Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

The wide application of artificial intelligence in various fields has shown its potential to aid medical diagnosis. Ultrasound is an important tool used to evaluate fetal development and diagnose fetal diseases.

Methods

However, traditional diagnostic methods are time-consuming and laborious. Therefore, we constructed an end-to-end automatic diagnosis system based on convolutional neural networks using ensemble learning to improve the robustness and accuracy of the system.

Results

The system classifies the ultrasound image dataset into six categories, namely, abdomen, brain, femur, thorax, maternal cervix, and other planes.

Conclusion

After experiments, the results showed that the proposed end-to-end system can considerably improve the detection accuracy of the standard plane.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936295679240620094626
2024-07-05
2025-08-14
Loading full text...

Full text loading...

References

  1. HillG.D. BlockJ.R. TanemJ.B. FrommeltM.A. Disparities in the prenatal detection of critical congenital heart disease.Prenat. Diagn.201535985986310.1002/pd.462225989740
    [Google Scholar]
  2. WhitworthM. BrickerL. MullanC. Ultrasound for fetal assessment in early pregnancy.Cochrane Database Syst Rev201520157CD00705810.1002/14651858.CD007058.pub3
    [Google Scholar]
  3. LiY. ZhangB. LiuZ. WangR. Neural energy computations based on Hodgkin-Huxley models bridge abnormal neuronal activities and energy consumption patterns of major depressive disorder.Comput. Biol. Med.202316610750010.1016/j.compbiomed.2023.10750037797488
    [Google Scholar]
  4. BajracharyaJ. ShresthaN.S. KarkiC. Accuracy of prediction of birth weight by fetal ultrasound.Kathmandu Univ. Med. J.20121038747623132481
    [Google Scholar]
  5. GaoY. RuY. HanH. YinH. YinP. GaoY. Prenatal ultrasound diagnosis and clinical analysis of fetal small bowel obstruction.Curr. Med. Imaging2023Online ahead of print.10.2174/011573405626242523103117113037957877
    [Google Scholar]
  6. SalomonL.J. AlfirevicZ. Da Silva CostaF. DeterR.L. FiguerasF. GhiT. GlancP. KhalilA. LeeW. NapolitanoR. PapageorghiouA. SotiriadisA. StirnemannJ. ToiA. YeoG. ISUOG Practice Guidelines: Ultrasound assessment of fetal biometry and growth.Ultrasound Obstet. Gynecol.201953671572310.1002/uog.2027231169958
    [Google Scholar]
  7. van NisselrooijA.E.L. TeunissenA.K.K. ClurS.A. RozendaalL. PajkrtE. LinskensI.H. RammelooL. van LithJ.M.M. BlomN.A. HaakM.C. Why are congenital heart defects being missed?Ultrasound Obstet. Gynecol.202055674775710.1002/uog.2035831131945
    [Google Scholar]
  8. ZhouZ. ZhaoZ. ZhangX. ZhangX. JiaoP. YeX. Identifying fetal status with fetal heart rate: Deep learning approach based on long convolution.Comput. Biol. Med.202315910697010.1016/j.compbiomed.2023.10697037105114
    [Google Scholar]
  9. HongZ. ZengX. WeiL. LiuX. Identifying enhancer–promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism.Bioinformatics20203641037104310.1093/bioinformatics/btz69431588505
    [Google Scholar]
  10. AlzubaidiL. ZhangJ. HumaidiA.J. Al-DujailiA. DuanY. Al-ShammaO. SantamaríaJ. FadhelM.A. Al-AmidieM. FarhanL. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions.J. Big Data2021815310.1186/s40537‑021‑00444‑833816053
    [Google Scholar]
  11. YanC. LiM. MaJ. LiaoY. LuoH. WangJ. LuoJ. A Novel feature selection method based on MRMR and enhanced flower pollination algorithm for high dimensional biomedical data.Curr. Bioinform.202217213314910.2174/1574893616666210624130124
