Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Chemotherapy-induced neurotoxicity is a common side effect experienced by cancer patients, leading principally to chemotherapy induced cognitive impairment or chemofog (CICI) and chemotherapy induced peripheral neuropathy (CIPN). In recent years, there has been a significant increase in the investigation and exploration of the nutritional values, health benefits, and biological actions of natural products and their bioactive compounds. Thymoquinone (TQ), a bioactive compound extracted from , has attracted considerable interest due to its neuroprotective activities. This review comprehensively analyzes TQ’s mechanisms in reducing chemotherapy-induced neurotoxicity, primarily by regulating oxidative stress, inflammatory responses, and apoptosis. Furthermore, this review discusses the synergistic effects of TQ when used in combination with certain anticancer drugs, enhancing both neuroprotection and overall treatment outcomes. While substantial preclinical data support TQ’s effectiveness in mitigating acute neurotoxicity, its impact on chronic neurotoxicity remains insufficiently studied. Thus, further preclinical investigations are imperative to evaluate TQ’s potential in addressing chemotherapy-induced chronic neurotoxicity.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072363817250108095734
2025-01-17
2026-02-16
Loading full text...

Full text loading...

References

  1. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms21093233 32370233
    [Google Scholar]
  2. GuptaP. MakkarT.K. GoelL. PahujaM. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity.Immunol. Res.202270SupplyAvailable from: https://www.researchgate.net/publication/362148116_Role_of_inflammation_and_oxidative_stress_in_chemotherapy-induced_neurotoxicity (Accessed August 5, 2024).
    [Google Scholar]
  3. MounierN.M. Abdel-MagedA.E.S. WahdanS.A. GadA.M. AzabS.S. Chemotherapy-Induced Cognitive Impairment (CICI): An overview of etiology and pathogenesis.Life Sci.202025811807110.1016/j.lfs.2020.118071 32673664
    [Google Scholar]
  4. WasH. BorkowskaA. BaguesA. TuL. LiuJ.Y.H. LuZ. RuddJ.A. NurgaliK. AbaloR. Mechanisms of chemotherapy-induced neurotoxicity.Front. Pharmacol.20221375050710.3389/fphar.2022.750507 35418856
    [Google Scholar]
  5. OmranM. BelcherE.K. MohileN.A. KeslerS.R. JanelsinsM.C. HohmannA.G. KlecknerI.R. Review of the role of the brain in chemotherapy-induced peripheral neuropathy.Front. Mol. Biosci.2021869313310.3389/fmolb.2021.693133 34179101
    [Google Scholar]
  6. BaeE.H. GreenwaldM.K. SchwartzA.G. Chemotherapy-induced peripheral neuropathy: Mechanisms and therapeutic] avenues.Neurotherapeutics20211842384239610.1007/s13311‑021‑01142‑2 34676514
    [Google Scholar]
  7. TaillibertS. Le RhunE. ChamberlainM.C. Chemotherapy-related neurotoxicity.Curr. Neurol. Neurosci. Rep.20161698110.1007/s11910‑016‑0686‑x 27443648
    [Google Scholar]
  8. SekeresM.J. Bradley-GarciaM. Martinez-CanabalA. WinocurG. Chemotherapy-induced cognitive impairment and] hippocampal neurogenesis: A review of physiological mechanisms and interventions.Int. J. Mol. Sci.202122231269710.3390/ijms222312697 34884513
    [Google Scholar]
  9. MaihöfnerC. DielI. TeschH. QuandelT. BaronR. Chemotherapy-induced peripheral neuropathy (CIPN): Current therapies and topical treatment option with high-concentration capsaicin.Support. Care Cancer20212984223423810.1007/s00520‑021‑06042‑x 33624117
    [Google Scholar]
  10. HendersonF.M.E. CrossA.J. BaraniakA.R. ‘A new normal with chemobrain’: Experiences of the impact of chemotherapy-related cognitive deficits in long-term breast cancer survivors.Health Psychol. Open201961205510291983223410.1177/2055102919832234 30873289
    [Google Scholar]
  11. CavalettiG. AlbertiP. MarmiroliP. Chemotherapy-induced peripheral neurotoxicity in cancer survivors: An underdiagnosed clinical entity?Am. Soc. Clin. Oncol. Educ. Book2015e553e56010.14694/EdBook_AM.2015.35.e553 25993222
    [Google Scholar]
