Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

In recent years, the rapid development of deep learning technology has had a significant impact on the prediction of DNA-binding proteins. Deep neural networks can automatically learn complex features in protein and DNA sequences, improving prediction accuracy and generalization capabilities.

Objective

This article mainly establishes a meta-migration model and combines it with a deep learning model to predict DNA-binding proteins.

Methods

This study introduces a meta-learning algorithm based on transfer learning, which helps achieve rapid learning and adaptation to new tasks. In addition, normalized Moreau-Broto autocorrelation attributes (NMBAC), position-specific scoring matrix-discrete cosine transform (PSSM-DCT), and position-specific scoring matrix-discrete wavelet transform (PSSM-DWT) are also used for feature extraction. Finally, the prediction of DBP is achieved through the deep neural network model based on the attention mechanism.

Results

This paper first establishes the basis of deep meta-transfer learning and uses the PDB186 data set as the benchmark to extract features using NMBAC, PSSM-DCT, and PSSM-DWT, respectively, and compare the fused features in pairs, and finally obtain the fused feature process. Through deep learning processing, it is concluded that the fused feature prediction effect is the best. At the same time, compared with the currently popular models, there are obvious improvements in the ACC, MCC, SN and Spec evaluation indicators.

Conclusion

Finally, it was concluded that the method used in this article can effectively predict DNA-binding proteins and show more significant performance.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936290782240624114950
2024-07-18
2025-08-17
Loading full text...

Full text loading...

