Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Enhancer-Promoter Interaction (EPI) recognition is crucial for understanding human development and transcriptional regulation. EPI in the genome plays a significant role in regulating gene expression. In Genome-Wide Association Studies (GWAS), EPIs help to improve the mechanistic understanding of disease- or trait-associated genetic variants.

Methods

Experimental methods for classifying EPIs are time-consuming and expensive. Consequently, there has been a growing emphasis on research focused on developing computational approaches that leverage deep learning and other machine learning techniques. One of the main challenges in EPI prediction is the long sequences of enhancers and promoters, which most existing computational approaches struggle with. This paper proposes a new deep learning model based on the Hierarchical Attention Network (HAN) for EPI detection. The proposed EPI-HAN model has two unique features: (i) a hybrid embedding strategy (ii) a hierarchical HAN structure comprising two attention layers that operate at both the individual token and smaller sequence levels.

Results

In benchmark comparisons, the EPI-HAN model demonstrates superior performance over state-of-the-art methods, as evidenced by AUROC and AUPR metrics for specific cell lines. Specifically, for the cell lines HeLa-S3, HUVEC, and NHEK, the AUROC values are 0.962, 0.946, and 0.987, respectively, and the AUPR values are 0.842, 0.724, and 0.926, respectively.

Conclusion

The comparative results indicate that our model surpasses other state-of-the-art models in three out of six cell lines. The superior performance in recognizing EPIs is attributed to the hierarchical structure of the attention mechanism.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936294743240524113731
2024-06-12
2025-09-12
Loading full text...

Full text loading...

