Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Endometriosis is a debilitating gynecological disorder characterized by chronic pain, infertility, and the growth of endometrial tissue outside the uterus. Accurate and early detection of this condition is crucial for effective management and treatment.

Methods

We developed a gene rank matrix-based model to integrate endometriosis cohorts across multiple platforms. After removing batch effects, we identified 83 genes associated with endometriosis and further refined a diagnostic model using 11 of these genes. The model was trained on two platforms and validated on two others using SVM, Random Forest, Logistic Regression, and gradient-boosting machine learning algorithms.

Results

The integration the gene rank matrix effectively mitigated batch effects. Utilizing a gradient boosting classifier with a subset of 11 genes, the model demonstrated commendable diagnostic efficacy, achieving an Area Under the Curve (AUC) of 0.77, an accuracy of 0.72, and an F1 score of 0.72 for the training dataset. When subjected to validation, the model maintained its performance, yielding an AUC of 0.769, an accuracy of 0.719, and an F1 score of 0.732. These 11 genes were found to be associated with immunosuppression.

Conclusion

Our approach to integrating gene rank matrices effectively consolidates endometriosis data across diverse platforms. The diagnostic model, harnessing the predictive power of 11 specific genes, surpasses alternative models, thereby offering promising prospects for aiding clinical diagnosis of endometriosis. Further validation is imperative to elucidate the functional significance of these 11 genes. Our study underscores the potential of data integration coupled with machine learning techniques in advancing the diagnosis of intricate diseases, such as endometriosis.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936296151240605053713
2024-07-05
2025-12-10
Loading full text...

Full text loading...