References

  1. TakedaY. OhlendorfD.H. AndersonW.F. MatthewsB.W. DNA-binding proteins.Science198322146151020102610.1126/science.63087686308768
    [Google Scholar]
  2. ZhaoZ. YangW. ZhaiY. LiangY. ZhaoY. Identify DNA-binding proteins through the extreme gradient boosting algorithm.Front. Genet.20221282199610.3389/fgene.2021.82199635154264
    [Google Scholar]
  3. WoldM.S. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism.Annu. Rev. Biochem.1997661619210.1146/annurev.biochem.66.1.619242902
    [Google Scholar]
  4. QianY. DingY. ZouQ. GuoF. Multi-view kernel sparse representation for identification of membrane protein types.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232021234124510.1109/TCBB.2022.319132535857734
    [Google Scholar]
  5. DuevaR. IliakisG. Replication protein A: A multifunctional protein with roles in DNA replication, repair and beyondNAR Cancer202023zcaa022
    [Google Scholar]
  6. LingT. WuL. FuY. XuQ. AnP. ZhangJ. HuS. ChenY. HeX. WangJ. ChenX. ZhouJ. XuY. ZouX. YuH. A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy.Endoscopy202153546947710.1055/a‑1229‑092032725617
    [Google Scholar]
  7. De Marco ZompitM. StuckiM. Mechanisms of genome stability maintenance during cell division.DNA Repair202110810321510.1016/j.dnarep.2021.10321534455186
    [Google Scholar]
  8. LiL. GuanY. ChenX. YangJ. ChengY. DNA repair pathways in cancer therapy and resistance.Front. Pharmacol.20211162926610.3389/fphar.2020.62926633628188
    [Google Scholar]
  9. AshtonN.W. BoldersonE. CubedduL. O’ByrneK.J. RichardD.J. Human single-stranded DNA binding proteins are essential for maintaining genomic stability.BMC Mol. Biol.2013141910.1186/1471‑2199‑14‑923548139
    [Google Scholar]
  10. HopfnerK.P. HornungV. Molecular mechanisms and cellular functions of cGAS–STING signalling.Nat. Rev. Mol. Cell Biol.202021950152110.1038/s41580‑020‑0244‑x32424334
    [Google Scholar]
  11. WuH. LiuJ. JiangT. ZouQ. QiS. CuiZ. TiwariP. DingY. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism.Neural Netw.202416962363637976593
    [Google Scholar]
  12. LuY. ZhangR. JiangT. FuQ. CuiZ. WuH. TrGPCR:GPCR-ligand binding affinity predicting based on dynamic deep transfer learning.IEEE J. Biomed. Health Inform.2023Online ahead of print.37610904
    [Google Scholar]
  13. QianY. DingY. ZouQ. GuoF. Identification of drug-side effect association via restricted Boltzmann machines with penalized term.Brief. Bioinform.2022236bbac45810.1093/bib/bbac45836259601
    [Google Scholar]
  14. NietoJ.J. TorresA. GeorgiouD.N. KarakasidisT.E. Fuzzy polynucleotide spaces and metrics.Bull. Math. Biol.200668370372510.1007/s11538‑005‑9020‑516794951
    [Google Scholar]
  15. LiZ.C. ZhouX.B. DaiZ. ZouX.Y. Prediction of protein structural classes by Chou’s pseudo amino acid composition: Approached using continuous wavelet transform and principal component analysis.Amino Acids200937241542510.1007/s00726‑008‑0170‑218726140
    [Google Scholar]
  16. RahmanM.S. ShatabdaS. SahaS. KaykobadM. RahmanM.S. DPP-PseAAC: A DNA-binding protein prediction model using Chou’s general PseAAC.J. Theor. Biol.2018452223410.1016/j.jtbi.2018.05.00629753757
    [Google Scholar]
  17. WeiL. TangJ. ZouQ. Local-DPP: An improved DNA-binding protein prediction method by exploring local evolutionary information.Inf. Sci.201738413514410.1016/j.ins.2016.06.026
    [Google Scholar]
  18. ZhangQ. LiuP. WangX. ZhangY. HanY. YuB. StackPDB: Predicting DNA-binding proteins based on XGB-RFE feature optimization and stacked ensemble classifier.Appl. Soft Comput.20219910692110.1016/j.asoc.2020.106921
    [Google Scholar]
  19. BarukabO. AliF. AlghamdiW. BassamY. Afzal KhanS. DBP-CNN: Deep learning-based prediction of DNA-binding proteins by coupling discrete cosine transform with two-dimensional convolutional neural network.Expert Syst. Appl.202219711672910.1016/j.eswa.2022.116729
