Skip to content
2000
Volume 14, Issue 2
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

is an opportunistic human pathogenic bacterium that constitutes the major part of human skin microflora. This bacterium has shown resistance to most antibiotics. Moreover, it spreads widely in hospitals and causes various infections in human beings. This bacterium has been reported in infected humans, animals, and some insects; however, this is the first report on being found in scarabaeids in the world. The gut microbiota of white grubs helps in the digestion and assimilation of food, such as cellulose, hemicellulose, and pectin degradation by producing various enzymes.

Aims

This study aimed to isolate and identify the cellulose-degrading bacteria from the gut of the most notorious polyphagous white grub, and estimated their cellulolytic index for utilization in future studies for decomposing of organic matter and in biofuel production in industries.

Methods

In this study, we isolated 11 cellulolytic bacteria from the gut of (Hope) grubs, which were collected from different locations in the north-western Himalayas.

Results

was only reported from the grubs of Nauni, Solan region of Himachal Pradesh, India, and identified by using 16S rRNA gene sequencing analysis. was able to degrade the cellulose in Carboxy Methyl cellulose (CMC) media.

Conclusion

This bacterium can be used in industries, such as the management of agro-waste, pulp and paper, and biofuel production.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501358284241213101710
2024-12-17
2025-10-27
Loading full text...

Full text loading...