References

  1. AzamI.N.A. WahabN.A. MokhtarM.H. ShafieeM.N. MokhtarN.M. Roles of microRNAs in regulating apoptosis in the pathogenesis of endometriosis.Life (Basel)2022129132110.3390/life1209132136143357
    [Google Scholar]
  2. AdamyanL. Endometriosis and adenomyosis in adolescents and fertile and menopausal women.Menstrual Cycle Related DisordersBerlin, HeidelbergSpringerLink201910.1007/978‑3‑030‑14358‑9_15
    [Google Scholar]
  3. SmolarzB. SzyłłoK. RomanowiczH. Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics (review of literature).Int. J. Mol. Sci.202122191055410.3390/ijms22191055434638893
    [Google Scholar]
  4. AgarwalS.K. ChapronC. GiudiceL.C. LauferM.R. LeylandN. MissmerS.A. SinghS.S. TaylorH.S. Clinical diagnosis of endometriosis: A call to action.Am J Obstet Gynecol.20192204354.e1354.e1210.1016/j.ajog.2018.12.039
    [Google Scholar]
  5. LamcevaJ. UljanovsR. StrumfaI. The main theories on the pathogenesis of endometriosis.Int. J. Mol. Sci.2023245425410.3390/ijms2405425436901685
    [Google Scholar]
  6. VercelliniP. SomiglianaE. ViganòP. AbbiatiA. DaguatiR. CrosignaniP.G. Endometriosis: Current and future medical therapies.Best Pract. Res. Clin. Obstet. Gynaecol.200822227530610.1016/j.bpobgyn.2007.10.00118036995
    [Google Scholar]
  7. OzkanS. MurkW. AriciA. Endometriosis and infertility.Ann. N. Y. Acad. Sci.2008112719210010.1196/annals.1434.00718443335
    [Google Scholar]
  8. ValleR.F. SciarraJ.J. Endometriosis: Treatment strategies.Ann. N. Y. Acad. Sci.2003997122923910.1196/annals.1290.02614644830
    [Google Scholar]
  9. FalconeT. FlycktR. Clinical management of endometriosis.Obstet. Gynecol.2018131355757110.1097/AOG.000000000000246929420391
    [Google Scholar]
  10. CarboneM.G. CampoG. PapaleoE. MarazzitiD. MaremmaniI. The importance of a multi-disciplinary approach to the endometriotic patients: The relationship between endometriosis and psychic vulnerability.J. Clin. Med.2021108161610.3390/jcm1008161633920306
    [Google Scholar]
  11. LiuY. ZhangZ. YangF. WangH. LiangS. WangH. YangJ. LinJ. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis.Biol. Reprod.202010261153115910.1093/biolre/ioaa01131965165
    [Google Scholar]
  12. FassbenderA. BurneyR.O. Giudice, Update on biomarkers for the detection of endometriosis.BioMed Res. Int.2015201510.1155/2015/130854
    [Google Scholar]
  13. SunH. CaoD. MaX. YangJ. PengP. YuM. ZhouH. ZhangY. LiL. HuoX. ShenK. Identification of a prognostic signature associated with DNA repair genes in ovarian cancer.Front. Genet.20191083910.3389/fgene.2019.0083931572446
    [Google Scholar]
  14. LiuQ. MarkatouM. Evaluation of methods in removing batch effects on RNA-seq data.Infect Dis Transl Med2016239
    [Google Scholar]
  15. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e47e4710.1093/nar/gkv00725605792
    [Google Scholar]
  16. CloughE. BarrettT. The gene expression omnibus database.Statistical Genomics: Methods and Protocols.Berlin, HeidelbergSpringerLink201693110
    [Google Scholar]
  17. BarrettT. EdgarR. Gene expression omnibus: Microarray data storage, submission, retrieval, and analysis.Methods Enzymol.200641135236910.1016/S0076‑6879(06)11019‑816939800
    [Google Scholar]
  18. AkterS. XuD. NagelS.C. BromfieldJ.J. PelchK. WilshireG.B. JoshiT. Machine learning classifiers for endometriosis using transcriptomics and methylomics data.Front. Genet.20191076610.3389/fgene.2019.0076631552087
    [Google Scholar]
  19. WangJ. CongS. WuH. HeY. LiuX. SunL. ZhaoX. ZhangG. Identification and analysis of potential autophagy-related biomarkers in endometriosis by WGCNA.Front. Mol. Biosci.2021874301210.3389/fmolb.2021.74301234790699
    [Google Scholar]
  20. TamaresisJ.S. IrwinJ.C. GoldfienG.A. RabbanJ.T. BurneyR.O. NezhatC. DePaoloL.V. GiudiceL.C. Molecular classification of endometriosis and disease stage using high-dimensional genomic data.Endocrinology2014155124986499910.1210/en.2014‑149025243856
    [Google Scholar]
  21. HeverA. RothR.B. HeveziP. MarinM.E. AcostaJ.A. AcostaH. RojasJ. HerreraR. GrigoriadisD. WhiteE. ConlonP.J. MakiR.A. ZlotnikA. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator.Proc. Natl. Acad. Sci. USA200710430124511245610.1073/pnas.070345110417640886
    [Google Scholar]
