Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Gene expression is regulated in a spatiotemporal manner, and the roles of microProteins (MiPs) in this concept have started to become clear in plants.

Methods

Here, a microarray data analysis was carried out to decipher the spatiotemporal role of MiPs in embryo development. The guilt-by-association method was used to determine the corresponding regulatory factors.

Results

Module network analyses and protein-protein interaction (PPI) assays suggested 13 modules for embryo development in the Arabidopsis model plant. Various biological processes such as metabolite biosynthesis, hormone transition and regulation, fatty acid and storage protein biosynthesis, and photosynthesis-related processes were prevalent. Different transcription factors (TFs) at different stages of embryo development were found and reviewed. Furthermore, 106 putative MiPs were identified that might be involved in the regulation of embryo development. Candidate hub MiPs (15) at embryo developmental stages were identified by PPI network analysis and their putative regulatory roles were discussed. Previously reported MiPs, AT1G14760 (KNOX), AT5G39860 (PRE1), and AT2G46410 (CPC), were noted to be present in modules M3 and M8.

Conclusion

Molecular comprehension of regulatory factors including MiPs and TFs during embryo development allows targeted breeding of the corresponding traits and genome-based engineering of value-added new varieties.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936304167240530091051
2024-06-24
2025-10-12
Loading full text...

Full text loading...

