Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a highly effective treatment for hematological tumors. However, the associated adverse reaction, Cytokine Release Syndrome (CRS), poses a significant challenge. While numerous studies have investigated CRS biomarkers during CAR-T cell therapy, the ability to predict CRS risk prior to treatment initiation remains a crucial yet underexplored aspect.

Objective

The primary purpose of this study was to address the issue of limited data, explore an alternative approach using public data to identify predictive markers for CRS risk assessment from RNA-Seq in pre-treatment patients data, and comprehend the inducible mechanisms underlying CRS.

Methods

We integrated information from two public databases, the FDA Adverse Event Reporting System (FAERS) for adverse reaction reports of CAR-T cell therapy and the Cancer Genome Atlas (TCGA) for RNA-Seq data on corresponding hematological tumors. Candidate genes were screened by correlation analysis between Reported Odds Ratio (ROR) values and RNA-Seq gene expression levels, and then core factors were identified through stepwise analysis of pathway enrichment, cluster analysis, and protein interactions.

Results

Our analysis highlighted the correlation between CRS risk and pre-treatment T cell activation/proliferation, identifying key genes (IFN-γ, IL1β, IL2, IL6, and IL10) as significant CRS indicators.

Conclusion

This study offers a unique perspective on predicting CRS risk before CAR-T cell therapy, circumventing the challenges of scarce clinical data by leveraging analysis of public databases. It elucidates the crucial role of T cell activation/proliferation dynamics in CRS. The analytical methods and identified markers provide a reference for the research and clinical application of CAR-T cell therapy.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936295986240619162816
2024-07-02
2025-08-13
Loading full text...

Full text loading...

References

  1. MaudeS.L. FreyN. ShawP.A. AplencR. BarrettD.M. BuninN.J. ChewA. GonzalezV.E. ZhengZ. LaceyS.F. MahnkeY.D. MelenhorstJ.J. RheingoldS.R. ShenA. TeacheyD.T. LevineB.L. JuneC.H. PorterD.L. GruppS.A. Chimeric antigen receptor T cells for sustained remissions in leukemia.N. Engl. J. Med.2014371161507151710.1056/NEJMoa140722225317870
    [Google Scholar]
  2. GumberD. WangL.D. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion.EBioMedicine20227710394110.1016/j.ebiom.2022.10394135301179
    [Google Scholar]
  3. KatopodiT. PetanidisS. AnestakisD. CharalampidisC. ChatziprodromidouI. FlorosG. EskitzisP. ZarogoulidisP. KoulourisC. SevvaC. PapadopoulosK. DagherM. VarsamisN. TheodorouV. MystakidouC.M. KatsiosN.I. FarmakisK. KosmidisC. Immunoengineering via chimeric antigen receptor-T cell therapy: Reprogramming nanodrug delivery.Pharmaceutics20231510245810.3390/pharmaceutics1510245837896218
    [Google Scholar]
  4. JohnsonP.C. AbramsonJ.S. Engineered T Cells: CAR T cell therapy and beyond.Curr. Oncol. Rep.2022241233110.1007/s11912‑021‑01161‑435059997
    [Google Scholar]
  5. SengsayadethS. SavaniB.N. OluwoleO. DholariaB. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practiceEJHaem20223S161010.1002/jha2.338
    [Google Scholar]
  6. FajgenbaumD.C. JuneC.H. Cytokine storm. reply.N. Engl. J. Med.202138416e5933882217
    [Google Scholar]