  22. BhatM.A. SharmaJ.B. RoyK.K. SenguptaJ. GhoshD. Genomic evidence of Y chromosome microchimerism in the endometrium during endometriosis and in cases of infertility.Reprod. Biol. Endocrinol.20191712210.1186/s12958‑019‑0465‑z30760267
    [Google Scholar]
  23. XiaoY. HsiaoT.H. SureshU. ChenH.I.H. WuX. WolfS.E. ChenY. A novel significance score for gene selection and ranking.Bioinformatics201430680180710.1093/bioinformatics/btr67122321699
    [Google Scholar]
  24. LuX. MengJ. ZhouY. JiangL. YanF. MOVICS : An R package for multi-omics integration and visualization in cancer subtyping.Bioinformatics20213622-235539554110.1093/bioinformatics/btaa101833315104
    [Google Scholar]
  25. MuthukrishnanR. RohiniR. LASSO: A feature selection technique in predictive modeling for machine learning.2016 IEEE international conference on advances in computer applications (ICACA).24-24 October 2016Coimbatore, India20161820
    [Google Scholar]
  26. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  27. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  28. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg03412519996
    [Google Scholar]
  29. AranD. HuZ. ButteA.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape.Genome Biol.201718122010.1186/s13059‑017‑1349‑129141660
    [Google Scholar]
  30. AranD. Cell-type enrichment analysis of bulk transcriptomes using xCell.Bioinformatics For Cancer Immunotherapy: Methods And Protocols.Berlin, HeidelbergSpringer Link202026327610.1007/978‑1‑0716‑0327‑7_19
    [Google Scholar]
  31. WangX. WenD. YouC. TaoC. MaL. Comprehensive analysis of immune cell infiltration and role of MSR1 expression in aneurysmal subarachnoid haemorrhage.Cell Prolif.2023566e1337910.1111/cpr.1337936515067
    [Google Scholar]
  32. KalatskayaI. GiovannoniG. LeistT. CerraJ. BoschertU. RolfeP.A. Revealing the immune cell subtype reconstitution profile in patients from the CLARITY study using deconvolution algorithms after cladribine tablets treatment.Sci. Rep.2023131806710.1038/s41598‑023‑34384‑537202447
    [Google Scholar]
  33. DemšarJ. CurkT. ErjavecA. GorupČ. HočevarT. MilutinovičM. MožinaM. PolajnarM. ToplakM. StaričA.J.t.J.o.m.L.r. Orange: Data mining toolbox in Python.J. Mach. Learning Res.2013201323492353
    [Google Scholar]
  34. WickhamH. ChangW. WickhamM.H. ggplot2: Create elegant data visualisations using the grammar of graphics.2016Available from: https://search.r-project.org/CRAN/refmans/ggplot2/html/ggplot2-package.html
  35. RaileanuL.E. StoffelK. Theoretical comparison between the gini index and information gain criteria.Ann. Math. Artif. Intell.2004411779310.1023/B:AMAI.0000018580.96245.c6
    [Google Scholar]
  36. TangiralaS. Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm.Int. J. Adv. Comput. Sci. Appl.202011261261910.14569/IJACSA.2020.0110277
    [Google Scholar]
  37. SpolaôrN. ChermanE.A. MonardM.C. LeeH.D. ReliefF for multi-label feature selection2013 Brazilian Conference on Intelligent SystemsIEEE201361110.1109/BRACIS.2013.10
    [Google Scholar]
  38. LaguerreM.D. ArkersonB.J. RobinsonM.A. MoawadN.S. Outcomes of laparoscopic management of chronic pelvic pain and endometriosis.J. Obstet. Gynaecol.202242114615210.1080/01443615.2021.188296734009084
    [Google Scholar]
  39. PerkinsA. The “silent” pain of endometriosis.Nurs. Made Incred. Easy2019173263310.1097/01.NME.0000554597.81822.03
    [Google Scholar]
  40. PeterA.W. AdamsonG.D. Al-JefoutM. BeckerC.M. D’HoogheT.M. DunselmanG.A.J. FazleabasA. GiudiceL.C. HorneA.W. HullM.L. HummelshojL. MissmerS.A. MontgomeryG.W. StrattonP. TaylorR.N. RombautsL. SaundersP.T. VincentK. ZondervanK.T. Research priorities for endometriosis: Recommendations from a global consortium of investigators in endometriosis.Reprod. Sci.201724220222610.1177/193371911665499127368878
    [Google Scholar]
  41. BrosensI. PuttemansP. CampoR. GordtsS. KinkelK. Diagnosis of endometriosis: Pelvic endoscopy and imaging techniques.Best Pract. Res. Clin. Obstet. Gynaecol.200418228530310.1016/j.bpobgyn.2004.03.00215157643
    [Google Scholar]
  42. SheJ. SuD. DiaoR. WangL. A joint model of random forest and artificial neural network for the diagnosis of endometriosis.Front. Genet.20221384811610.3389/fgene.2022.84811635350240
    [Google Scholar]
  43. WeiJ. HuangB. NongY. ZhangQ. LiuW. XieY. PengT. WangW. LiangX. LiQ. Identification of a novel cuproptosis-related gene signature in eutopic endometrium of women with endometriosis.Reprod. Sci.2022202211336474131