References

  1. GardnerJ.C.M. Immature Stages of Indian Coleoptera-16-Scarabaeoidea.Springer1935
    [Google Scholar]
  2. ChandelR.S. VermaK.S. BalodaA.S. SreedeviK. White grubs in india#.Indian J. Entomol.202183110911310.5958/0974‑8172.2021.00010.9
    [Google Scholar]
  3. ChandelR.S. KashyapN.P. About white grubs and their management.Farmer and Parliament199737102930
    [Google Scholar]
  4. MisraS.S. Assesssment of avoidable losses in potato yield by managing white grubs Holotrichia spp. at higher hills of Himachal Pradesh, India.Indian J. Entomol.200365351356
    [Google Scholar]
  5. SinghM.P. BishtR.S. MishraP.N. Distribution of white grub fauna in Garhwal hills of western Himalayas.Indian J. Entomol.2003652217221
    [Google Scholar]
  6. ChandelR.S. PathaniaM. VermaK.S. BhatacharyyaB. VashisthS. KumarV. The ecology and control of potato white grubs of India.Potato Res.201558214716410.1007/s11540‑015‑9295‑3
    [Google Scholar]
  7. SkowronekM. SajnagaE. PleszczyńskaM. KazimierczakW. LisM. WiaterA. Bacteria from the midgut of common cockchafer (Melolontha melolontha L.) larvae exhibiting antagonistic activity against bacterial symbionts of entomopathogenic nematodes: Isolation and molecular identification.Int. J. Mol. Sci.202021258010.3390/ijms2102058031963214
    [Google Scholar]
  8. MsangoSokoK. Diversity of microbial groups associated with the gut of the eri silkworm, Samia ricini,(Lepidoptera: Saturniidae) and white grub, Anomala dimidiata,(Coleoptera: Scarabaeidae) larvae as revealed by phospholipid fatty acids.J. Entomol. Zool. Stud.20208216791683
    [Google Scholar]
  9. InoueT. MoriyaS. OhkumaM. KudoT. Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene2005349677510.1016/j.gene.2004.11.04815777663
    [Google Scholar]
  10. DanuN. PaschapurA. SubbannaA.R.N.S. StanleyJ. Kumar SinghA. BishtI. Prakash GuptaJ. Molecular characterization and estimation of cellulolytic potential of gut bacteria isolated from four white grub species native to Indian Himalayas.J. Asia Pac. Entomol.202326110203610.1016/j.aspen.2022.102036
    [Google Scholar]
  11. LemkeT. StinglU. EgertM. FriedrichM.W. BruneA. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae).Appl. Environ. Microbiol.200369116650665810.1128/AEM.69.11.6650‑6658.200314602625
    [Google Scholar]
  12. CazemierA.E. VerdoesJ.C. ReubsaetF.A. HacksteinJ.H. van der DriftC. Op den CampH.J. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek200383213514810.1023/A:102332581766312785307
    [Google Scholar]
  13. EgertM. StinglU. Dyhrberg BruunL. PommerenkeB. BruneA. FriedrichM.W. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae).Appl. Environ. Microbiol.20057184556456610.1128/AEM.71.8.4556‑4566.200516085849
    [Google Scholar]
  14. ZhangH. JacksonT.A. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae).J. Appl. Microbiol.200810551277128510.1111/j.1365‑2672.2008.03867.x18713286
    [Google Scholar]
  15. HuangS. ShengP. ZhangH. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae).Int. J. Mol. Sci.20121332563257710.3390/ijms1303256322489111
    [Google Scholar]
  16. HandiqueG. PhukanA. BhattacharyyaB. BaruahA.A.L.H. RahmanS.W. BaruahR. Characterization of cellulose degrading bacteria from the larval gut of the white grub beetle Lepidiota mansueta (Coleoptera: Scarabaeidae).Arch. Insect Biochem. Physiol.2017942e2137010.1002/arch.2137028094878
    [Google Scholar]
  17. Arias-CorderoE. PingL. ReichwaldK. DelbH. PlatzerM. BolandW. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS One2012712e5155710.1371/journal.pone.005155723251574
    [Google Scholar]
  18. ShengP. HuangS. WangQ. WangA. ZhangH. Isolation, screening, and optimization of the fermentation conditions of highly cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae).Appl. Biochem. Biotechnol.2012167227028410.1007/s12010‑012‑9670‑322544686
    [Google Scholar]
  19. Msango SokoK.R. BhattacharyaR.C. RamakrishnanB. SharmaK. SubramanianS. Functional characterization of bacteria isolated from different gut compartments of white grub, Anamola dimidiata, larvae.J. Environ. Biol.20204161526153510.22438/jeb/41/6/MRN‑1420
    [Google Scholar]
  20. Ben SaidaN. MarzoukM. FerjeniA. BoukadidaJ. A three-year surveillance of nosocomial infections by methicillin-resistant Staphylococcus haemolyticus in newborns reveals the disinfectant as a possible reservoir.Pathol. Biol.2009573e29e3510.1016/j.patbio.2008.02.01918456420
    [Google Scholar]
  21. RenaudF. EtienneJ. BertrandA. BrunY. GreenlandT.B. FreneyJ. FleuretteJ. Molecular epidemiology of Staphylococcus haemolyticus strains isolated in an Albanian hospital.J. Clin. Microbiol.19912971493149710.1128/jcm.29.7.1493‑1497.19911653266
    [Google Scholar]
  22. SzczukaE. GrabskaK. KaznowskiA. In vitro activity of rifampicin combined with daptomycin or tigecycline on Staphylococcus haemolyticus biofilms.Curr. Microbiol.201571218418910.1007/s00284‑015‑0821‑y25894996