  7. LarsonR.C. MausM.V. Recent advances and discoveries in the mechanisms and functions of CAR T cells.Nat. Rev. Cancer202121314516110.1038/s41568‑020‑00323‑z33483715
    [Google Scholar]
  8. YiD. GergisM. HsuJ. YangY. BiX. AljurfM. GergisU. Next-generation chimeric antigen receptor T Cells.Hematol. Oncol. Stem Cell Ther.202215311712110.56875/2589‑0646.103536537905
    [Google Scholar]
  9. TrandoA. Ter-ZakarianA. YeungP. GoodmanA.M. HamdanA. HurleyM. JeongA.R. TzachanisD. Outcomes of Chimeric Antigen Receptor (CAR) T-cell therapy in patients with large B-cell lymphoma (LBCL): A single-institution experience.Cancers20231518467110.3390/cancers1518467137760639
    [Google Scholar]
  10. JainM.D. MiklosD.B. JacobsonC.A. TimmermanJ.M. SunJ. NaterJ. FangX. PatelA. DavisM. HeekeD. TrinhT. MattieM. NeumannF. KimJ.J. ToC. FilostoS. ReshefR. Axicabtagene ciloleucel in combination with the 4–1bb agonist utomilumab in patients with relapsed/refractory large B-Cell lymphoma: Phase 1 results from ZUMA-11.Clin. Cancer Res.202329204118412710.1158/1078‑0432.CCR‑23‑091637527011
    [Google Scholar]
  11. CreesZ.D. GhobadiA. Cellular therapy updates in B-Cell lymphoma: The state of the CAR-T.Cancers20211320518110.3390/cancers1320518134680329
    [Google Scholar]
  12. ShaikhS. ShaikhH. CART Cell Therapy ToxicityIn: StatPearlsTreasure Island (FL)StatPearls Publishing LLC.20232023
    [Google Scholar]
  13. CurranK.J. PegramH.J. BrentjensR.J. Chimeric antigen receptors for T cell immunotherapy:Current understanding and future directions.J. Gene Med.201214640541510.1002/jgm.260422262649
    [Google Scholar]
  14. SchusterS.J. SvobodaJ. ChongE.A. NastaS.D. MatoA.R. AnakÖ. BrogdonJ.L. Pruteanu-MaliniciI. BhojV. LandsburgD. WasikM. LevineB.L. LaceyS.F. MelenhorstJ.J. PorterD.L. JuneC.H. Chimeric antigen receptor T cells in refractory B-cell lymphomas.N. Engl. J. Med.2017377262545255410.1056/NEJMoa170856629226764
    [Google Scholar]
  15. CronR.Q. GoyalG. ChathamW.W. Cytokine storm syndrome.Annu. Rev. Med.202374132133710.1146/annurev‑med‑042921‑11283736228171
    [Google Scholar]
  16. DiorioC. ShraimR. MyersR. BehrensE.M. CannaS. BassiriH. AplencR. BurudpakdeeC. ChenF. DiNofiaA.M. GillS. GonzalezV. LambertM.P. LeahyA.B. LevineB.L. LindellR.B. MaudeS.L. MelenhorstJ.J. NewmanH. PerazzelliJ. SeifA.E. LaceyS.F. JuneC.H. BarrettD.M. GruppS.A. TeacheyD.T. Comprehensive serum proteome profiling of cytokine release syndrome and immune effector cell–associated neurotoxicity syndrome patients with B-cell all receiving CAR T19.Clin. Cancer Res.202228173804381310.1158/1078‑0432.CCR‑22‑082235705524
    [Google Scholar]
  17. LeeP.Y. CronR.Q. The multifaceted immunology of cytokine storm syndrome.J. Immunol.202321081015102410.4049/jimmunol.220080837011407
    [Google Scholar]
  18. ZhangY. Tislelizumab augment the efficacy of CD19/22 dual-targeted chimeric antigen receptor T cell in advanced stage relapsed or refractory B-cell non-Hodgkin lymphoma.Hematol. Oncol.2023421e3227
    [Google Scholar]
  19. NeelapuS.S. TummalaS. KebriaeiP. WierdaW. GutierrezC. LockeF.L. KomanduriK.V. LinY. JainN. DaverN. WestinJ. GulbisA.M. LoghinM.E. de GrootJ.F. AdkinsS. DavisS.E. RezvaniK. HwuP. ShpallE.J. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities.Nat. Rev. Clin. Oncol.2018151476210.1038/nrclinonc.2017.14828925994
    [Google Scholar]
