.2024278Pt 313483110.1016/j.ijbiomac.2024.13483139163957
    [Google Scholar]
  21. WangF. HouY. ZhouJ. LiZ. HuangY. CuiZ. Purification of an amide hydrolase DamH from Delftia sp. T3-6 and its gene cloning, expression, and biochemical characterization.Appl. Microbiol. Biotechnol.201498177491749910.1007/s00253‑014‑5710‑y24723294
    [Google Scholar]
  22. XiangD.F. KumaranD. SwaminathanS. RaushelF.M. Structural characterization and function determination of a nonspecific carboxylate esterase from the amidohydrolase superfamily with a promiscuous ability to hydrolyze methylphosphonate esters.Biochemistry201453213476348510.1021/bi500426624832101
    [Google Scholar]
  23. SunS. ChenW. PengK. ChenX. ChenJ. Characterization of a novel amidohydrolase with promiscuous esterase activity from a soil metagenomic library and its application in degradation of amide herbicides.Environ. Sci. Pollut. Res. Int.20243114209702098210.1007/s11356‑024‑32362‑638383926
    [Google Scholar]
  24. WangK. LvY. HeM. TianL. NieF. ShaoZ. WangZ. A quantitative structure-activity relationship approach to determine biotoxicity of amide herbicides for ecotoxicological risk assessment.Arch. Environ. Contam. Toxicol.202384221422610.1007/s00244‑023‑00980‑936646954
    [Google Scholar]
  25. MaY. XuW. ZhangJ. ZhangS. HongK. DengZ. SunY. Nitrilase superfamily aryl acylamidase from the halotolerant mangrove Streptomyces sp. 211726.Appl. Microbiol. Biotechnol.201498208583859010.1007/s00253‑014‑5762‑z24752846
    [Google Scholar]
  26. ChenQ. ChenK. NiH. ZhuangW. WangH. ZhuJ. HeQ. HeJ. A novel amidohydrolase (DmhA) from Sphingomonas sp. that can hydrolyze the organophosphorus pesticide dimethoate to dimethoate carboxylic acid and methylamine.Biotechnol. Lett.201638470371010.1007/s10529‑015‑2027‑626721238
    [Google Scholar]
  27. ShenW. ChenH. JiaK. NiJ. YanX. LiS. Cloning and characterization of a novel amidase from Paracoccus sp. M-1, showing aryl acylamidase and acyl transferase activities.Appl. Microbiol. Biotechnol.20129441007101810.1007/s00253‑011‑3704‑622101784
    [Google Scholar]
  28. BersK. BatissonI. ProostP. WattiezR. De MotR. SpringaelD. HylA, an alternative hydrolase for initiation of catabolism of the phenylurea herbicide linuron in Variovorax sp. strains.Appl. Environ. Microbiol.201379175258526310.1128/AEM.01478‑1323811502
    [Google Scholar]
  29. ZhouX. HuangJ. XuS. ChengH. LiuB. HuangJ. LiuJ. PanD. WuX. Novel bifunctional amidase catalyzing the degradation of propanil and aryloxyphenoxypropionate herbicides in Rhodococcus sp. C-1.J. Agric. Food Chem.20247232180671807710.1021/acs.jafc.4c0226839082634
    [Google Scholar]
  30. ZhangJ. SunJ.Q. YuanQ.Y. LiC. YanX. HongQ. LiS.P. Characterization of the propanil biodegradation pathway in Sphingomonas sp. Y57 and cloning of the propanil hydrolase gene prpH.J. Hazard. Mater.201119641241910.1016/j.jhazmat.2011.09.04021974851
    [Google Scholar]
  31. GibuN. KasaiD. SatoS. TabataM. VangnaiA. FukudaM. Characterization of the 3,4-dichloroaniline degradation gene cluster in Acinetobacter soli GFJ2.Microorganisms202412361310.3390/microorganisms1203061338543664
    [Google Scholar]
  32. ZhangL. HuQ. LiuB. LiF. JiangJ.D. Characterization of a linuron-specific amidohydrolase from the newly isolated bacterium Sphingobium sp. strain SMB.J. Agric. Food Chem.202068154335434510.1021/acs.jafc.0c0059732207940
    [Google Scholar]
  33. ZhangL. HangP. ZhouX. DaiC. HeZ. JiangJ. Mineralization of the herbicide swep by a two-strain consortium and characterization of a new amidase for hydrolyzing swep.Microb. Cell Fact.2020191410.1186/s12934‑020‑1276‑931910844
    [Google Scholar]
  34. BersK. LeroyB. BreugelmansP. AlbersP. LavigneR. SørensenS.R. AamandJ. De MotR. WattiezR. SpringaelD. A novel hydrolase identified by genomic-proteomic analysis of phenylurea herbicide mineralization by Variovorax sp. strain SRS16.Appl. Environ. Microbiol.201177248754876410.1128/AEM.06162‑1122003008
    [Google Scholar]
  35. HoferU. The majority is uncultured.Nat. Rev. Microbiol.2018161271671710.1038/s41579‑018‑0097‑x30275521
    [Google Scholar]
  36. Escobar-ZepedaA. Vera-Ponce de LeónA. Sanchez-FloresA. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics.Front. Genet.2015634810.3389/fgene.2015.0034826734060
    [Google Scholar]
  37. NgaraT.R. ZhangH. Recent advances in function-based metagenomic screening.Genomics Proteomics Bioinformatics201816640541510.1016/j.gpb.2018.01.00230597257
    [Google Scholar]
  38. UrbelienėN. MeškienėR. TiškusM. StanislauskienėR. AučynaitėA. LaurynėnasA. MeškysR. A rapid method for the selection of amidohydrolases from metagenomic libraries by applying synthetic nucleosides and a uridine auxotrophic host.Catalysts202010444510.3390/catal10040445
    [Google Scholar]
  39. ChenK. ArnoldF.H. Engineering new catalytic activities in enzymes.Nat. Catal.20203320321310.1038/s41929‑019‑0385‑5
    [Google Scholar]
  40. JangW.D. KimG.B. KimY. LeeS.Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering.Curr. Opin. Biotechnol.20227310110710.1016/j.copbio.2021.07.02434358728
    [Google Scholar]
  41. OllitraultP.J. MiessenA. TavernelliI. Molecular quantum dynamics: A quantum computing perspective.Acc. Chem. Res.202154234229423810.1021/acs.accounts.1c0051434787398
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501362182241227100756
Loading
/content/journals/cbiot/10.2174/0122115501362182241227100756
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test