References

  1. Armenta-MedinaA. GillmorC.S. GaoP. Mora-MaciasJ. KochianL.V. XiangD. DatlaR. Developmental and genomic architecture of plant embryogenesis: From model plant to crops.Plant Commun.20212110013610.1016/j.xplc.2020.10013633511346
    [Google Scholar]
  2. Armenta-MedinaA. GillmorC.S. Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants.Curr. Top. Dev. Biol.201913149754310.1016/bs.ctdb.2018.11.00830612628
    [Google Scholar]
  3. GuptaC. SANe: The Seed Active Network for discovering transcriptional regulatory programs of seed development.BioRxiv201816589410.1101/165894
    [Google Scholar]
  4. WangY-C. Temporal transcriptome analysis uncovers regulatory modules programming embryo development from embryonic morphogenesis to post-germination.bioRxiv20232023.1210.1101/2023.12.26.573376
    [Google Scholar]
  5. PalovaaraJ. SaigaS. WendrichJ.R. van ’t Wout HoflandN. van SchayckJ.P. HaterF. MutteS. SjollemaJ. BoekschotenM. HooiveldG.J. WeijersD. Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo.Nat. Plants201731189490410.1038/s41477‑017‑0035‑329116234
    [Google Scholar]
  6. ZhangY. ClemensA. MaximovaS.N. GuiltinanM.J. The Theobroma cacao B3 domain transcription factor TcLEC2plays a duel role in control of embryo development and maturation.BMC Plant Biol.201414110610.1186/1471‑2229‑14‑10624758406
    [Google Scholar]
  7. SpencerM.W.B. CassonS.A. LindseyK. Transcriptional profiling of the Arabidopsis embryo.Plant Physiol.2007143292494010.1104/pp.106.08766817189330
    [Google Scholar]
  8. ParkS. HaradaJ.J. Arabidopsis embryogenesis.Plant embryogenesis200831610.1007/978‑1‑59745‑273‑1_1
    [Google Scholar]
  9. GaoP. XiangD. QuilichiniT.D. VenglatP. PandeyP.K. WangE. GillmorC.S. DatlaR. Gene expression atlas of embryo development in Arabidopsis.Plant Reprod.20193219310410.1007/s00497‑019‑00364‑x30762127
    [Google Scholar]
  10. HofmannF. SchonM.A. NodineM.D. The embryonic transcriptome of Arabidopsis thaliana. Plant Reprod.2019321779110.1007/s00497‑018‑00357‑230610360
    [Google Scholar]
  11. KaoP. SchonM.A. MosiolekM. EnuguttiB. NodineM.D. Gene expression variation in Arabidopsis embryos at single-nucleus resolution.Development202114813dev19958910.1242/dev.19958934142712
    [Google Scholar]
  12. LeB.H. ChengC. BuiA.Q. WagmaisterJ.A. HenryK.F. PelletierJ. KwongL. BelmonteM. KirkbrideR. HorvathS. DrewsG.N. FischerR.L. OkamuroJ.K. HaradaJ.J. GoldbergR.B. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors.Proc. Natl. Acad. Sci. USA2010107188063807010.1073/pnas.100353010720385809
    [Google Scholar]
  13. BelmonteM.F. KirkbrideR.C. StoneS.L. PelletierJ.M. BuiA.Q. YeungE.C. HashimotoM. FeiJ. HaradaC.M. MunozM.D. LeB.H. DrewsG.N. BradyS.M. GoldbergR.B. HaradaJ.J. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed.Proc. Natl. Acad. Sci. USA20131105E435E44410.1073/pnas.122206111023319655
    [Google Scholar]
  14. ChenM. LinJ.Y. WuX. ApuyaN.R. HenryK.F. LeB.H. BuiA.Q. PelletierJ.M. CokusS. PellegriniM. HaradaJ.J. GoldbergR.B. Comparative analysis of embryo proper and suspensor transcriptomes in plant embryos with different morphologies.Proc. Natl. Acad. Sci. USA20211186e202470411810.1073/pnas.202470411833536344
    [Google Scholar]
  15. WangF. PerryS.E. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.Plant Physiol.201316131251126410.1104/pp.112.21228223314941
    [Google Scholar]
  16. VermaS. AttuluriV.P.S. RobertH.S. Transcriptional control of Arabidopsis seed development.Planta202225549010.1007/s00425‑022‑03870‑x35318532
    [Google Scholar]
  17. BhatiK.K. BlaakmeerA. ParedesE.B. DoldeU. EguenT. HongS.Y. RodriguesV. StraubD. SunB. WenkelS. Approaches to identify and characterize microProteins and their potential uses in biotechnology.Cell. Mol. Life Sci.201875142529253610.1007/s00018‑018‑2818‑829670998
    [Google Scholar]