  12. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.202020201656539610.1155/2020/6565396 32148547
    [Google Scholar]
  13. Sahar Rostamian RaeisiE. Heidari-SoureshjaniS. SherwinC.M.T. Neuroprotective effects of bromelain on the common neurodegenerative diseases: A systematic review.Neurochem. J.202317471572610.1134/S1819712423040256
    [Google Scholar]
  14. HeY.Q. ZhouC.C. JiangS.G. LanW.Q. ZhangF. TaoX. ChenW.S. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery.Front. Pharmacol.202415129280710.3389/fphar.2024.1292807 38348396
    [Google Scholar]
  15. BhattiG.K. SinghH.V. SharmaE. SehrawatA. MishraJ. NavikU. ReddyP.H. BhattiJ.S. Protective role of natural products and bioactive compounds in multiple sclerosis. In Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders.Elsevier202345348210.1016/B978‑0‑323‑90052‑2.00026‑3
    [Google Scholar]
  16. BhatB.A. AlmilaibaryA. MirR.A. AljarallahB.M. MirW.R. AhmadF. MirM.A. Natural therapeutics in aid of treating Alzheimer’s disease: A green gateway toward ending quest for treating neurological disorders.Front. Neurosci.20221688434510.3389/fnins.2022.884345 35651632
    [Google Scholar]
  17. AbdelsalamS.A. RenuK. ZahraH.A. AbdallahB.M. AliE.M. VeeraraghavanV.P. SivalingamK. RonsardL. AmmarR.B. VidyaD.S. KaruppaiyaP. Al-RamadanS.Y. RajendranP. Polyphenols mediate neuroprotection in cerebral ischemic stroke—an update.Nutrients2023155110710.3390/nu15051107 36904106
    [Google Scholar]
  18. RahmanM.M. WangX. IslamM.R. AkashS. SuptiF.A. MituM.I. Harun-Or-RashidM. AktarM.N. Khatun KaliM.S. JahanF.I. SinglaR.K. ShenB. RaufA. SharmaR. Multifunctional role of natural products for the treatment of Parkinson’s disease: At a glance.Front. Pharmacol.20221397638510.3389/fphar.2022.976385 36299886
    [Google Scholar]
  19. RaghuS.V. KudvaA.K. RaoS. PrasadK. MudgalJ. BaligaM.S. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): First review addressing the benefits, gaps, challenges and ways forward.Food Funct.20211222111321115310.1039/D1FO02391H 34704580
    [Google Scholar]
  20. ChungG. KimS.K. Therapeutics for chemotherapy-induced peripheral neuropathy: Approaches with natural compounds from traditional eastern medicine.Pharmaceutics2022147140710.3390/pharmaceutics14071407 35890302
    [Google Scholar]
  21. PottooF.H. IbrahimA.M. AlammarA. AlsinanR. AleidM. AlshehhiA. AlshehriM. MishraS. AlhajriN. Thymoquinone: Review of its potential in the treatment of neurological diseases.Pharmaceuticals (Basel)202215440810.3390/ph15040408 35455405
    [Google Scholar]
  22. AlamoudiR.A. AlamoudiS.A. AlamoudiR.A. Biological] potential of the main component, thymoquinone, of Nigella sativa in pulp therapy—in vitro study.Life (Basel)2022129143410.3390/life12091434 36143470
    [Google Scholar]
  23. FarkhondehT. SamarghandianS. ShahriA.M.P. SaminiF. The neuroprotective effects of thymoquinone: A review.Dose Response2018162155932581876145510.1177/1559325818761455 29662431
    [Google Scholar]
  24. StaffN.P. GrisoldA. GrisoldW. WindebankA.J. Chemotherapy‐induced peripheral neuropathy: A current review.Ann. Neurol.201781677278110.1002/ana.24951 28486769
    [Google Scholar]
  25. SałatK. Chemotherapy-induced peripheral neuropathy: Part 1-current state of knowledge and perspectives for pharmacotherapy.Pharmacol. Rep.202072348650710.1007/s43440‑020‑00109‑y 32394362
    [Google Scholar]
  26. FlattersS.J.L. DoughertyP.M. ColvinL.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review.Br. J. Anaesth.2017119473774910.1093/bja/aex229 29121279
    [Google Scholar]
  27. JordanB. JahnF. SauerS. JordanK. Prevention and management of chemotherapy-induced polyneuropathy.Breast Care (Basel)2019142798410.1159/00049959931798378
    [Google Scholar]
  28. BanachM. JuranekJ.K. ZygulskaA.L. Chemotherapy‐induced neuropathies-A growing problem for patients and health care] providers.Brain Behav.201771e0055810.1002/brb3.558 28127506
    [Google Scholar]