    [Google Scholar]
  23. SchuenckR.P. PereiraE.M. IorioN.L.P. dos SantosK.Ã.R.N. Multiplex PCR assay to identify methicillin-resistant Staphylococcus haemolyticus.FEMS Immunol. Med. Microbiol.200852343143510.1111/j.1574‑695X.2008.00387.x18294192
    [Google Scholar]
  24. do Carmo FerreiraN. SchuenckR.P. dos SantosK.R.N. de Freire BastosM.C. Giambiagi-deMarvalM. Diversity of plasmids and transmission of high-levelmupirocin mupA resistance gene in Staphylococcus haemolyticus.FEMS Immunol. Med. Microbiol.201161214715210.1111/j.1574‑695X.2010.00756.x21182545
    [Google Scholar]
  25. RuzauskasM. SiugzdinieneR. KlimieneI. VirgailisM. MockeliunasR. VaskeviciuteL. ZieniusD. Prevalence of methicillin-resistant Staphylococcus haemolyticus in companion animals: A cross-sectional study.Ann. Clin. Microbiol. Antimicrob.20141315610.1186/s12941‑014‑0056‑y25431281
    [Google Scholar]
  26. EltwisyH.O. Abdel-FattahM. ElsisiA.M. OmarM.M. AbdelmotelebA.A. El-MokhtarM.A. Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells.Virulence20201111142115710.1080/21505594.2020.180996232799619
    [Google Scholar]
  27. CavanaghJ.P. HjerdeE. HoldenM.T.G. KahlkeT. KlingenbergC. FlægstadT. ParkhillJ. BentleyS.D. SollidJ.U.E. Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals.J. Antimicrob. Chemother.201469112920292710.1093/jac/dku27125038069
    [Google Scholar]
  28. HosseinkhaniF. JabalameliF. Nodeh FarahaniN. TaherikalaniM. van LeeuwenW.B. EmaneiniM. Variable number of tandem repeat profiles and antimicrobial resistance patterns of Staphylococcus haemolyticus strains isolated from blood cultures in children.Infect. Genet. Evol.201638192110.1016/j.meegid.2015.11.03526656742
    [Google Scholar]
  29. AhmedN.H. BaruahF.K. GroverR.K. Letter to editor: Staphylococcal blood stream infections in cancer patients.Ann. Med. Health Sci. Res.201553226227
    [Google Scholar]
  30. ThakurA. ChandelR.S. RamappaK. GuleriaN. Biodiversity and identification of potato white grubs in high hills of Himachal Pradesh.Potato J.2022492174187
    [Google Scholar]
  31. BooneD.R. GarrityG.M. CastenholzR.W. BrennerD.J. KriegN.R. StaleyJ.T. Genus Bacillus.Bergey’s Manual of Systematic Bacteriology. VosP. GarrityG. JonesD. KriegN.R. LudwigW. RaineyF.A. SchleiferK.H. WhitmanW. New YorkSpringer-Verlag20012112810.1007/978‑0‑387‑21609‑6
    [Google Scholar]
  32. TeatherR.M. WoodP.J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen.Appl. Environ. Microbiol.198243477778010.1128/aem.43.4.777‑780.19827081984
    [Google Scholar]
  33. FerbiyantoA. RusmanaI. RaffiudinR. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. Hayati J. Biosci.201522419720010.1016/j.hjb.2015.07.001
    [Google Scholar]
  34. SambrookJ. FritschE.F. ManiatisT. Molecular cloning: A laboratory manual.Cold spring harbor laboratory press 1989
    [Google Scholar]
  35. KumarR. AhadI. RehmanS.A. DorjeyS. Impact of weather parameters on population dynamics of soil borne insect pests infesting oats (Avena sativa L.) in North Kashmir.J. Entomol. Zool. Stud.201863533537
    [Google Scholar]
  36. JangS. KikuchiY. Impact of the insect gut microbiota on ecology, evolution, and industry.Curr. Opin. Insect Sci.202041333910.1016/j.cois.2020.06.00432634703
    [Google Scholar]
  37. GuleriaS. WaliaA. ChauhanA. ShirkotC.K. Optimization of cultural conditions for cellulase-free xylanase production by mutant strain of alkalophilic Cellulosimicrobium sp. CKMX1 in submerged fermentation.Appl. Biol. Res.2013152137144
    [Google Scholar]
  38. MahalaS.K. ChandelR.S. WaliaA. SagarS. RK. Molecular characterization of Ralstonia mannitolilytica isolated from the gut of Brahmina coriacea grubs using 16S ribosomal RNA gene sequence analysis.Plant Cell Biotechnol. Mol. Biol.20242511-12353910.56557/pcbmb/2024/v25i11‑128843
    [Google Scholar]
  39. HuangS.W. ZhangH.Y. MarshallS. JacksonT.A. The scarab gut: A potential bioreactor for bio-fuel production.Insect Sci.201017317518310.1111/j.1744‑7917.2010.01320.x
    [Google Scholar]
  40. ThiyonilaB. ReneetaN.P. KannanM. ShantkritiS. KrishnanM. Dung beetle gut microbes: Diversity, metabolic and immunity related roles in host system.Int. J. Sci. Innov.2018110.32594/IJSI_20180403
    [Google Scholar]
  41. Rinki YadavP. SharmaA. DahiyaP. KashyapA. WaliaA. BhattA.K. BhatiaR.K. Upcycling of tetra pack waste cellulose into reducing sugars for bioethanol production using Saccharomyces cerevisiae. Biotechnol. Sustain. Mater.202411410.1186/s44316‑024‑00003‑0
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501358284241213101710
Loading
/content/journals/cbiot/10.2174/0122115501358284241213101710
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 16S rRNA; agro-waste; cellulase, intestinal microbiota; human pathogen; Opportunistic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test