  18. DoldeU. Synthetic microProteins: Versatile tools for post-translational regulation of target proteins.Plant Physiol201817631364510.1104/pp.17.01743
    [Google Scholar]
  19. EguenT. StraubD. GraeffM. WenkelS. MicroProteins: Small size – big impact.Trends Plant Sci.201520847748210.1016/j.tplants.2015.05.01126115780
    [Google Scholar]
  20. GraeffM. StraubD. EguenT. DoldeU. RodriguesV. BrandtR. WenkelS. MicroProtein-mediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis.PLoS Genet.2016123e100595910.1371/journal.pgen.100595927015278
    [Google Scholar]
  21. MolesiniB. DusiV. PennisiF. Di SansebastianoG.P. ZanzoniS. ManaraA. FuriniA. MartiniF. RotinoG.L. PandolfiniT. TCMP‐2 affects tomato flowering and interacts with BBX16, a homolog of the arabidopsis B‐box MiP1b.Plant Direct2020411e0028310.1002/pld3.28333204936
    [Google Scholar]
  22. RodriguesV.L. DoldeU. SunB. BlaakmeerA. StraubD. EguenT. Botterweg-ParedesE. HongS. GraeffM. LiM.W. GendronJ.M. WenkelS. A microProtein repressor complex in the shoot meristem controls the transition to flowering.Plant Physiol.2021187118720210.1093/plphys/kiab23534015131
    [Google Scholar]
  23. AhmadZ. A big role for microProteins in preventing premature floral transition in the shoot meristem.Oxford University Press202110.1093/plphys/kiab320
    [Google Scholar]
  24. WuQ. ZhongS. ShiH. MicroProteins: Dynamic and accurate regulation of protein activity.J. Integr. Plant Biol.202264481282010.1111/jipb.1322935060666
    [Google Scholar]
  25. BhatiK.K. KruusveeV. StraubD. ChandranA.K.N. JungK.H. WenkelS. Global analysis of cereal microProteins suggests diverse roles in crop development and environmental adaptation. G3: Genes, Genomes.G3202010103709371710.1534/g3.120.40079432763954
    [Google Scholar]
  26. WenkelS. EmeryJ. HouB.H. EvansM.M.S. BartonM.K. A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes.Plant Cell200719113379339010.1105/tpc.107.05577218055602
    [Google Scholar]
  27. XuQ. LiR. WengL. SunY. LiM. XiaoH. Domain-specific expression of meristematic genes is defined by the LITTLE ZIPPER protein DTM in tomato.Commun. Biol.20192113410.1038/s42003‑019‑0368‑831044159
    [Google Scholar]
  28. YadavA. BakshiS. YadukrishnanP. LingwanM. DoldeU. WenkelS. MasakapalliS.K. DattaS. The B-Box-containing microprotein miP1a/BBX31 regulates photomorphogenesis and UV-B protection.Plant Physiol.201917941876189210.1104/pp.18.0125830723178
    [Google Scholar]
  29. HengY. LinF. JiangY. DingM. YanT. LanH. ZhouH. ZhaoX. XuD. DengX.W. B-Box containing proteins BBX30 and BBX31, acting downstream of HY5, negatively regulate photomorphogenesis in Arabidopsis.Plant Physiol.2019180149750810.1104/pp.18.0124430765480
    [Google Scholar]
  30. ChiurazziM.J. Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations.J. Integr. Plant Biol.202264220521410.1111/jipb.1318634761872
    [Google Scholar]
  31. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e47e4710.1093/nar/gkv00725605792
    [Google Scholar]
  32. KoldeR. Implementation of heatmaps that offers more control over dimensions and appearance.2020Available from: https://cran.r-project.org/web/packages/pheatmap/index.html#: ~:text=pheatmap%3A%20Pretty%20Heatmaps,control%20over%20dimensions%20and%20appearance.
  33. WickhamH. Elegant graphics for data analysis.Media20093521110.1007
    [Google Scholar]
  34. StraubD. WenkelS. Cross-species genome-wide identification of evolutionary conserved microProteins.Genome Biol. Evol.20179377778910.1093/gbe/evx04128338802
    [Google Scholar]
  35. CardozoL.E. RussoP.S.T. Gomes-CorreiaB. Araujo-PereiraM. Sepúlveda-HermosillaG. Maracaja-CoutinhoV. NakayaH.I. webCEMiTool: Co-expression modular analysis made easy.Front. Genet.20191014610.3389/fgene.2019.0014630894872
    [Google Scholar]
  36. HuangD. ShermanB.T. TanQ. CollinsJ.R. AlvordW.G. RoayaeiJ. StephensR. BaselerM.W. LaneH.C. LempickiR.A. The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists.Genome Biol.200789R18310.1186/gb‑2007‑8‑9‑r18317784955
