Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Biopanning, or phage display technology, has gained considerable research attention for discovering peptides, and antibodies, and understanding protein interactions, which are crucial for developing targeted therapeutics. The Biopanning Data Bank (BDB, http://i.uestc.edu.cn/bdb) serves as a repository for peptide biopanning results. However, its last significant update was in 2018, highlighting a research gap that needs urgent attention.

Objectives

This study aims to update BDB with the most recent data and enhance the identification of Target-Unrelated Peptides (TUPs).

Methods

A search of PubMed was conducted for recent articles related to “phage display” published between January 2018 and May 2023. Relevant data were manually curated and added to BDB. Each peptide’s target was identified using MimoSearch, while TUPScan was used to detect new TUPs.

Results

As of October 2023, BDB contains 3,682 biopanning datasets from 1,771 papers. These datasets included 124 NGPD datasets and 3,558 conventional biopanning datasets, featuring 34,078 peptide sequences, 593 templates, 2,231 targets, 524 peptide libraries, and 324 crystal structures. Our analysis identified 1,110 possible TUPs and 60 highly reliable TUPs, including 26 novel discoveries.

Conclusion

This update addresses critical research gaps by incorporating recent peptide data and introducing novel TUPs. BDB remains the most comprehensive resource for biopanning, playing a crucial role in peptide library research and supporting the development of new TUP predictors and mimotope decoding tools.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936329911241015123132
2024-11-28
2025-10-11
Loading full text...

Full text loading...

