Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

N6-methyldeoxyadenine (6mA) is the most prevalent DNA modification in both prokaryotes and eukaryotes. While single-molecule real-time sequencing (SMRT-seq) can detect 6mA events at the individual nucleotide level, its practical application is hindered by a high rate of false positives.

Methods

We propose a computational model for identifying DNA 6mA that incorporates comprehensive site features from SMRT-seq and employs machine learning classifiers.

Results

The results demonstrate that 99.54% and 96.55% of the identified DNA 6mA instances in correspond with motifs and peak regions identified by methylated DNA immunoprecipitation sequencing (MeDIP-seq), respectively. Compared to SMRT-seq, the proportion of predicted DNA 6mA instances within MeDIP-seq peak regions increases by 2% to 70% across the six bacterial strains.

Conclusion

Our proposed method effectively reduces the false-positive rate in DNA 6mA prediction.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936300671240523044154
2025-06-01
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cbio/20/5/CBIO-20-5-02.html?itemId=/content/journals/cbio/10.2174/0115748936300671240523044154&mimeType=html&fmt=ahah

References

  1. YangS. WangY. ChenY. DaiQ. Masqc: next generation sequencing assists third generation sequencing for quality control in n6- methyladenine dna identification.Front. Genet.20201126910.3389/fgene.2020.0026932269589
    [Google Scholar]
  2. ZhuS. BeaulaurierJ. DeikusG. WuT.P. StrahlM. HaoZ. LuoG. GregoryJ.A. ChessA. HeC. XiaoA. SebraR. SchadtE.E. FangG. Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing.Genome Res.20182871067107810.1101/gr.231068.11729764913
    [Google Scholar]
  3. MondoS.J. DannebaumR.O. KuoR.C. LouieK.B. BewickA.J. LaButtiK. HaridasS. KuoA. SalamovA. AhrendtS.R. LauR. BowenB.P. LipzenA. SullivanW. AndreopoulosB.B. ClumA. LindquistE. DaumC. NorthenT.R. Kunde-RamamoorthyG. SchmitzR.J. GryganskyiA. CulleyD. MagnusonJ. JamesT.Y. O’MalleyM.A. StajichJ.E. SpataforaJ.W. ViselA. GrigorievI.V. Widespread adenine N6-methylation of active genes in fungi.Nat. Genet.201749696496810.1038/ng.385928481340
    [Google Scholar]
  4. GreerE.L. BlancoM.A. GuL. SendincE. LiuJ. Aristizábal-CorralesD. HsuC.H. AravindL. HeC. ShiY. DNA Methylation on N6-Adenine in C. elegans.Cell2015161486887810.1016/j.cell.2015.04.00525936839
    [Google Scholar]
  5. LiangZ. ShenL. CuiX. BaoS. GengY. YuG. LiangF. XieS. LuT. GuX. YuH. Dna n6-adenine methylation in arabidopsis thaliana.Dev. Cell2018453406416.e310.1016/j.devcel.2018.03.01229656930
    [Google Scholar]
  6. ZhangG. HuangH. LiuD. ChengY. LiuX. ZhangW. YinR. ZhangD. ZhangP. LiuJ. LiC. LiuB. LuoY. ZhuY. ZhangN. HeS. HeC. WangH. ChenD. N6-methyladenine DNA modification in Drosophila.Cell2015161489390610.1016/j.cell.2015.04.01825936838
    [Google Scholar]
  7. FuY. LuoG.Z. ChenK. DengX. YuM. HanD. HaoZ. LiuJ. LuX. DoréL.C. WengX. JiQ. MetsL. HeC. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas.Cell2015161487989210.1016/j.cell.2015.04.01025936837
    [Google Scholar]
  8. KongY. CaoL. DeikusG. FanY. MeadE.A. LaiW. ZhangY. YongR. SebraR. WangH. ZhangX.S. FangG. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution.Science2022375658051552210.1126/science.abe748935113693
    [Google Scholar]
  9. JenniferB. Global methylation state at base-pair resolution of the caulobacter genome throughout the cell cycle.Proceed Nat Acad Sci.201311048E4658E4667
    [Google Scholar]
  10. ZhouC. LiuY. LiX. ZouJ. ZouS. DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs.Bone Res.2016411603310.1038/boneres.2016.3327785372
    [Google Scholar]
  11. WuT.P. WangT. SeetinM.G. LaiY. ZhuS. LinK. LiuY. ByrumS.D. MackintoshS.G. ZhongM. TackettA. WangG. HonL.S. FangG. SwenbergJ.A. XiaoA.Z. DNA methylation on N6-adenine in mammalian embryonic stem cells.Nature2016532759932933310.1038/nature1764027027282
    [Google Scholar]
  12. WeberM. DaviesJ.J. WittigD. OakeleyE.J. HaaseM. LamW.L. SchübelerD. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.Nat. Genet.200537885386210.1038/ng159816007088