  20. ShiqiL. JiasiZ. LvzheC. HuailongX. LipingH. LinL. QianzhenZ. ZhongtaoY. JunjieS. ZucongC. YingziZ. MeilingW. YunyanL. LinlingW. LihuaF. YingnianC. WeiZ. YuL. LeL. YouchengW. DingsongZ. YanchengD. PingY. LihuaZ. XiaopingL. XiaozhuangH. ZhongzhengZ. ZhiY. ChengQ. SanbinW. Durable remission related to CAR-T persistence in R/R B-ALL and long-term persistence potential of prime CAR-T.Mol. Ther. Oncolytics20232910711710.1016/j.omto.2023.04.00337215385
    [Google Scholar]
  21. TodorovicZ. TodorovicD. MarkovicV. LadjevacN. ZdravkovicN. DjurdjevicP. ArsenijevicN. MilovanovicM. ArsenijevicA. MilovanovicJ. CAR T Cell therapy for chronic lymphocytic leukemia: Successes and shortcomings.Curr. Oncol.20222953647365710.3390/curroncol2905029335621683
    [Google Scholar]
  22. RojekA.E. KlineJ.P. FeinbergN. Optimization of metabolic tumor volume as a prognostic marker in CAR T-Cell therapy for aggressive large B-cell NHL.Clin. Lymphoma Myeloma Leuk.202310.1016/j.clml.2023.09.00537827881
    [Google Scholar]
  23. CzapkaM. T. RiedellP. A. PisanoJ. C. Infectious complications of car T-cell therapy: A longitudinal risk modelTranspl Infect Dis20232023e1414810.1111/tid.14148
    [Google Scholar]
  24. CaballeroA.C. Escribà-GarciaL. Alvarez-FernándezC. BrionesJ. CAR T-cell therapy predictive response markers in diffuse large B-cell lymphoma and therapeutic options after CART19 failure.Front. Immunol.20221390449710.3389/fimmu.2022.90449735874685
    [Google Scholar]
  25. WadaF. JoT. AraiY. KitawakiT. MizumotoC. KandaJ. NishikoriM. YamashitaK. NagaoM. Takaori-KondoA. T-cell counts in peripheral blood at leukapheresis predict responses to subsequent CAR-T cell therapy.Sci. Rep.20221211869610.1038/s41598‑022‑23589‑936333521
    [Google Scholar]
  26. DangX. YeS. ZhouL. LuY. LiP. LiangA. QianW. Prognostic impact of peripheral eosinophil counts in patients with diffuse large B-cell lymphoma receiving chimeric antigen receptor T-cell therapy.Cytotherapy202325657357710.1016/j.jcyt.2022.10.01036456447
    [Google Scholar]
  27. GalliE. SoràF. HohausS. FresaA. PansiniI. AutoreF. MetafuniE. InnocentiI. LimongielloM.A. GiammarcoS. LaurentiL. BacigalupoA. ChiusoloP. De StefanoV. SicaS. Endothelial activation predicts disseminated intravascular coagulopathy, cytokine release syndrome and prognosis in patients treated with anti‐CD19 CAR‐T cells.Br. J. Haematol.20232011869410.1111/bjh.1859636503182
    [Google Scholar]
  28. NakamuraN. AraiY. KitawakiT. JoT. MizumotoC. KandaJ. NishikoriM. YamashitaK. Takaori-KondoA. Decreased serum phosphate levels are a useful biomarker to predict occurrence and severity of cytokine release syndrome in chimeric antigen receptor T ‐cell therapy.Br. J. Haematol.20232001e1e310.1111/bjh.1850436220156
    [Google Scholar]
  29. FranceschiC. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans.Mech. Age. Develop.200712819210510.1016/j.mad.2006.11.016
    [Google Scholar]
  30. DeckerM.L. GottaV. WellmannS. RitzN. Cytokine profiling in healthy children shows association of age with cytokine concentrations.Sci. Rep.2017711784210.1038/s41598‑017‑17865‑229259216
    [Google Scholar]
  31. HoffmannF. AlbertM.H. ArenzS. BidlingmaierC. BerkowiczN. SedlaczekS. TillH. PawlitaI. RennerE.D. WeissM. BelohradskyB.H. Intracellular T-cell cytokine levels are age-dependent in healthy children and adults.Eur. Cytokine Netw.200516428328816464742