  29. ZajączkowskaR. Kocot-KępskaM. LeppertW. WrzosekA. MikaJ. WordliczekJ. Mechanisms of chemotherapy-induced peripheral neuropathy.Int. J. Mol. Sci.2019206145110.3390/ijms20061451 30909387
    [Google Scholar]
  30. KerckhoveN. CollinA. CondéS. ChaleteixC. PezetD. BalayssacD. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: A comprehensive literature review.Front. Pharmacol.201788610.3389/fphar.2017.00086 28286483
    [Google Scholar]
  31. ImaiS. KoyanagiM. AzimiZ. NakazatoY. MatsumotoM. OgiharaT. YonezawaA. OmuraT. NakagawaS. WakatsukiS. ArakiT. KanekoS. NakagawaT. MatsubaraK. Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms.Sci. Rep.201771594710.1038/s41598‑017‑05784‑1 28729624
    [Google Scholar]
  32. AretiA. YerraV.G. NaiduV.G.M. KumarA. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy.Redox Biol.2014228929510.1016/j.redox.2014.01.006 24494204
    [Google Scholar]
  33. MontagueK. MalcangioM. The therapeutic potential of monocyte/macrophage manipulation in the treatment of chemotherapy-induced painful neuropathy.Front. Mol. Neurosci.20171039710.3389/fnmol.2017.00397 29230166
    [Google Scholar]
  34. EldridgeS. GuoL. HamreJ. Comparative review of chemotherapy-induced peripheral neuropathy in in vivo and in vitro models.Toxicol. Pathol.202048119020110.1177/0192623319861937
    [Google Scholar]
  35. JohnJ. KinraM. MudgalJ. ViswanathaG.L. NandakumarK. Animal models of chemotherapy-induced cognitive decline in preclinical drug development.Psychopharmacology (Berl.)2021238113025305310.1007/s00213‑021‑05977‑7 34643772
    [Google Scholar]
  36. DasA. RanadiveN. KinraM. NampoothiriM. AroraD. MudgalJ. An overview on chemotherapy-induced cognitive] impairment and potential role of antidepressants.Curr. Neuropharmacol.202018983885110.2174/1570159X18666200221113842 32091339
    [Google Scholar]
  37. SkurlovaM. HolubovaK. KleteckovaL. KozakT. KubovaH. HoracekJ. ValesK. Chemobrain in blood cancers: How chemotherapeutics interfere with the brain’s structure and functionality, immune system, and metabolic functions.Med. Res. Rev.202444152210.1002/med.21977 37265248
    [Google Scholar]
  38. Dias-CarvalhoA. FerreiraM. Reis-MendesA. FerreiraR. BastosM.L. FernandesE. SáS.I. CapelaJ.P. CarvalhoF. CostaV.M. Chemobrain: Mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice.Arch. Toxicol.20229661767178210.1007/s00204‑022‑03261‑x 35306571
    [Google Scholar]
  39. RabieO. El-NasharH.A.S. GeorgeM.Y. MajrashiT.A. Al-WarhiT. HassanF.E. EldehnaW.M. MostafaN.M. Phytochemical profiling and neuroprotective activity of Callistemon] subulatus leaves against cyclophosphamide-induced chemobrain.Biomed. Pharmacother.202316711559610.1016/j.biopha.2023.115596 37797461
    [Google Scholar]
  40. CauliO. Oxidative stress and cognitive alterations induced by cancer chemotherapy drugs: A scoping review.Antioxidants2021107111610.3390/antiox10071116 34356349
    [Google Scholar]
  41. SahuK. LangehU. SinghC. SinghA. Crosstalk between anticancer drugs and mitochondrial functions.Curr. Res. Pharmacol. Drug Discov.2021210004710.1016/j.crphar.2021.100047 34909674
    [Google Scholar]
  42. El–DakhakhnyM. Studies on the chemical constitution of egyptian Nigella sativa L. seeds. II1) the essential oil.Planta Med.196311446547010.1055/s‑0028‑1100266
    [Google Scholar]
  43. SaleaR. WidjojokusumoE. HartantiA. VeriansyahB. TjandrawinataR.R. Supercritical fluid carbon dioxide extraction of Nigella sativa (Black Cumin) seeds using taguchi method and full factorial design.Biochem Compd201310.7243/2052‑9341‑1‑1
    [Google Scholar]
  44. AlhajN.A. ShamsudinM.N. ZamriH.F. AbdullahR. Extraction of essential oil from Nigella sativa using supercritical carbon dioxide: Study of antibacterial activity.Am. J. Pharmacol. Toxicol.20083422522810.3844/ajptsp.2008.225.228
    [Google Scholar]
  45. SalmanM.T. KhanR.A. ShuklaI. Antibacterial activity of nigella Sativa Linn. seeds against multiple antibiotics resistant clinical strains of Staphylococcus aureus.Int. Archi. Bio. Med. Clin. Res.201623969910.21276/iabcr.2016.2.3.24
    [Google Scholar]