    [Google Scholar]
  12. ShenD. WuG. SukH.I. Deep learning in medical image analysis.Annu. Rev. Biomed. Eng.201719122124810.1146/annurev‑bioeng‑071516‑04444228301734
    [Google Scholar]
  13. BakatorM. RadosavD. Deep learning and medical diagnosis: A review of literature.Multimodal Technol. Interact.2018234710.3390/mti2030047
    [Google Scholar]
  14. WangY. LiuX. ShenY. SongX. WangT. ShangX. PengJ. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.Brief. Bioinform.2023242bbad06910.1093/bib/bbad06936847701
    [Google Scholar]
  15. RazzakM.I. NazS. ZaibA. Deep learning for medical image processing: Overview, challenges and the future.In: Classification in BioAppsSpringerLink2018323350
    [Google Scholar]
  16. AburtoJ.M. SchöleyJ. KashnitskyI. ZhangL. RahalC. MissovT.I. MillsM.C. DowdJ.B. KashyapR. Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: a population-level study of 29 countries.Int. J. Epidemiol.2022511637410.1093/ije/dyab20734564730
    [Google Scholar]
  17. HuY. SunJ. ZhangY. ZhangH. GaoS. WangT. HanZ. WangL. SunB. LiuG. rs1990622 variant associates with Alzheimer’s disease and regulates TMEM106B expression in human brain tissues.BMC Med.20211911110.1186/s12916‑020‑01883‑533461566
    [Google Scholar]
  18. HuY. ZhangH. LiuB. GaoS. WangT. HanZ. JiX. LiuG. rs34331204 regulates TSPAN13 expression and contributes to Alzheimer’s disease with sex differences.Brain202014311e9510.1093/brain/awaa30233175954
    [Google Scholar]
  19. LiuX. ZhangY. ShenY. ShangX. WangY. CircRNA-Disease Association Prediction based on Heterogeneous Graph Representation.2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Las Vegas, NV, USA, 2022: pp. 2411-2417.10.1109/BIBM55620.2022.9994988
    [Google Scholar]
  20. WangY.T. JuanL. PengJ. WangT. ZangT. WangY. Explore potential disease related metabolites based on latent factor model.BMC Genomics202223Suppl 126910.1186/s12864‑022‑08504‑w35387615
    [Google Scholar]
  21. YangC. YangZ. LiaoS. GuoJ. YinS. LiuC. KangY. A new approach to automatic measure fetal head circumference in ultrasound images using convolutional neural networks.Comput. Biol. Med.202214710580110.1016/j.compbiomed.2022.10580135785663
    [Google Scholar]
  22. WeiL. DingY. SuR. TangJ. ZouQ. Prediction of human protein subcellular localization using deep learning.J. Parallel Distrib. Comput.201811721221710.1016/j.jpdc.2017.08.009
    [Google Scholar]
  23. WeiL. LiaoM. GaoY. JiR. HeZ. ZouQ. Improved and promising identification of human microRNAs by incorporating a high-quality negative set.IEEE/ACM Trans. Comput. Biol. Bioinformatics201411119220110.1109/TCBB.2013.14626355518
    [Google Scholar]
  24. KavithaR. JothiD.K. SaravananK. Ant colony optimization-enabled cnn deep learning technique for accurate detection of cervical cancer.Biomed Res Int20232023174289110.1155/2023/174289136865486
    [Google Scholar]
  25. ChattopadhyayA. MaitraM. MRI-based brain tumor image detection using CNN based deep learning method.Neuroscience Informatics20222410006010.1016/j.neuri.2022.100060
    [Google Scholar]
  26. PhamT.D. Time-frequency time-space long short-term memory networks for image classification of histopathological tissue.Sci. Rep.20211111370310.1038/s41598‑021‑93160‑534211077
    [Google Scholar]