    [Google Scholar]
  32. WiegeringV. EyrichM. WunderC. GüntherH. SchlegelP.G. WinklerB. Age-related changes in intracellular cytokine expression in healthy children.Eur. Cytokine Netw.2009202758010.1684/ecn.2009.014919541593
    [Google Scholar]
  33. SealR. L. GordonS. M. LushM. J. WrightM. W. BrufordE. A. Genenames.org: The HGNC resources in 2011.Nucleic Acids Res201139Database issueD514D51910.1093/nar/gkq892
    [Google Scholar]
  34. ZhaoC. XuN. TanJ. ChengQ. XieW. XuJ. WeiZ. YeJ. YuL. FengW. ILGBMSH: an interpretable classification model for the shRNA target prediction with ensemble learning algorithm.Brief. Bioinform.2022236bbac42910.1093/bib/bbac429
    [Google Scholar]
  35. PinkR.C. WicksK. CaleyD.P. PunchE.K. JacobsL. Francisco CarterD.R. Pseudogenes: Pseudo-functional or key regulators in health and disease?RNA201117579279810.1261/rna.265831121398401
    [Google Scholar]
  36. PolisenoL. Pseudogenes: newly discovered players in human cancer.Sci. Signal.20125242re510.1126/scisignal.200285822990117
    [Google Scholar]
  37. AshburnerM. BallC.A. BlakeJ.A. BotsteinD. ButlerH. CherryJ.M. DavisA.P. DolinskiK. DwightS.S. EppigJ.T. HarrisM.A. HillD.P. Issel-TarverL. KasarskisA. LewisS. MateseJ.C. RichardsonJ.E. RingwaldM. RubinG.M. SherlockG. Gene Ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/7555610802651
    [Google Scholar]
  38. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  39. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  40. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  41. BaderG.D. HogueC.W.V. An automated method for finding molecular complexes in large protein interaction networks.BMC Bioinformatics200341210.1186/1471‑2105‑4‑212525261
    [Google Scholar]
  42. HanH. ChoJ.W. LeeS. YunA. KimH. BaeD. YangS. KimC.Y. LeeM. KimE. LeeS. KangB. JeongD. KimY. JeonH.N. JungH. NamS. ChungM. KimJ.H. LeeI. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions.Nucleic Acids Res.201846D1D380D38610.1093/nar/gkx101329087512
    [Google Scholar]
  43. Nikolich-ŽugichJ. The twilight of immunity: Emerging concepts in aging of the immune system.Nat. Immunol.2018191101910.1038/s41590‑017‑0006‑x29242543
    [Google Scholar]
  44. SchoenbornJ.R. WilsonC.B. Regulation of interferon-gamma during innate and adaptive immune responses.Adv. Immunol.2007964110110.1016/S0065‑2776(07)96002‑217981204
    [Google Scholar]
  45. FranceschiC. BonafèM. ValensinS. OlivieriF. De LucaM. OttavianiE. De BenedictisG. Inflamm-aging. An evolutionary perspective on immunosenescence.Ann. N. Y. Acad. Sci.2000908124425410.1111/j.1749‑6632.2000.tb06651.x10911963
    [Google Scholar]
  46. Le SauxS. WeyandC.M. GoronzyJ.J. Mechanisms of immunosenescence: Lessons from models of accelerated immune aging.Ann. N. Y. Acad. Sci.201212471698210.1111/j.1749‑6632.2011.06297.x22224726
    [Google Scholar]
  47. ReaI.M. GibsonD.S. McGilliganV. McNerlanS.E. AlexanderH.D. RossO.A. Age and age-related diseases: Role of inflammation triggers and cytokines.Front. Immunol.2018958610.3389/fimmu.2018.0058629686666
    [Google Scholar]
  48. MüllerL. Di BenedettoS. PawelecG. The immune system and its dysregulation with aging.Subcell. Biochem.201991214310.1007/978‑981‑13‑3681‑2_230888648
    [Google Scholar]
  49. SchwartzD.M. BonelliM. GadinaM. O’SheaJ.J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases.Nat. Rev. Rheumatol.2016121253610.1038/nrrheum.2015.16726633291