    [Google Scholar]
  37. SmootM.E. OnoK. RuscheinskiJ. WangP.L. IdekerT. Cytoscape 2.8: New features for data integration and network visualization.Bioinformatics201127343143210.1093/bioinformatics/btq67521149340
    [Google Scholar]
  38. ChinC-H. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst Biol20148417
    [Google Scholar]
  39. JinJ. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants.Nucleic Acids Res.201645D1D1040D104510.1093/nar/gkw98227924042
    [Google Scholar]
  40. KimD. ChoY. RyuH. KimY. KimT.H. HwangI. BLH 1 and KNAT 3 modulate ABA responses during germination and early seedling development in Arabidopsis.Plant J.201375575576610.1111/tpj.1223623663178
    [Google Scholar]
  41. WangL. LiuY. LiuC. GeC. XuF. LuoM. Ectopic expression of GhIQD14 (cotton IQ67 domain-containing protein 14) causes twisted organ and modulates secondary wall formation in Arabidopsis.Plant Physiol. Biochem.202116327628410.1016/j.plaphy.2021.04.00433872832
    [Google Scholar]
  42. MagnaniE. HakeS. KNOX lost the OX: The Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain.Plant Cell200820487588710.1105/tpc.108.05849518398054
    [Google Scholar]
  43. JingY. ShiL. LiX. ZhengH. GaoJ. WangM. HeL. ZhangW. OXS2 is required for salt tolerance mainly through associating with salt Inducible genes, CA1 and Araport11, in Arabidopsis.Sci. Rep.2019912034110.1038/s41598‑019‑56456‑131889067
    [Google Scholar]
  44. SteinH. HonigA. MillerG. ErsterO. EilenbergH. CsonkaL.N. SzabadosL. KonczC. ZilbersteinA. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants.Plant Sci.2011181214015010.1016/j.plantsci.2011.04.01321683879
    [Google Scholar]
  45. BaiyaS. MahongB. LeeS.K. JeonJ.S. Ketudat CairnsJ.R. Demonstration of monolignol β-glucosidase activity of rice Os4BGlu14, Os4BGlu16 and Os4BGlu18 in Arabidopsis thaliana bglu45 mutant.Plant Physiol. Biochem.201812722323010.1016/j.plaphy.2018.03.02629614441
    [Google Scholar]
  46. EguenT. ArizaJ.G. BrambillaV. SunB. BhatiK.K. FornaraF. WenkelS. Control of flowering in rice through synthetic microProteins.J. Integr. Plant Biol.202062673073610.1111/jipb.1286531478602
    [Google Scholar]
  47. Sotelo-SilveiraM. CucinottaM. ChauvinA.L. Chávez MontesR.A. ColomboL. Marsch-MartínezN. de FolterS. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development.Plant Physiol.2013162277979910.1104/pp.113.21821423610218
    [Google Scholar]
  48. BaudS. GuyonV. KronenbergerJ. WuillèmeS. MiquelM. CabocheM. LepiniecL. RochatC. Multifunctional acetyl‐CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis.Plant J.2003331758610.1046/j.1365‑313X.2003.016010.x12943542
    [Google Scholar]
  49. AmbawatS. SharmaP. YadavN.R. YadavR.C. MYB transcription factor genes as regulators for plant responses: An overview.Physiol. Mol. Biol. Plants201319330732110.1007/s12298‑013‑0179‑124431500
    [Google Scholar]
  50. TheißenG. RümplerF. GramzowL. Array of MADS-box genes: Facilitator for rapid adaptation?Trends Plant Sci.201823756357610.1016/j.tplants.2018.04.00829802068
    [Google Scholar]
  51. CallensC. TuckerM.R. ZhangD. WilsonZ.A. Dissecting the role of MADS-box genes in monocot floral development and diversity.J. Exp. Bot.201869102435245910.1093/jxb/ery08629718461
    [Google Scholar]
  52. FerrettiE. VillaescusaJ.C. Di RosaP. Fernandez-DiazL.C. LongobardiE. MazzieriR. MiccioA. MicaliN. SelleriL. FerrariG. BlasiF. Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype.Mol. Cell. Biol.200626155650566210.1128/MCB.00313‑0616847320
    [Google Scholar]
  53. DekkersB.J.W. PearceS. van Bolderen-VeldkampR.P. MarshallA. WideraP. GilbertJ. DrostH.G. BasselG.W. MüllerK. KingJ.R. WoodA.T.A. GrosseI. QuintM. KrasnogorN. Leubner-MetzgerG. HoldsworthM.J. BentsinkL. Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination.Plant Physiol.2013163120521510.1104/pp.113.22351123858430