  27. HuY. ZhangY. ZhangH. GaoS. WangL. WangT. HanZ. LiuG. Mendelian randomization highlights causal association between genetically increased C‐reactive protein levels and reduced Alzheimer’s disease risk.Alzheimers Dement.202218102003200610.1002/alz.1268735598332
    [Google Scholar]
  28. HuY. ZhangY. ZhangH. GaoS. WangL. WangT. HanZ. SunB. LiuG. Cognitive performance protects against Alzheimer’s disease independently of educational attainment and intelligence.Mol. Psychiatry202227104297430610.1038/s41380‑022‑01695‑435840796
    [Google Scholar]
  29. WangY. ZhaiY. DingY. ZouQ. SBSM-Pro: Support bio-sequence machine for proteins.arXiv:2308.102752023
    [Google Scholar]
  30. ManavalanB. BasithS. ShinT.H. WeiL. LeeG. mAHTPred: A sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation.Bioinformatics201935162757276510.1093/bioinformatics/bty104730590410
    [Google Scholar]
  31. PanX. LinX. CaoD. ZengX. YuP.S. HeL. NussinovR. ChengF. Deep learning for drug repurposing: Methods, databases, and applications.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022124e159710.1002/wcms.1597
    [Google Scholar]
  32. ZengX. WangF. LuoY. KangS. TangJ. LightstoneF.C. FangE.F. CornellW. NussinovR. ChengF. Deep generative molecular design reshapes drug discovery.Cell Rep. Med.202231210079410.1016/j.xcrm.2022.10079436306797
    [Google Scholar]
  33. LiZ. ZhuS. ShaoB. ZengX. WangT. LiuT.Y. DSN-DDI: An accurate and generalized framework for drug–drug interaction prediction by dual-view representation learning.Brief. Bioinform.2023241bbac59710.1093/bib/bbac59736592061
    [Google Scholar]
  34. XuJ. XuJ. MengY. LuC. CaiL. ZengX. NussinovR. ChengF. Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data.Cell Rep. Methods20233110038210.1016/j.crmeth.2022.10038236814845
    [Google Scholar]
  35. WangY. PangC. WangY. JinJ. ZhangJ. ZengX. SuR. ZouQ. WeiL. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks.Nat. Commun.2023141615510.1038/s41467‑023‑41698‑537788995
    [Google Scholar]
  36. WangR. JiangY. JinJ. YinC. YuH. WangF. FengJ. SuR. NakaiK. ZouQ. WeiL. DeepBIO: An automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis.Nucleic Acids Res.20235173017302910.1093/nar/gkad05536796796
    [Google Scholar]
  37. ZhangT. PanL. YangQ. YangG. HanN. QiaoS. TumorDet: A breast tumor detection model based on transfer learning and shuffleNet.Curr. Bioinform.202419211912810.2174/1574893618666230815121150
    [Google Scholar]
  38. ShinM. PengZ. KimH.J. YooS.S. YoonK. Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation.Comput. Methods Programs Biomed.202323710759110.1016/j.cmpb.2023.10759137182263
    [Google Scholar]
  39. MaX. XiB. ZhangY. ZhuL. SuiX. TianG. YangJ. A machine learning-based diagnosis of thyroid cancer using thyroid nodules ultrasound images.Curr. Bioinform.202015434935810.2174/1574893614666191017091959
    [Google Scholar]
  40. AlakwaaW. NassefM. BadrA. Lung cancer detection and classification with 3D convolutional neural network (3D-CNN).Int. J. Adv. Comput. Sci. Appl.2017884091710.14569/IJACSA.2017.080853
    [Google Scholar]
  41. XieX.P. YangW. ZhangL. WangH-Q. Identifying biomarkers of cisplatin sensitivity in non-small cell lung cancer via comprehensive integrative analysis.Curr. Bioinform.202217649850910.2174/1574893617666220407105905
    [Google Scholar]
  42. JinJ. YuY. WangR. ZengX. PangC. JiangY. LiZ. DaiY. SuR. ZouQ. NakaiK. WeiL. iDNA-ABF: Multi-scale deep biological language learning model for the interpretable prediction of DNA methylations.Genome Biol.202223121910.1186/s13059‑022‑02780‑136253864