    [Google Scholar]
  50. O’SheaJ.J. SchwartzD.M. VillarinoA.V. GadinaM. McInnesI.B. LaurenceA. The JAK-STAT pathway: Impact on human disease and therapeutic intervention.Annu. Rev. Med.201566131132810.1146/annurev‑med‑051113‑02453725587654
    [Google Scholar]
  51. LiM. XueS.L. TangX. XuJ. ChenS. HanY. QiuH. MiaoM. XuN. TanJ. KangL. YuZ. LouX. XuY. ChenJ. YanZ. FengW. WuD. YuL. The differential effects of tumor burdens on predicting the net benefits of ssCART-19 cell treatment on r/r B-ALL patients.Sci. Rep.202212137810.1038/s41598‑021‑04296‑335013456
    [Google Scholar]
  52. KagoyaY. Cytokine signaling in chimeric antigen receptor T cell therapy.Int. Immunol.20233624956
    [Google Scholar]
  53. BiswasS.K. MantovaniA. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm.Nat. Immunol.2010111088989610.1038/ni.193720856220
    [Google Scholar]
  54. LainščekD. Golob-UrbancA. MikoličV. Pantović-ŽaligJ. MalenšekŠ. JeralaR. Regulation of CD19 CAR-T cell activation based on an engineered downstream transcription factor.Mol. Ther. Oncolytics202329779010.1016/j.omto.2023.04.00537223115
    [Google Scholar]
  55. SakamotoY. IshidaT. MasakiA. TakeshitaM. IwasakiH. YonekuraK. TashiroY. ItoA. KusumotoS. IidaS. UtsunomiyaA. UedaR. InagakiH. Clinicopathological significance of CD28 overexpression in adult T‐cell leukemia/lymphoma.Cancer Sci.2022113134936110.1111/cas.1519134738707
    [Google Scholar]
  56. WongC. DarbyJ.M. MurphyP.R. PinfoldT.L. LennardP.R. WoodsG.M. LyonsA.B. FliesA.S. Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells.Dev. Comp. Immunol.202111510388210.1016/j.dci.2020.10388233039410
    [Google Scholar]
  57. LaneP. Regulation of T and B cell responses by modulating interactions between CD28/CTLA4 and their ligands, CD80 and CD86.Ann. N. Y. Acad. Sci.1997815139240010.1111/j.1749‑6632.1997.tb52090.x9186685
    [Google Scholar]
  58. KennedyA. WatersE. RowshanravanB. HinzeC. WilliamsC. JanmanD. FoxT.A. BoothC. PesenackerA.M. HallidayN. SoskicB. KaurS. QureshiO.S. MorrisE.C. IkemizuS. PaluchC. HuoJ. DavisS.J. BoucrotE. WalkerL.S.K. SansomD.M. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation.Nat. Immunol.20222391365137810.1038/s41590‑022‑01289‑w35999394
    [Google Scholar]
  59. HansenJ.D. PasquierL.D. LefrancM.P. LopezV. BenmansourA. BoudinotP. The B7 family of immunoregulatory receptors: A comparative and evolutionary perspective.Mol. Immunol.200946345747210.1016/j.molimm.2008.10.00719081138
    [Google Scholar]
  60. SpolskiR. LiP. LeonardW.J. Biology and regulation of IL-2: from molecular mechanisms to human therapy.Nat. Rev. Immunol.2018181064865910.1038/s41577‑018‑0046‑y30089912
    [Google Scholar]
  61. Mami-ChouaibF. BlancC. CorgnacS. HansS. MalenicaI. GranierC. TihyI. TartourE. Resident memory T cells, critical components in tumor immunology.J. Immunother. Cancer2018618710.1186/s40425‑018‑0399‑630180905
    [Google Scholar]
  62. ChenP.H. LipschitzM. WeiratherJ.L. JacobsonC. ArmandP. WrightK. HodiF.S. RobertsZ.J. SieversS.A. RossiJ. BotA. GoW. RodigS.J. Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy.JCI Insight2020512e13461210.1172/jci.insight.13461232484797
    [Google Scholar]
  63. LuoW. LiY.X. JiangL.J. ChenQ. WangT. YeD.W. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19.Trends Pharmacol. Sci.202041853154310.1016/j.tips.2020.06.00732580895