    [Google Scholar]
  13. GuyonI. WestonJ. BarnhillS. VapnikV. Gene selection for cancer classification using support vector machines.Mach. Learn.2002461/338942210.1023/A:1012487302797
    [Google Scholar]
  14. RavsahebH. Rathod, Suraj R Chaudhari, Amod S Patil, and Atul A Shirkhedkar. Ultra-high performance liquid chromatography-ms/ms (uhplc- ms/ms) in practice: Analysis of drugs and pharmaceutical formulations.Future J. Pharmaceut. Sci.201951126
    [Google Scholar]
  15. ItoS. ShenL. DaiQ. WuS.C. CollinsL.B. SwenbergJ.A. HeC. ZhangY. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Science201133360471300130310.1126/science.121059721778364
    [Google Scholar]
  16. EidJ. FehrA. GrayJ. LuongK. LyleJ. OttoG. PelusoP. RankD. BaybayanP. BettmanB. BibilloA. BjornsonK. ChaudhuriB. ChristiansF. CiceroR. ClarkS. DalalR. deWinterA. DixonJ. FoquetM. GaertnerA. HardenbolP. HeinerC. HesterK. HoldenD. KearnsG. KongX. KuseR. LacroixY. LinS. LundquistP. MaC. MarksP. MaxhamM. MurphyD. ParkI. PhamT. PhillipsM. RoyJ. SebraR. ShenG. SorensonJ. TomaneyA. TraversK. TrulsonM. VieceliJ. WegenerJ. WuD. YangA. ZaccarinD. ZhaoP. ZhongF. KorlachJ. TurnerS. Real-time DNA sequencing from single polymerase molecules.Science2009323591013313810.1126/science.116298619023044
    [Google Scholar]
  17. FlusbergB.A. WebsterD.R. LeeJ.H. TraversK.J. OlivaresE.C. ClarkT.A. KorlachJ. TurnerS.W. Direct detection of DNA methylation during single-molecule, real-time sequencing.Nat. Methods20107646146510.1038/nmeth.145920453866
    [Google Scholar]
  18. FangG. MuneraD. FriedmanD.I. MandlikA. ChaoM.C. BanerjeeO. FengZ. LosicB. MahajanM.C. JabadoO.J. DeikusG. ClarkT.A. LuongK. MurrayI.A. DavisB.M. Keren-PazA. ChessA. RobertsR.J. KorlachJ. TurnerS.W. KumarV. WaldorM.K. SchadtE.E. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing.Nat. Biotechnol.201230121232123910.1038/nbt.243223138224
    [Google Scholar]
  19. LaValleyM.P. Logistic regression.Circulation2008117182395239910.1161/CIRCULATIONAHA.106.68265818458181
    [Google Scholar]
  20. XanthopoulosP. Linear discriminant analysis. Robust data miningSpringer.2013
    [Google Scholar]
  21. RishI. An empirical study of the naive bayes classifier.JCAI 2001 Workshop on Empirical Methods in Artificial Intelligence.Seattle, 4 August 2001, pp. 41-46.2001
    [Google Scholar]
  22. LeeT-S. ChiuC-C. ChouY-C. LuC-J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines.Comput. Stat. Data Anal.20065041113113010.1016/j.csda.2004.11.006
    [Google Scholar]
  23. NobleW.S. What is a support vector machine?Nat. Biotechnol.200624121565156710.1038/nbt1206‑156517160063
    [Google Scholar]
  24. JiangL. CaiZ. WangD. JiangS. Survey of Improving K-Nearest-Neighbor for Classification.Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).24-27 August 2007, Haikou, China, pp. 679-6832007
    [Google Scholar]
  25. FengZ. FangG. KorlachJ. ClarkT. LuongK. ZhangX. WongW. SchadtE. Detecting DNA modifications from SMRT sequencing data by modeling sequence context dependence of polymerase kinetic.PLOS Comput. Biol.201393e100293510.1371/journal.pcbi.100293523516341
    [Google Scholar]
  26. ChenC.M. ZhangZ. Ming-Tai WuJ. LakshmannaK. High utility periodic frequent pattern mining in multiple sequences.Comput. Model. Eng. Sci.2023137173375910.32604/cmes.2023.027463
    [Google Scholar]
  27. FengX. HeC. Mammalian DNA N6-methyladenosine: Challenges and new insights.Mol. Cell202383334335110.1016/j.molcel.2023.01.00536736309
    [Google Scholar]
  28. ZhangJ. PengQ. MaC. WangJ. XiaoC. LiT. LiuX. ZhouL. XuX. ZhouW.Z. DingW. AnN.A. ZhangL. LiuY. LiC.Y. 6mA-Sniper: Quantifying 6mA sites in eukaryotes at single-nucleotide resolution.Sci. Adv.2023942eadh791210.1126/sciadv.adh791237862411
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936300671240523044154
Loading
/content/journals/cbio/10.2174/0115748936300671240523044154
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): C. reinhardtii; detection method; DNA 6mA; machine learning; MeDIP-seq; SMRT-seq features
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test