References

  1. SchoenfelderS. FraserP. Long-range enhancer–promoter contacts in gene expression control.Nat. Rev. Genet.201920843745510.1038/s41576‑019‑0128‑031086298
    [Google Scholar]
  2. WonH. de la Torre-UbietaL. SteinJ.L. ParikshakN.N. HuangJ. OplandC.K. GandalM.J. SuttonG.J. HormozdiariF. LuD. LeeC. EskinE. VoineaguI. ErnstJ. GeschwindD.H. Chromosome conformation elucidates regulatory relationships in developing human brain.Nature2016538762652352710.1038/nature1984727760116
    [Google Scholar]
  3. WuC. PanW. Integration of enhancer-promoter interactions with gwas summary results identifies novel Schizophrenia-associated genes and pathways.Genetics2018209369970910.1534/genetics.118.30080529728367
    [Google Scholar]
  4. DekkerJ. RippeK. DekkerM. KlecknerN. Capturing chromosome conformation.Science2002295555813061311
    [Google Scholar]
  5. LiG. RuanX. AuerbachR.K. SandhuK.S. ZhengM. WangP. PohH.M. GohY. LimJ. ZhangJ. SimH.S. PehS.Q. MulawadiF.H. OngC.T. OrlovY.L. HongS. ZhangZ. LandtS. RahaD. EuskirchenG. WeiC.L. GeW. WangH. DavisC. Fisher-AylorK.I. MortazaviA. GersteinM. GingerasT. WoldB. SunY. FullwoodM.J. CheungE. LiuE. SungW.K. SnyderM. RuanY. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation.Cell20121481-2849810.1016/j.cell.2011.12.01422265404
    [Google Scholar]
  6. RaoS.S.P. HuntleyM.H. DurandN.C. StamenovaE.K. BochkovI.D. RobinsonJ.T. SanbornA.L. MacholI. OmerA.D. LanderE.S. AidenE.L. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.Cell2014157716651680
    [Google Scholar]
  7. SanyalA. LajoieB.R. JainG. DekkerJ. The long-range interaction landscape of gene promoters.Nature2012489741410911310.1038/nature1127922955621
    [Google Scholar]
  8. CaoQ. AnyansiC. HuX. XuL. XiongL. TangW. MokM.T.S. ChengC. FanX. GersteinM. ChengA.S.L. YipK.Y. Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines.Nat. Genet.201749101428143610.1038/ng.395028869592
    [Google Scholar]
  9. HeB. ChenC. TengL. TanK. Global view of enhancer-promoter inter- actome in human cells.Proc Natl Acad Sci USA201411121E21919
    [Google Scholar]
  10. RoyS. SiahpiraniA.F. ChasmanD. KnaackS. AyF. StewartR. WilsonM. SridharanR. A predictive modeling approach for cell line-specific long-range regulatory interactions.Nucleic Acids Res.201543188694871210.1093/nar/gkv86526338778
    [Google Scholar]
  11. WhalenS. TrutyR.M. PollardK.S. Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin.Nat. Genet.201648548849610.1038/ng.353927064255
    [Google Scholar]
  12. MinS. LeeB. YoonS. Deep learning in bioinformatics.Brief. Bioinform.2016185bbw06810.1093/bib/bbw06827473064
    [Google Scholar]
  13. ChingT. HimmelsteinD.S. Beaulieu-JonesB.K. KalininA.A. DoB.T. WayG.P. FerreroE. AgapowP.M. ZietzM. HoffmanM.M. XieW. RosenG.L. LengerichB.J. IsraeliJ. LanchantinJ. WoloszynekS. CarpenterA.E. ShrikumarA. XuJ. CoferE.M. LavenderC.A. TuragaS.C. AlexandariA.M. LuZ. HarrisD.J. DeCaprioD. QiY. KundajeA. PengY. WileyL.K. SeglerM.H.S. BocaS.M. SwamidassS.J. HuangA. GitterA. GreeneC.S. Opportunities and obstacles for deep learning in biology and medicine.J. R. Soc. Interface2018151412017038710.1098/rsif.2017.038729618526
    [Google Scholar]
  14. AlipanahiB. DelongA. WeirauchM.T. FreyB.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.Nat. Biotechnol.201533883183810.1038/nbt.330026213851
    [Google Scholar]
  15. ZhouJ. TroyanskayaO.G. Predicting effects of noncoding variants with deep learning–based sequence model.Nat. Methods2015121093193410.1038/nmeth.354726301843
    [Google Scholar]
  16. PoplinR. ChangP-C. AlexanderD. SchwartzS. ColthurstT. KuA. Creating a universal SNP and small indel variant caller with deep neural networks.BioRxiv201610.1101/092890
    [Google Scholar]
  17. AngermuellerC. PärnamaaT. PartsL. StegleO. Deep learning for computational biology.Mol. Syst. Biol.201612787810.15252/msb.2015665127474269
    [Google Scholar]
  18. YangY. ZhangR. SinghS. MaJ. Exploiting sequence-based features for predicting enhancer–promoter interactions.Bioinformatics20173314i252i26010.1093/bioinformatics/btx25728881991
    [Google Scholar]
  19. MaoW. KostkaD. ChikinaM. Modeling enhancer-promoter interactions with attention-based neural networks.BioRxiv201710.1101/219667
    [Google Scholar]
  20. ZengW. WuM. JiangR. Prediction of enhancer-promoter interactions via natural language processing.BMC Genomics201819S2Suppl. 28410.1186/s12864‑018‑4459‑629764360
    [Google Scholar]
  21. SinghS. YangY. PóczosB. MaJ. Predicting enhancer‐promoter interaction from genomic sequence with deep neural networks.Quant. Biol.20197212213710.1007/s40484‑019‑0154‑034113473
    [Google Scholar]
  22. ZhuangZ. ShenX. PanW. A simple convolutional neural network for prediction of enhancer–promoter interactions with DNA sequence data.Bioinformatics201935172899290610.1093/bioinformatics/bty105030649185
    [Google Scholar]
  23. HongZ. ZengX. WeiL. LiuX. Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism.Bioinformatics20203641037104310.1093/bioinformatics/btz694
    [Google Scholar]
  24. FanY. PengB. StackEPI: Identification of cell line-specific enhancer–promoter interactions based on stacking ensemble learning.BMC Bioinformatics202223127210.1186/s12859‑022‑04821‑935820811
    [Google Scholar]
  25. MinX. YeC. LiuX. ZengX. Predicting enhancer-promoter interactions by deep learning and matching heuristic.Brief. Bioinform.2021224bbaa25410.1093/bib/bbaa25433096548
    [Google Scholar]
  26. WangZ. ZhouL. JiangS. HuangW. EPnet: A general network to predict enhancer-promoter interactions.2021 11th International Conference on Information Science and Technology (ICIST)21-23 May 2021Chengdu, China202110.1109/ICIST52614.2021.9440647
    [Google Scholar]
  27. ZouQ. XingP. WeiL. LiuB. Gene2vec: Gene subsequence embedding for prediction of mammalian N 6 -methyladenosine sites from mRNA.RNA201925220521810.1261/rna.069112.11830425123
    [Google Scholar]
  28. HochreiterS. SchmidhuberJ. Long short-term memory.Neural Comput.1997981735178010.1162/neco.1997.9.8.17359377276
    [Google Scholar]
  29. ChoK. Van Merri¨enboerB. GulcehreC. BahdanauD. BougaresF. SchwenkH. BengioY. Learning phrase representations using RNN encoder–decoder for statistical machine translation.Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)Doha, Qatar20141724173410.3115/v1/D14‑1179
    [Google Scholar]
  30. HassanzadehH.R. WangM.D. DeeperBind: Enhancing prediction of sequence specificities of DNA binding proteins.2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)15-18 December 2016Shenzhen, China201610.1109/BIBM.2016.7822515
    [Google Scholar]
  31. QuangD. XieX. DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences.Nucleic Acids Res.20164411e10710.1093/nar/gkw22627084946
    [Google Scholar]
  32. ShenZ. BaoW. HuangD.S. Recurrent neural network for predicting transcription factor binding sites.Sci. Rep.2018811527010.1038/s41598‑018‑33321‑129311619
    [Google Scholar]
  33. NgP. DNA2Vec: Consistent vector representations of variable-length k-mers.arXiv:1701062792017
    [Google Scholar]
  34. MikolovT. ChenK. CorradoG. DeanJ. Efficient estimation of word representations in vector space.arXiv:130137812013
    [Google Scholar]
  35. RenF. YangC. QiuQ. ZengN. CaiC. HouC. ZouQ. Exploiting discriminative regions of brain slices based on 2D CNNs for Alzheimer’s Disease classification.IEEE Access2019718142318143310.1109/ACCESS.2019.2920241
    [Google Scholar]
  36. LiC.C. LiuB. MotifCNN-fold: Protein fold recognition based on fold-specific features extracted by motif-based convolutional neural networks.Brief. Bioinform.20202162133214110.1093/bib/bbz13331774907
    [Google Scholar]
  37. BahdanauD. ChoK. BengioY. Neural machine translation by jointly learning to align and translate.arXiv:14090473v72015
    [Google Scholar]
  38. JaisI.K.M. IsmailA.R. NisaS.Q. Adam optimization algorithm for wide and deep neural network.Knowledge Eng Data Sci201921414610.17977/um018v2i12019p41‑46
    [Google Scholar]
  39. HanleyJ.A. McNeilB.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve.Radiology19821431293610.1148/radiology.143.1.70637477063747
    [Google Scholar]
  40. DavisJ. GoadrichM. The relationship between precision-recall and ROC curves.Proceedings of the 23rd International Conference on Machine LearningPittsburgh, PA200623324010.1145/1143844.1143874
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936294743240524113731
Loading
/content/journals/cbio/10.2174/0115748936294743240524113731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test