    [Google Scholar]
  64. Sánchez-PauleteA.R. Mateus-TiqueJ. MollaogluG. NielsenS.R. MarksA. LakshmiA. KhanJ.A. WilkC.M. PiaL. BaccariniA. MeradM. BrownB.D. Targeting macrophages with car T cells delays solid tumor progression and enhances antitumor immunity.Cancer Immunol. Res.202210111354136910.1158/2326‑6066.CIR‑21‑107536095236
    [Google Scholar]
  65. NorelliM. CamisaB. BarbieraG. FalconeL. PurevdorjA. GenuaM. SanvitoF. PonzoniM. DoglioniC. CristoforiP. TraversariC. BordignonC. CiceriF. OstuniR. BoniniC. CasucciM. BondanzaA. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells.Nat. Med.201824673974810.1038/s41591‑018‑0036‑429808007
    [Google Scholar]
  66. HuoY. ZhangH. SaL. ZhengW. HeY. LyuH. SunM. ZhangL. ShanL. YangA. WangT. M1 polarization enhances the antitumor activity of chimeric antigen receptor macrophages in solid tumors.J. Transl. Med.202321122510.1186/s12967‑023‑04061‑236978075
    [Google Scholar]
  67. LiX. GuoX. ZhuY. WeiG. ZhangY. LiX. XuH. CuiJ. WuW. HeJ. RitchieM.E. WeiskittelT.M. LiH. YuH. DingL. ShaoM. LuoQ. XuX. TengX. ChangA.H. ZhangJ. HuangH. HuY. Single-cell transcriptomic analysis reveals bcma car-t cell dynamics in a patient with refractory primary plasma cell leukemia.Mol. Ther.202129264565710.1016/j.ymthe.2020.11.02833278564
    [Google Scholar]
  68. AtturM. Interleukin-1 receptor antagonist gene (IL1RN) variants modulate the cytokine release syndrome and mortality of SARS-CoV-2medRxiv 2023.01.09.23284348, 2023.
    [Google Scholar]
  69. PassarelliC. CivinoA. RossiM.N. CifaldiL. LanariV. MonetaG.M. CaielloI. BracagliaC. MontinaroR. NovelliA. De BenedettiF. PrencipeG. IFNAR2 deficiency causing dysregulation of nk cell functions and presenting with hemophagocytic lymphohistiocytosis.Front. Genet.20201193710.3389/fgene.2020.0093733193576
    [Google Scholar]
  70. ChenP. TangY. HeW. YangR. LanZ. ChenR. ZhangP. Potential pathophysiological mechanisms underlying multiple organ dysfunction in cytokine release syndrome.Mediators Inflamm.2022202211710.1155/2022/713790035431655
    [Google Scholar]
  71. FontenotJ.D. GavinM.A. RudenskyA.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.Nat. Immunol.20034433033610.1038/ni90412612578
    [Google Scholar]
  72. HoriS. NomuraT. SakaguchiS. Control of regulatory T cell development by the transcription factor Foxp3.Science200329956091057106110.1126/science.107949012522256
    [Google Scholar]
  73. JosefowiczS.Z. LuL.F. RudenskyA.Y. Regulatory T cells: Mechanisms of differentiation and function.Annu. Rev. Immunol.201230153156410.1146/annurev.immunol.25.022106.14162322224781
    [Google Scholar]
  74. GolubovskayaV. WuL. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy.Cancers2016833610.3390/cancers803003626999211
    [Google Scholar]
  75. HuangJ. ZhouC. DengJ. ZhouJ. JAK inhibition as a new treatment strategy for patients with COVID-19.Biochem. Pharmacol.202220211516210.1016/j.bcp.2022.11516235787993
    [Google Scholar]
  76. LiX. ShaoM. ZengX. QianP. HuangH. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy.Signal Transduct. Target. Ther.20216136710.1038/s41392‑021‑00764‑434667157
    [Google Scholar]
  77. ShakhovA.N. CollartM.A. VassalliP. NedospasovS.A. JongeneelC.V. Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages.J. Exp. Med.19901711354710.1084/jem.171.1.352104921