    [Google Scholar]
  20. AliF. KumarH. PatilS. AhmedA. BanjarA. DaudA. DBP-DeepCNN: Prediction of DNA-binding proteins using wavelet-based denoising and deep learning.Chemom. Intell. Lab. Syst.202222910463910.1016/j.chemolab.2022.104639
    [Google Scholar]
  21. LiuY. GuanS. JiangT. FuQ. MaJ. CuiZ. DingY. WuH. DNA protein binding recognition based on lifelong learning.Comput. Biol. Med.202316410709410.1016/j.compbiomed.2023.10709437459792
    [Google Scholar]
  22. DuX. DiaoY. LiuH. LiS. MsDBP: Exploring dna-binding proteins by integrating multiscale sequence information via chou’s five-step rule.J. Proteome Res.20191883119313210.1021/acs.jproteome.9b0022631267738
    [Google Scholar]
  23. RoseP.W. PrlićA. BiC. BluhmW.F. ChristieC.H. DuttaS. GreenR.K. GoodsellD.S. WestbrookJ.D. WooJ. The RCSB Protein Data Bank: views of structural biology for basic and applied research and educationNucleic Acids Res.201443D1D345D356
    [Google Scholar]
  24. LiuB. WangS. WangX. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation.Sci. Rep.2015511547910.1038/srep1547926482832
    [Google Scholar]
  25. LouW. WangX. ChenF. ChenY. JiangB. ZhangH. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes.PLoS One201491e8670310.1371/journal.pone.008670324475169
    [Google Scholar]
  26. NicholA. AchiamJ. SchulmanJ. On first-order meta-learning algorithms.arXiv preprint 1803.02999,2018
    [Google Scholar]
  27. SunQ. LiuY. ChuaT-S. SchieleB. Meta-transfer learning for few-shot learning.Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)Long Beach, CA, USA, 15-20 June 2019, pp. 403-412.
    [Google Scholar]
  28. TanC. SunF. KongT. ZhangW. YangC. LiuC. A survey on deep transfer learning.27th International Conference on Artificial Neural NetworksRhodes, Greece, Proceedings, Part III 27, October 4-7, 2018; Springer: pp. 270-279.
    [Google Scholar]
  29. LiJ. ChiuT.P. RohsR. Predicting DNA structure using a deep learning method.Nat. Commun.2024151124310.1038/s41467‑024‑45191‑538336958
    [Google Scholar]
  30. YuanQ. TianC. YangY. Genome-scale annotation of protein binding sites via language model and geometric deep learning.eLife202413RP9369510.7554/eLife.9369538630609
    [Google Scholar]
  31. NiuZ. ZhongG. YuH. A review on the attention mechanism of deep learning.Neurocomputing2021452486210.1016/j.neucom.2021.03.091
    [Google Scholar]
  32. HassaninM. AnwarS. RadwanI. KhanF.S. MianA. Visual attention methods in deep learning: An in-depth survey.Inf. Fusion202410810241710.1016/j.inffus.2024.102417
    [Google Scholar]
  33. LiuT. XuC. QiaoY. JiangC. ChenW. News recommendation with attention mechanism.arXiv preprint 2402.07422,2024
    [Google Scholar]
  34. GravesA. GravesA. Long short-term memory.In: Supervised Sequence Labelling with Recurrent Neural Networks. Springer Berlin, Heidelberg20123745
    [Google Scholar]
  35. MursalimM.K.N. MengkoT.L.E.R. HertadiR. PurwariantiA. SusantyM. BiCaps-DBP: Predicting DNA-binding proteins from protein sequences using Bi-LSTM and a 1D-capsule network.Comput. Biol. Med.202316310724110.1016/j.compbiomed.2023.10724137437362
    [Google Scholar]
  36. NaimM.K. MengkoT.R. HertadiR. PurwariantiA. SusantyM. EmbedCaps-DBP: Predicting DNA-binding proteins using protein sequence embedding and capsule network.IEEE Access20231112125612126810.1109/ACCESS.2023.3328960
    [Google Scholar]
  37. GuJ. WangZ. KuenJ. MaL. ShahroudyA. ShuaiB. LiuT. WangX. WangG. CaiJ. ChenT. Recent advances in convolutional neural networks.Pattern Recognit.20187735437710.1016/j.patcog.2017.10.013
    [Google Scholar]
  38. ManaviF. SharmaA. SharmaR. TsunodaT. ShatabdaS. DehzangiI. CNN-Pred: Prediction of single-stranded and double-stranded DNA-binding protein using convolutional neural networks.Gene202385314704510.1016/j.gene.2022.14704536503892