    [Google Scholar]
  44. ZhouH. YeZ. GaoZ. XiC. YinJ. SunY. SunB. Construction of a pathological model of skin lesions in acute herpes zoster virus infection and its molecular mechanism.Mamm. Genome202411210.1007/s00335‑024‑10039‑238600211
    [Google Scholar]
  45. LeN.Q.K. DoD.T. NguyenT.T.D. LeQ.A. A sequence-based prediction of Kruppel-like factors proteins using XGBoost and optimized features.Gene202178714564310.1016/j.gene.2021.14564333848577
    [Google Scholar]
  46. LeN.Q.K. OuY.Y. Incorporating efficient radial basis function networks and significant amino acid pairs for predicting GTP binding sites in transport proteins.BMC Bioinformatics201617S19Suppl. 1950110.1186/s12859‑016‑1369‑y28155651
    [Google Scholar]
  47. BryantP. PozzatiG. ElofssonA. Improved prediction of protein-protein interactions using AlphaFold2.Nat. Commun.2022131126510.1038/s41467‑022‑28865‑w35273146
    [Google Scholar]
  48. LiX. CaiH. WangX. AoL. GuoY. HeJ. GuY. QiL. GuanQ. LinX. GuoZ. A rank-based algorithm of differential expression analysis for small cell line data with statistical control.Brief. Bioinform.201920248249110.1093/bib/bbx13529040359
    [Google Scholar]
  49. LuoJ. SchumacherM. SchererA. SanoudouD. MegherbiD. DavisonT. ShiT. TongW. ShiL. HongH. ZhaoC. ElloumiF. ShiW. ThomasR. LinS. TillinghastG. LiuG. ZhouY. HermanD. LiY. DengY. FangH. BushelP. WoodsM. ZhangJ. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data.Pharmacogenomics J.201010427829110.1038/tpj.2010.5720676067
    [Google Scholar]
  50. ZhangF. WuY. TianW. A novel approach to remove the batch effect of single-cell data.Cell Discov.2019514610.1038/s41421‑019‑0114‑x31636959
    [Google Scholar]
  51. LiX. WangK. LyuY. PanH. ZhangJ. StambolianD. SusztakK. ReillyM.P. HuG. LiM. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis.Nat. Commun.2020111233810.1038/s41467‑020‑15851‑332393754
    [Google Scholar]
  52. LazarC. MeganckS. TaminauJ. SteenhoffD. ColettaA. MolterC. Weiss-SolísD.Y. DuqueR. BersiniH. NowéA. Batch effect removal methods for microarray gene expression data integration: A survey.Brief. Bioinform.201314446949010.1093/bib/bbs03722851511
    [Google Scholar]
  53. ByronS.A. Van Keuren-JensenK.R. EngelthalerD.M. CarptenJ.D. CraigD.W. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges.Nat. Rev. Genet.201617525727110.1038/nrg.2016.1026996076
    [Google Scholar]
  54. JoyceC. QuantitativeRT-PCR Quantitative RT-PCR. A review of current methodologies.Methods Mol Biol20021938392
    [Google Scholar]
  55. ZhaoR. ChoiB.Y. LeeM.H. BodeA.M. DongZ. Implications of genetic and epigenetic alterations of CDKN2A (p16INK4a) in cancer.EBioMedicine20168303910.1016/j.ebiom.2016.04.01727428416
    [Google Scholar]
  56. WangL. YangH. HuL. HuD. MaS. SunX. JiangL. SongJ. JiL. MasauJ.F. ZhangH. QianK. CDKN1C (P57): One of the determinants of human endometrial stromal cell decidualization.Biol. Reprod.201898327728510.1093/biolre/iox18729325014
    [Google Scholar]
  57. RemppisA. GretenT. SchäferB.W. HunzikerP. ErneP. KatusH.A. HeizmannC.W. Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy.Biochim. Biophys. Acta Mol. Cell Res.19961313325325710.1016/0167‑4889(96)00097‑38898862
    [Google Scholar]
  58. HoggC. HorneA.W. GreavesE. Endometriosis-associated macrophages: Origin, phenotype, and function.Front. Endocrinol. (Lausanne)202011710.3389/fendo.2020.0000732038499
    [Google Scholar]
  59. Santamaria-KisielL. Rintala-DempseyA.C. ShawG.S. Calcium-dependent and -independent interactions of the S100 protein family.Biochem. J.2006396220121410.1042/BJ2006019516683912
    [Google Scholar]
  60. SinghP. AliS.A. Multifunctional role of S100 protein family in the immune system: An update.Cells20221115227410.3390/cells1115227435892571
    [Google Scholar]
  61. GebhardtC. NémethJ. AngelP. HessJ. S100A8 and S100A9 in inflammation and cancer.Biochem. Pharmacol.200672111622163110.1016/j.bcp.2006.05.01716846592
    [Google Scholar]
  62. BuschM. DaszeniesM. MostP. Abstract P1071: Concurrent Stat1 And Stat3 signaling modulates Tlr4/nfkb-mediated immunomodulatory and antifibrotic effects of cardiomyocyte-damaged released S100a1 protein in cardiac fibroblasts.Circ. Res.2022131Suppl. 1AP1071AP107110.1161/res.131.suppl_1.P1071
    [Google Scholar]