    [Google Scholar]
  78. DuttaJ. FanY. GuptaN. FanG. GélinasC. Current insights into the regulation of programmed cell death by NF-κB.Oncogene200625516800681610.1038/sj.onc.120993817072329
    [Google Scholar]
  79. AcarL. AtalanN. KaragedikE.H. ErgenA. Tumour necrosis factor-alpha and nuclear factor-kappa B gene variants in sepsis.Balkan Med. J.2018351303510.4274/balkanmedj.2017.024628840846
    [Google Scholar]
  80. YangL. XieX. TuZ. FuJ. XuD. ZhouY. The signal pathways and treatment of cytokine storm in COVID-19.Signal Transduct. Target. Ther.20216125510.1038/s41392‑021‑00679‑034234112
    [Google Scholar]
  81. MarreroM.B. Introduction to JAK/STAT signaling and the vasculature.Vascul. Pharmacol.200543530730910.1016/j.vph.2005.09.00216263337
    [Google Scholar]
  82. TanakaT. NarazakiM. KishimotoT. IL-6 in inflammation, immunity, and disease.Cold Spring Harb. Perspect. Biol.2014610a01629510.1101/cshperspect.a01629525190079
    [Google Scholar]
  83. UlichT.R. del CastilloJ. GuoK.Z. In vivo hematologic effects of recombinant interleukin-6 on hematopoiesis and circulating numbers of RBCs and WBCs.Blood198973110811010.1182/blood.V73.1.108.1082783370
    [Google Scholar]
  84. TanakaT. NarazakiM. KishimotoT. Immunotherapeutic implications of IL-6 blockade for cytokine storm.Immunotherapy20168895997010.2217/imt‑2016‑002027381687
    [Google Scholar]
  85. GajjelaB.K. ZhouM.M. Calming the cytokine storm of COVID-19 through inhibition of JAK2/STAT3 signaling.Drug Discov. Today202227239040010.1016/j.drudis.2021.10.01634743903
    [Google Scholar]
  86. AletahaD. KerschbaumerA. KastratiK. DejacoC. DougadosM. McInnesI.B. SattarN. StammT.A. TakeuchiT. TraunerM. van der HeijdeD. VoshaarM. WinthropK.L. RavelliA. BetteridgeN. BurmesterG.R.R. BijlsmaJ.W.J. BykerkV. CaporaliR. ChoyE.H. CodreanuC. CombeB. CrowM.K. de WitM. EmeryP. FleischmannR.M. GabayC. HetlandM.L. HyrichK.L. IagnoccoA. IsaacsJ.D. KremerJ.M. MarietteX. MerkelP.A. MyslerE.F. NashP. NurmohamedM.T. PavelkaK. PoorG. Rubbert-RothA. Schulze-KoopsH. StrangfeldA. TanakaY. SmolenJ.S. Consensus statement on blocking interleukin-6 receptor and interleukin-6 in inflammatory conditions: An update.Ann. Rheum. Dis.202382677378710.1136/ard‑2022‑22278435953263
    [Google Scholar]
  87. AliyuM. ZohoraF.T. AnkaA.U. AliK. MalekniaS. SaffariounM. AziziG. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach.Int. Immunopharmacol.202211110913010.1016/j.intimp.2022.10913035969896
    [Google Scholar]
  88. FuX. XuM. SongY. LiY. ZhangH. ZhangJ. ZhangC. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II–independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways.J. Biol. Chem.201829351197711978410.1074/jbc.RA118.00366830352872
    [Google Scholar]
  89. RosenbergS.A. IL-2: the first effective immunotherapy for human cancer.J. Immunol.2014192125451545810.4049/jimmunol.149001924907378
    [Google Scholar]
  90. VignaliD.A.A. KuchrooV.K. IL-12 family cytokines: Immunological playmakers.Nat. Immunol.201213872272810.1038/ni.236622814351
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936295986240619162816
Loading
/content/journals/cbio/10.2174/0115748936295986240619162816
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CAR-T cell therapy; CRS; hematological tumors; pathway enrichment; PPI; ROR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test