    [Google Scholar]
  39. FengZ.P. ZhangC.T. Prediction of membrane protein types based on the hydrophobic index of amino acids.J. Protein Chem.200019426927510.1023/A:100709112839411043931
    [Google Scholar]
  40. WangY. DingY. GuoF. WeiL. TangJ. Improved detection of DNA-binding proteins via compression technology on PSSM information.PLoS One2017129e018558710.1371/journal.pone.018558728961273
    [Google Scholar]
  41. ZhangS. ZhuF. YuQ. ZhuX. Identifying DNA ‐binding proteins based on multi‐features and LASSO feature selection.Biopolymers20211122e2341910.1002/bip.2341933476047
    [Google Scholar]
  42. WeissK. KhoshgoftaarT.M. WangD. A survey of transfer learning.J. Big Data201631910.1186/s40537‑016‑0043‑6
    [Google Scholar]
  43. LuoH. ShanW. ChenC. DingP. LuoL. Improving language model of human genome for DNA-protein binding prediction based on task-specific pre-training.Interdiscip. Sci.2023151324336136096
    [Google Scholar]
  44. LiuY. TianB. Protein–DNA binding sites prediction based on pre-trained protein language model and contrastive learning.Brief. Bioinform.2023251bbad48810.1093/bib/bbad48838171929
    [Google Scholar]
  45. ShiY. LiL. YangJ. WangY. HaoS. Center-based transfer feature learning with classifier adaptation for surface defect recognition.Mech. Syst. Signal Process.202318811000110.1016/j.ymssp.2022.110001
    [Google Scholar]
  46. BrohanA. BrownN. CarbajalJ. ChebotarY. ChenX. ChoromanskiK. DingT. DriessD. DubeyA. FinnC. Rt-2: Vision-language-action models transfer web knowledge to robotic control.arXiv preprint 2307.15818,2023
    [Google Scholar]
  47. ChenJ. ZhuD. ShenX. LiX. LiuZ. ZhangP. KrishnamoorthiR. ChandraV. XiongY. ElhoseinyM. Minigpt-v2: large language model as a unified interface for vision-language multi-task learning.arXiv preprint 2310.09478,2023
    [Google Scholar]
  48. FangY. YapP.T. LinW. ZhuH. LiuM. Source-free unsupervised domain adaptation: A survey.Neural Netw.202417410623010.1016/j.neunet.2024.10623038490115
    [Google Scholar]
  49. YinT. LuN. GuoG. LeiY. WangS. GuanX. Knowledge and data dual-driven transfer network for industrial robot fault diagnosis.Mech. Syst. Signal Process.202318210959710.1016/j.ymssp.2022.109597
    [Google Scholar]
  50. ZhangY. WangZ. HeW. Class relationship embedded learning for source-free unsupervised domain adaptation.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)Vancouver, BC, Canada, 17-24 June 2023, pp. 7619-762910.1109/CVPR52729.2023.00736
    [Google Scholar]
  51. LiC. LiS. WangH. GuF. BallA.D. Attention-based deep meta-transfer learning for few-shot fine-grained fault diagnosis.Knowl. Base. Syst.202326411034510.1016/j.knosys.2023.110345
    [Google Scholar]
  52. SchöttnerA. UptonH. When should a firm employ its workers? A relational contracting approach. A relational contracting approach.2023Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4257746
  53. ZhengL. LiuG. YanC. JiangC. ZhouM. LiM. Improved tradaboost and its application to transaction fraud detection.IEEE Trans. Comput. Soc. Syst.2020751304131610.1109/TCSS.2020.3017013
    [Google Scholar]
  54. DaiW. YangQ. XueG-R. YuY. Boosting for transfer learning.Proceedings of the 24th international conference on Machine learningCorvalis, Oregon, USA; June 2007, vol. 227, pp. 193-200.10.1145/1273496.1273521
    [Google Scholar]
  55. LakeB.M. BaroniM. Human-like systematic generalization through a meta-learning neural network.Nature2023623798511512110.1038/s41586‑023‑06668‑337880371
    [Google Scholar]
  56. CaiT. XieL. ZhangS. ChenM. HeD. BadkulA. LiuY. NamballaH.K. DoroganM. HardingW.W. MuraC. BourneP.E. XieL. End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins.PLOS Comput. Biol.2023191e101085110.1371/journal.pcbi.101085136652496