  63. LiuT. ZhangL. JooD. SunS-C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.2017219
    [Google Scholar]
  64. TurnerM. GonzalezL. GarrieK. Role of S100 proteins in health and disease.Biochim Biophys Acta Mol Cell Res.202018676118677
    [Google Scholar]
  65. NieK. LiJ. PengL. ZhangM. HuangW. Pan-cancer analysis of the characteristics of LY96 in prognosis and immunotherapy across human cancer.Front. Mol. Biosci.2022983739310.3389/fmolb.2022.83739335647025
    [Google Scholar]
  66. BanchereauJ. BriereF. CauxC. DavoustJ. LebecqueS. LiuY.J. PulendranB. PaluckaK. Immunobiology of dendritic cells.Annu. Rev. Immunol.200018176781110.1146/annurev.immunol.18.1.76710837075
    [Google Scholar]
  67. LaginhaP.A. ArcoverdeF.V.L. RiccioL.G.C. AndresM.P. AbrãoM.S. The role of dendritic cells in endometriosis: A systematic review.J. Reprod. Immunol.202214910346210.1016/j.jri.2021.10346234915278
    [Google Scholar]
  68. IzumiG. KogaK. TakamuraM. MakabeT. SatakeE. TakeuchiA. TaguchiA. UrataY. FujiiT. OsugaY. Involvement of immune cells in the pathogenesis of endometriosis.J. Obstet. Gynaecol. Res.201844219119810.1111/jog.1355929316073
    [Google Scholar]
  69. SchulkeL. BerbicM. ManconiF. TokushigeN. MarkhamR. FraserI.S. Dendritic cell populations in the eutopic and ectopic endometrium of women with endometriosis.Hum. Reprod.20092471695170310.1093/humrep/dep07119321495
    [Google Scholar]
  70. ArdavínC. Alvarez-LadrónN. FerrizM. Gutiérrez-GonzálezA. Vega-PérezA. Mouse tissue‐resident peritoneal macrophages in homeostasis, repair, infection, and tumor metastasis.Adv. Sci. (Weinh.)20231011220661710.1002/advs.20220661736658699
    [Google Scholar]
  71. Ramírez-PavezT.N. Martínez-EsparzaM. Ruiz-AlcarazA.J. Marín-SánchezP. Machado-LindeF. García-PeñarrubiaP. The role of peritoneal macrophages in endometriosis.Int. J. Mol. Sci.202122191079210.3390/ijms22191079234639133
    [Google Scholar]
  72. SantanamN. MurphyA.A. ParthasarathyS. Macrophages, oxidation, and endometriosis.Ann. N. Y. Acad. Sci.2002955118319810.1111/j.1749‑6632.2002.tb02779.x11949947
    [Google Scholar]
  73. JeljeliM. RiccioL.G.C. ChouzenouxS. MoresiF. ToullecL. DoridotL. NiccoC. BourdonM. MarcellinL. SantulliP. AbrãoM.S. ChapronC. BatteuxF. Macrophage immune memory controls endometriosis in mice and humans.Cell Rep.202033510832510.1016/j.celrep.2020.10832533147452
    [Google Scholar]
  74. HudsonQ.J. AshjaeiK. PerricosA. KuesselL. HussleinH. WenzlR. YotovaI. Endometriosis patients show an increased M2 response in the peritoneal CD14+low/CD68+low macrophage subpopulation coupled with an increase in the T-helper 2 and T-regulatory cells.Reprod. Sci.202027101920193110.1007/s43032‑020‑00211‑932572831
    [Google Scholar]
  75. de BarrosI.B.L. MalvezziH. Gueuvoghlanian-SilvaB.Y. PiccinatoC.A. RizzoL.V. PodgaecS. “What do we know about regulatory T cells and endometriosis? A systematic review”.J. Reprod. Immunol.2017120485510.1016/j.jri.2017.04.00328463710
    [Google Scholar]
  76. BerbicM. Hey-CunninghamA.J. NgC. TokushigeN. GanewattaS. MarkhamR. RussellP. FraserI.S. The role of Foxp3+ regulatory T-cells in endometriosis: A potential controlling mechanism for a complex, chronic immunological condition.Hum. Reprod.201025490090710.1093/humrep/deq02020150173
    [Google Scholar]
  77. YangH. ZhuangY. The deviations of CD4 + T cells during peripheral blood and peritoneal fluid of endometriosis: A systematic review and meta-analysis.Arch. Gynecol. Obstet.202330851431144610.1007/s00404‑023‑06964‑336840769
    [Google Scholar]
  78. CanisM. AbbottJ. AbraoM. Al-JefoutM. BedaiwyM. BenagianoG. BurnsK.A. CanisM. CarmonaF. ChapronC. CritchleyH.O.D. de ZieglerD. FalconeT. FazleabasA. FerreroS. Garcia-VelascoJ.A. GargettC. GreavesE. GriffithL.G. GuoS-W. HabibaM. HaradaT. HullM.L. JohnsonN.P. KaufmanY. IssacsonK.B. KhanK.N. KimM-R. KoninckxP.A. LesseyB.A. MartinD. MatsuzakiS. MishraG. OsugaY. PetragliaF. PopovA. RomanH. RomanoA. SaundersP. SeckinT. SomiglianaE. TaylorH.S. TaylorR.N. VercelliniP. ViganoP. A call for new theories on the pathogenesis and pathophysiology of endometriosis.J. Minim. Invasive Gynecol.202431537137710.1016/j.jmig.2024.02.004
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936296151240605053713
Loading
/content/journals/cbio/10.2174/0115748936296151240605053713
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test