    [Google Scholar]
  43. Bouzar-BenlabiodL. HarrarK. YamounL. KhodjaM.Y. AkhloufiM.A. A novel breast cancer detection architecture based on a CNN-CBR system for mammogram classification.Comput. Biol. Med.202316310713310.1016/j.compbiomed.2023.10713337327756
    [Google Scholar]
  44. DesaiM. ShahM. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN).Clinical eHealth20214111
    [Google Scholar]
  45. ChenX. LinY. QuQ. NingB. ChenH. LiaoB. LiX. Analyzing association between expression quantitative trait and CNV for breast cancer based on gene interaction network clustering and group sparse learning.Curr. Bioinform.202217435836810.2174/1574893617666220207095117
    [Google Scholar]
  46. WuZ. ZhaoS. PengY. HeX. ZhaoX. HuangK. WuX. FanW. LiF. ChenM. LiJ. HuangW. ChenX. LiY. Studies on different CNN algorithms for face skin disease classification based on clinical images.IEEE Access20197665056651110.1109/ACCESS.2019.2918221
    [Google Scholar]
  47. WuL. ChengJ.Z. LiS. LeiB. WangT. NiD. FUIQA: Fetal ultrasound image quality assessment with deep convolutional networks.IEEE Trans. Cybern.20174751336134910.1109/TCYB.2017.267189828362600
    [Google Scholar]
  48. Burgos-ArtizzuX.P. Coronado-GutiérrezD. Valenzuela-AlcarazB. Bonet-CarneE. EixarchE. CrispiF. GratacósE. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes.Sci. Rep.20201011020010.1038/s41598‑020‑67076‑532576905
    [Google Scholar]
  49. SundaresanV. BridgeC.P. IoannouC. NobleJ.A. Automated characterization of the fetal heart in ultrasound images using fully convolutional neural networks.2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017),Melbourne, VIC, Australia, 2017, pp. 671-674.10.1109/ISBI.2017.7950609
    [Google Scholar]
  50. JiangY. WangR. FengJ. JinJ. LiangS. LiZ. YuY. MaA. SuR. ZouQ. MaQ. WeiL. Explainable deep hypergraph learning modeling the peptide secondary structure prediction.Adv. Sci.20231011220615110.1002/advs.20220615136794291
    [Google Scholar]
  51. ZouQ. XingP. WeiL. LiuB. Gene2vec: Gene subsequence embedding for prediction of mammalian N 6 -methyladenosine sites from mRNA.RNA201925220521810.1261/rna.069112.11830425123
    [Google Scholar]
  52. MonteroA. Bonet-CarneE. Burgos-ArtizzuX.P. Generative adversarial networks to improve fetal brain fine-grained plane classification.Sensors20212123797510.3390/s2123797534883977
    [Google Scholar]
  53. MengQ. RueckertD. KainzB. Unsupervised cross-domain image classification by distance metric guided feature alignment.October 4-8, 2020Proceedings 12020Springer.10.1007/978‑3‑030‑60334‑2_15
    [Google Scholar]
  54. LiangJ. SPRNet: Automatic fetal standard plane recognition network for ultrasound images.Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis: First International Workshop, SUSI 2019, and 4th International Workshop, PIPPI 2019, Held in Conjunction with MICCAI 2019,Shenzhen, China, October 13 and 17, 2019, Proceedings 4. 2019. Springer.
    [Google Scholar]
  55. ChenH. WuL. DouQ. QinJ. LiS. ChengJ.Z. NiD. HengP.A. Ultrasound standard plane detection using a composite neural network framework.IEEE Trans. Cybern.20174761576158610.1109/TCYB.2017.268508028371793
    [Google Scholar]
  56. CaiY. DrosteR. SharmaH. ChatelainP. DrukkerL. PapageorghiouA.T. NobleJ.A. Spatio-temporal visual attention modelling of standard biometry plane-finding navigation.Med. Image Anal.20206510176210.1016/j.media.2020.10176232623278
    [Google Scholar]