    [Google Scholar]
  57. FinnC. AbbeelP. LevineS. Model-agnostic meta-learning for fast adaptation of deep networks.ICML'17: Proceedings of the 34th International Conference on Machine LearningSydney, NSW, Australia, 06 August 2017, Vol. 70, pp. 1126-1135.
    [Google Scholar]
  58. NicholA. SchulmanJ. Reptile: A scalable metalearning algorithm.arXiv preprint 1803.02999,2018
    [Google Scholar]
  59. BrownA. TuorA. HutchinsonB. NicholsN. Recurrent neural network attention mechanisms for interpretable system log anomaly detection.Proceedings of the First Workshop on Machine Learning for Computing SystemsTempe, AZ, USA; March 2018.10.1145/3217871.3217872
    [Google Scholar]
  60. LiZ. LiuF. YangW. PengS. ZhouJ. A survey of convolutional neural networks: Analysis, applications, and prospects.IEEE Trans. Neural Netw. Learn. Syst.202233126999701910.1109/TNNLS.2021.308482734111009
    [Google Scholar]
  61. YeungK. Y. RuzzoW. L. Principal component analysis for clustering gene expression data.Bioinformatics200117976377410.1093/bioinformatics/17.9.763
    [Google Scholar]
  62. SaneiS. EEG signal processing; The fernow watershed acidification study.John Wiley & Sons Ltd,Cardiff University, UK2013
    [Google Scholar]
  63. RodríguezP. BautistaM.A. GonzàlezJ. EscaleraS. Beyond one-hot encoding: Lower dimensional target embedding.Image Vis. Comput.201875213110.1016/j.imavis.2018.04.004
    [Google Scholar]
  64. AhmadS. SaraiA. PSSM-based prediction of DNA binding sites in proteins.BMC Bioinformatics2005613310.1186/1471‑2105‑6‑3315720719
    [Google Scholar]
  65. ChouK.C. ShenH.B. MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.Biochem. Biophys. Res. Commun.2007360233934510.1016/j.bbrc.2007.06.02717586467
    [Google Scholar]
  66. CaoD.-S. XuQ.-S. LiangY.-Z. Propy: A tool to generate various modes of Chou’s PseAAC.Bioinformatics201329796096210.1093/bioinformatics/btt072
    [Google Scholar]
  67. AhmadA. AkbarS. TahirM. HayatM. AliF. iAFPs-EnC-GA: Identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach.Chemom. Intell. Lab. Syst.202222210451610.1016/j.chemolab.2022.104516
    [Google Scholar]
  68. DingY. TangJ. GuoF. Predicting protein-protein interactions via multivariate mutual information of protein sequences.BMC Bioinformatics201617139810.1186/s12859‑016‑1253‑927677692
    [Google Scholar]
  69. AhmedN. NatarajanT. RaoK.R. Discrete cosine transform.IEEE Trans. Comput.1974C-231909310.1109/T‑C.1974.223784
    [Google Scholar]
  70. NanniL. BrahnamS. LuminiA. Wavelet images and Chou’s pseudo amino acid composition for protein classification.Amino Acids201243265766510.1007/s00726‑011‑1114‑921993538
    [Google Scholar]
  71. PanZ. ZhouS. LiuT. LiuC. ZangM. WangQ. WVDL: weighted voting deep learning model for predicting RNA-protein binding sites.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232053322332810.1109/TCBB.2023.325227637028092
    [Google Scholar]
  72. HeK. ZhangX. RenS. SunJ. Identity Mappings in Deep Residual Networks.Computer Vision – ECCV 2016Springer International Publishing201663064510.1007/978‑3‑319‑46493‑0_38
    [Google Scholar]
  73. RabinerL. JuangB. An introduction to hidden Markov models.IEEE ASSP Mag.19863141610.1109/MASSP.1986.1165342
    [Google Scholar]
  74. KingmaD. BaJ. Adam: A method for stochastic optimization.arXiv preprint 1412.6980,2014
    [Google Scholar]
  75. YanJ. JiangT. LiuJ. LuY. GuanS. LiH. WuH. DingY. DNA-binding protein prediction based on deep transfer learning.Math. Biosci. Eng.20221987719773610.3934/mbe.202236235801442
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936290782240624114950
Loading
/content/journals/cbio/10.2174/0115748936290782240624114950
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test