    [Google Scholar]
  54. WangX. NiuY. ZhengY. Multiple functions of MYB transcription factors in abiotic stress responses.Int. J. Mol. Sci.20212211612510.3390/ijms2211612534200125
    [Google Scholar]
  55. YuY.T. WuZ. LuK. BiC. LiangS. WangX.F. ZhangD.P. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Mol. Biol.201690326727910.1007/s11103‑015‑0411‑126646286
    [Google Scholar]
  56. PenfieldS. LiY. GildayA.D. GrahamS. GrahamI.A. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm.Plant Cell20061881887189910.1105/tpc.106.04127716844907
    [Google Scholar]
  57. RadoevaT. LokerseA.S. Llavata-PerisC.I. WendrichJ.R. XiangD. LiaoC.Y. VlaarL. BoekschotenM. HooiveldG. DatlaR. WeijersD. A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module.Plant Cell2019311526710.1105/tpc.18.0051830573473
    [Google Scholar]
  58. ZhangW. TangY. HuY. Arabidopsis NF-YCs play dual roles in repressing brassinosteroid biosynthesis and signaling during light-regulated hypocotyl elongation.Plant Cell20213372360237410.1093/plcell/koab11233871651
    [Google Scholar]
  59. MaraC.D. HuangT. IrishV.F. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling.Plant Cell201022369070210.1105/tpc.109.06594620305124
    [Google Scholar]
  60. MiquelM. TriguiG. d’AndréaS. KelemenZ. BaudS. BergerA. DeruyffelaereC. TrubuilA. LepiniecL. DubreucqB. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds.Plant Physiol.201416441866187810.1104/pp.113.23326224515832
    [Google Scholar]
  61. NambaraE. NaitoS. McCourtP. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele.Plant J.19922443544110.1111/j.1365‑313X.1992.00435.x
    [Google Scholar]
  62. KawakatsuT. NeryJ.R. CastanonR. EckerJ.R. Dynamic DNA methylation reconfiguration during seed development and germination.Genome Biol.201718117110.1186/s13059‑017‑1251‑x28911331
    [Google Scholar]
  63. VogiatzakiE. PHO1 exports phosphate from the chalazal seed coat to the embryo in developing Arabidopsis seeds.Curr Biol201727192893290010.1016/j.cub.2017.08.026
    [Google Scholar]
  64. SilotoR.M.P. FindlayK. Lopez-VillalobosA. YeungE.C. NykiforukC.L. MoloneyM.M. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis.Plant Cell20061881961197410.1105/tpc.106.04126916877495
    [Google Scholar]
  65. ShaoQ. LiuX. SuT. MaC. WangP. New insights into the role of seed oil body proteins in metabolism and plant development.Front. Plant Sci.201910156810.3389/fpls.2019.0156831921234
    [Google Scholar]
  66. YuC.Y. SharmaO. NguyenP.H.T. HartonoC.D. KaneharaK. A pair of DUF538 domain‐containing proteins modulates plant growth and trichome development through the transcriptional regulation of GLABRA1 in Arabidopsis thaliana.Plant J.20211084992100410.1111/tpj.1548734496091
    [Google Scholar]
  67. YuC.Y. NakamuraY. Smaller trichomes with variable branches (SVB) and its homolog SVBL act downstream of transcription factor NAC089 and function redundantly in Arabidopsis unfolded protein response.J. Exp. Bot.202374185870588010.1093/jxb/erad29637578504
    [Google Scholar]
  68. ChenC.Y. SchmidtW. The paralogous R3 MYB proteins caprice, triptychon and enhancer of try and CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots.J. Exp. Bot.201566154821483410.1093/jxb/erv25926022254
    [Google Scholar]
  69. Escamilla-TreviñoL.L. Arabidopsis thaliana β-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides.Phytochemistry200667151651166010.1016/j.phytochem.2006.05.022
    [Google Scholar]
  70. IglesiasN. AbelendaJ.A. RodiñoM. SampedroJ. RevillaG. ZarraI. Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant Cell Physiol.2006471556310.1093/pcp/pci22316267099
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936304167240530091051
Loading
/content/journals/cbio/10.2174/0115748936304167240530091051
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test