  57. ChenL. BentleyP. MoriK. MisawaK. FujiwaraM. RueckertD. Self-supervised learning for medical image analysis using image context restoration.Med. Image Anal.20195810153910.1016/j.media.2019.10153931374449
    [Google Scholar]
  58. ChatterjeeS. BreitkopfM. SarasaenC. YassinH. RoseG. NürnbergerA. SpeckO. ReconResNet: Regularised residual learning for MR image reconstruction of Undersampled Cartesian and Radial data.Comput. Biol. Med.202214310532110.1016/j.compbiomed.2022.10532135219188
    [Google Scholar]
  59. HeK. ZhangX. RenS. SunJ. Deep residual learning for image recognition.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Las Vegas, NV, USA. 2016; pp. 770-8.
    [Google Scholar]
  60. SimonyanK. ZissermanA. Very deep convolutional networks for large-scale image recognition.arXiv:1409.15562014
    [Google Scholar]
  61. CholletF. Xception: Deep learning with depthwise separable convolutions.2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Honolulu, HI, USA. 2017; pp. 1800-7.10.1109/CVPR.2017.195
    [Google Scholar]
  62. HuangG. LiuZ. van der MaatenL. WeinbergerK.Q. Densely connected convolutional networks.Proceedings of the IEEE conference on computer vision and pattern recognition201722612269Available from: https://arxiv.org/abs/1608.06993
    [Google Scholar]
  63. DaiC. JiangY. YinC. SuR. ZengX. ZouQ. NakaiK. WeiL. scIMC: A platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods.Nucleic Acids Res.20225094877489910.1093/nar/gkac31735524568
    [Google Scholar]
  64. TanM. LeQ. Efficientnet: Rethinking model scaling for convolutional neural networks.International conference on machine learning20191 Available from: https://arxiv.org/abs/1905.11946
    [Google Scholar]
  65. YuZ. TanE.L. NiD. QinJ. ChenS. LiS. LeiB. WangT. A deep convolutional neural network-based framework for automatic fetal facial standard plane recognition.IEEE J. Biomed. Health Inform.201822387488510.1109/JBHI.2017.270503128534800
    [Google Scholar]
  66. BaumgartnerC.F. KamnitsasK. MatthewJ. FletcherT.P. SmithS. KochL.M. KainzB. RueckertD. SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound.IEEE Trans. Med. Imaging201736112204221510.1109/TMI.2017.271236728708546
    [Google Scholar]
  67. KrishnaT.B. KokilP. Automated detection of common maternal fetal ultrasound planes using deep feature fusion.2022 IEEE 19th India Council International Conference (INDICON),Kochi, India. 2022; pp. 1-5.10.1109/INDICON56171.2022.10039879
    [Google Scholar]
  68. JinS. HongY. ZengL. JiangY. LinY. WeiL. YuZ. ZengX. LiuX. A general hypergraph learning algorithm for drug multi-task predictions in micro-to-macro biomedical networks.PLOS Comput. Biol.20231911e101159710.1371/journal.pcbi.101159737956212
    [Google Scholar]
  69. LiuM. LiC. ChenR. CaoD. ZengX. Geometric deep learning for drug discovery.Expert Syst. Appl.202424012249810.1016/j.eswa.2023.122498
    [Google Scholar]
  70. PangC. QiaoJ. ZengX. ZouQ. WeiL. Deep generative models in de novo drug molecule generation.J. Chem. Inf. Model.20246472174219410.1021/acs.jcim.3c0149637934070
    [Google Scholar]
  71. ZengX. XiangH. YuL. WangJ. LiK. NussinovR. ChengF. Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework.Nat. Mach. Intell.20224111004101610.1038/s42256‑022‑00557‑6
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936295679240620094626
Loading
/content/journals/cbio/10.2174/0115748936295679240620094626
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test