References

  1. SmithG.P. Phage display: Simple evolution in a petri dish (nobel lecture).Angew. Chem.201913141145661457610.1002/ange.201908308
    [Google Scholar]
  2. WinterG. Harnessing evolution to make medicines (nobel lecture).Angew. Chem. Int. Ed.20195841144381444510.1002/anie.20190934331529671
    [Google Scholar]
  3. HeB. MaoC. RuB. HanH. ZhouP. HuangJ. Epitope Mapping of metuximab on CD147 using phage display and molecular docking.J. Mol. Biol.2013425117118310.1016/j.jmb.2012.10.02523154169
    [Google Scholar]
  4. TongA.H.Y. DreesB. NardelliG. BaderG.D. BrannettiB. CastagnoliL. EvangelistaM. FerracutiS. NelsonB. PaoluziS. QuondamM. ZucconiA. HogueC.W.V. FieldsS. BooneC. CesareniG. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules.Science2002295555332132410.1126/science.106498711743162
    [Google Scholar]
  5. ZhangY. HeB. LiuK. NingL. LuoD. XuK. ZhuW. WuZ. HuangJ. XuX. A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo.Signal Transduct. Target. Ther.2017211701010.1038/sigtrans.2017.1029263914
    [Google Scholar]
  6. PetrenkoV.A. Phage display’s prospects for early diagnosis of prostate cancer.Viruses202416227710.3390/v1602027738400052
    [Google Scholar]
  7. PalmaM. Epitopes and mimotopes identification using phage display for vaccine development against infectious pathogens.Vaccines (Basel)2023117117610.3390/vaccines1107117637514992
    [Google Scholar]
  8. FrançaR.K.A. StudartI.C. BezerraM.R.L. PontesL.Q. BarbosaA.M.A. BrigidoM.M. FurtadoG.P. MaranhãoA.Q. Progress on phage display technology: Tailoring antibodies for cancer immunotherapy.Viruses2023159190310.3390/v1509190337766309
    [Google Scholar]
  9. JiangL. NingL. PuC. WangZ. HeB. HuangJ. Characterization of endogenous nucleic acids that bind to NgAgo in Natronobacterium gregoryi sp2 cells.Biocell202246254755710.32604/biocell.2021.016500
    [Google Scholar]
  10. RuB. HuangJ. DaiP. LiS. XiaZ. DingH. LinH. GuoF.B. WangX. MimoDB: A new repository for mimotope data derived from phage display technology.Molecules201015118279828810.3390/molecules1511827921079566
    [Google Scholar]
  11. HuangJ. RuB. ZhuP. NieF. YangJ. WangX. DaiP. LinH. GuoF.B. RaoN. MimoDB 2.0: A mimotope database and beyond.Nucleic Acids Res.201240D1D271D27710.1093/nar/gkr92222053087
    [Google Scholar]
  12. HeB. ChaiG. DuanY. YanZ. QiuL. ZhangH. LiuZ. HeQ. HanK. RuB. GuoF.B. DingH. LinH. WangX. RaoN. ZhouP. HuangJ. BDB: Biopanning data bank.Nucleic Acids Res.201644D1D1127D113210.1093/nar/gkv110026503249
    [Google Scholar]
  13. ChristiansenA. KringelumJ.V. HansenC.S. BøghK.L. SullivanE. PatelJ. RigbyN.M. EiweggerT. SzépfalusiZ. MasiF. NielsenM. LundO. DufvaM. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum.Sci. Rep.2015511291310.1038/srep1291326246327
    [Google Scholar]
  14. Kamstrup SellD. SlothA.B. BakhshinejadB. KjaerA. A white plaque, associated with genomic deletion, derived from M13KE-based peptide library is enriched in a target-unrelated manner during phage display biopanning due to propagation advantage.Int. J. Mol. Sci.2022236330810.3390/ijms2306330835328728
    [Google Scholar]
  15. BakhshinejadB. SadeghizadehM. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library.Anal. Biochem.201651212012810.1016/j.ab.2016.08.01327555439
    [Google Scholar]
  16. HeB. ChenH. LiN. HuangJ. SAROTUP: A suite of tools for finding potential target-unrelated peptides from phage display data.Int. J. Biol. Sci.20191571452145910.7150/ijbs.3195731337975
    [Google Scholar]
  17. HeB. JiangL. DuanY. ChaiG. FangY. KangJ. YuM. LiN. TangZ. YaoP. WuP. DerdaR. HuangJ. Biopanning data bank 2018: Hugging next generation phage display.Database (Oxford)20182018bay03210.1093/database/bay03229688378
    [Google Scholar]
  18. HeB. YangS. LongJ. ChenX. ZhangQ. GaoH. ChenH. HuangJ. TUPDB: Target-unrelated peptide data bank.Interdiscip. Sci.202113342643210.1007/s12539‑021‑00436‑533993461
    [Google Scholar]
  19. HeB. ChenH. HuangJ. PhD7Faster 2.0: Predicting clones propagating faster from the Ph.D.-7 phage display library by coupling PseAAC and tripeptide composition.PeerJ201976e713110.7717/peerj.713131245183
    [Google Scholar]
  20. HeB. KangJ. RuB. DingH. ZhouP. HuangJ. SABinder: A web service for predicting streptavidin-binding peptides.BioMed Res. Int.201620161810.1155/2016/917514327610387
    [Google Scholar]
  21. LiN. KangJ. JiangL. HeB. LinH. HuangJ. PSBinder: A web service for predicting polystyrene surface-binding peptides.BioMed Res. Int.201720171510.1155/2017/576151729445741
    [Google Scholar]
  22. RahnJ.J. LunX. JorchS.K. HaoX. VenugopalC. VoraP. AhnB.Y. BabesL. AlshehriM.M. CairncrossJ.G. SinghS.K. KubesP. SengerD.L. RobbinsS.M. Development of a peptide-based delivery platform for targeting malignant brain tumors.Biomaterials202025212010510.1016/j.biomaterials.2020.12010532417652
    [Google Scholar]
  23. RothensteinD. ClaasenB. OmiecienskiB. LammelP. BillJ. Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy.J. Am. Chem. Soc.201213430125471255610.1021/ja302211w22720657
    [Google Scholar]
  24. ’t HoenP.A.C. JirkaS.M.G. ten BroekeB.R. SchultesE.A. AguileraB. PangK.H. HeemskerkH. Aartsma-RusA. van OmmenG.J. den DunnenJ.T. Phage display screening without repetitious selection rounds.Anal. Biochem.2012421262263110.1016/j.ab.2011.11.00522178910
    [Google Scholar]
  25. LinH. MaZ. HouX. ChenL. FanH. Construction and immunogenicity of a recombinant swinepox virus expressing a multi-epitope peptide for porcine reproductive and respiratory syndrome virus.Sci. Rep.2017714399010.1038/srep4399028272485
    [Google Scholar]
  26. GaoX. RanN. DongX. ZuoB. YangR. ZhouQ. MoultonH.M. SeowY. YinH. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy.Sci. Transl. Med.201810444eaat019510.1126/scitranslmed.aat019529875202
    [Google Scholar]
  27. HuntA. AddepalliB. The interaction between two Arabidopsis polyadenylation factor subunits involves an evolutionarily-conserved motif and has implications for the assembly and function of the polyadenylation complex.Protein Pept. Lett.2008151768810.2174/09298660878333043118221017
    [Google Scholar]
  28. SegvichS. BiswasS. BeckerU. KohnD.H. Identification of peptides with targeted adhesion to bone-like mineral via phage display and computational modeling.Cells Tissues Organs20091891-424525110.1159/00015138018701808
    [Google Scholar]
  29. CapriniA. SilvaD. ZanoniI. CunhaC. VolontèC. VescoviA. GelainF. A novel bioactive peptide: Assessing its activity over murine neural stem cells and its potential for neural tissue engineering.N. Biotechnol.201330555256210.1016/j.nbt.2013.03.00523541699
    [Google Scholar]
  30. WangL. DengX. LiuH. ZhaoL. YouX. DaiP. WanK. ZengY. The mimic epitopes of Mycobacterium tuberculosis screened by phage display peptide library have serodiagnostic potential for tuberculosis.Pathog. Dis.2016748ftw09110.1093/femspd/ftw09127609463
    [Google Scholar]
  31. EstephanE. DaoJ. SaabM.B. PanayotovI. MartinM. LarroqueC. GergelyC. CuisinierF.J.G. LevalloisB. SVSVGMKPSPRP: A broad range adhesion peptide.Biomed. Tech. (Berl.)201257648148910.1515/bmt‑2011‑010923183721
    [Google Scholar]
  32. Díaz-PerlasC. Sánchez-NavarroM. Oller-SalviaB. MorenoM. TeixidóM. GiraltE. Phage display as a tool to discover blood–brain barrier (BBB)‐shuttle peptides: Panning against a human BBB cellular model.Biopolymers20171081e2292810.1002/bip.2292827486695
    [Google Scholar]
  33. ZhangH. GuoZ. HeB. DaiW. ZhangH. WangX. ZhangQ. The improved delivery to breast cancer based on a novel nanocarrier modified with high‐affinity peptides discovered by phage display.Adv. Healthc. Mater.2018720180026910.1002/adhm.20180026929956504
    [Google Scholar]
  34. ShiF. GanL. WangY. WangP. Impedimetric biosensor fabricated with affinity peptides for sensitive detection of Escherichia coli O157:H7.Biotechnol. Lett.202042582583210.1007/s10529‑020‑02817‑031993846
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936329911241015123132
Loading
/content/journals/cbio/10.2174/0115748936329911241015123132
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): biopanning; database; mimotopes; peptide libraries; Phage display; target-unrelated peptides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test