  46. MekhemarM. HassanY. DörferC. Nigella sativa and thymoquinone: A natural blessing for periodontal therapy.Antioxidants2020912126010.3390/antiox9121260 33322636
    [Google Scholar]
  47. AftabA. Thymoquinone: Biosynthesis, biological activities and therapeutic potential from natural and synthetic sources.Int. J. Agric. Biol.20212551024103410.17957/IJAB/15.1760
    [Google Scholar]
  48. PhuaC.Y.H. TeohZ.L. GohB.H. YapW.H. TangY.Q. Triangulating the pharmacological properties of thymoquinone in regulating reactive oxygen species, inflammation, and cancer: Therapeutic applications and mechanistic pathways.Life Sci.202128712012010.1016/j.lfs.2021.120120 34762903
    [Google Scholar]
  49. MahmoudY.K. AbdelrazekH.M.A. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy.Biomed. Pharmacother.201911510878310.1016/j.biopha.2019.108783 31060003
    [Google Scholar]
  50. HomayoonfalM. AsemiZ. YousefiB. Targeting microRNAs with thymoquinone: A new approach for cancer therapy.Cell. Mol. Biol. Lett.20212614310.1186/s11658‑021‑00286‑5 34627167
    [Google Scholar]
  51. AhmadA. MishraR.K. VyawahareA. KumarA. RehmanM.U. QamarW. KhanA.Q. KhanR. Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects.Saudi Pharm. J.20192781113112610.1016/j.jsps.2019.09.008 31885471
    [Google Scholar]
  52. SalmaniJ. AsgharS. LvH. ZhouJ. Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light.Molecules20141955925593910.3390/molecules19055925 24815311
    [Google Scholar]
  53. PalR.R. RajpalV. SinghP. SarafS.A. Recent findings on thymoquinone and its applications as a nanocarrier for the treatment of cancer and rheumatoid arthritis.Pharmaceutics202113677510.3390/pharmaceutics13060775 34067322
    [Google Scholar]
  54. AlkharfyK.M. AhmadA. KhanR.M.A. Al-ShaghaW.M. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model.Eur. J. Drug Metab. Pharmacokinet.201540331932310.1007/s13318‑014‑0207‑8 24924310
    [Google Scholar]
  55. MohammadabadiM.R. MozafariM.R. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form.J. Drug Deliv. Sci. Technol.20184744545310.1016/j.jddst.2018.08.019
    [Google Scholar]
  56. ElmowafyM. SamyA. RaslanM.A. SalamaA. SaidR.A. AbdelazizA.E. El-ErakyW. El AwdanS. ViitalaT. Enhancement of bioavailability and pharmacodynamic effects of thymoquinone via Nanostructured Lipid Carrier (NLC) formulation.AAPS PharmSciTech201617366367210.1208/s12249‑015‑0391‑0 26304932
    [Google Scholar]
  57. DalliM. BekkouchO. AziziS. AzgharA. GseyraN. KimB. Nigella sativa L. phytochemistry and pharmacological activities: A review (2019-2021).Biomolecules20211212010.3390/biom12010020 35053168
    [Google Scholar]
  58. KohandelZ. FarkhondehT. AschnerM. SamarghandianS. Anti-inflammatory effects of thymoquinone and its protective] effects against several diseases.Biomed. Pharmacother.202113811149210.1016/j.biopha.2021.111492 33743334
    [Google Scholar]
  59. QureshiK.A. ImtiazM. Al NasrI. KokoW.S. KhanT.A. JaremkoM. MahmoodS. FatmiM.Q. Antiprotozoal activity of thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone) for the treatment of Leishmania major-induced leishmaniasis: In silico and in vitro studies.Antibiotics (Basel)2022119120610.3390/antibiotics11091206 36139985
    [Google Scholar]
  60. AbduhS. BambangP. ParamasariD. Soetrisno SS. Cardioprotective effects of thymoquinone on myocardial fibrosis.Pharmacogn. J.202315592492710.5530/pj.2023.15.176
    [Google Scholar]
  61. BenhelimaA. Kaid-OmarZ. HemidaH. BenmahdiT. AddouA. Nephroprotective and diuretic effect of Nigella sativa L seeds oil on lithiasic wistar rats.Afr. J. Tradit. Complement. Altern. Med.201613620421410.21010/ajtcam.v13i6.30 28480381
    [Google Scholar]
  62. WangF. YaoW. YuD. HaoY. WuY. ZhangX. Protective role of thymoquinone in hyperlipidemia-induced liver injury in LDL-R−/−mice.BMC Gastroenterol.202323127610.1186/s12876‑023‑02895‑0 37568105
    [Google Scholar]
  63. AlzohairyM.A. KhanA.A. AlsahliM.A. AlmatroodiS.A. RahmaniA.H. Protective effects of thymoquinone, an active compound of Nigella sativa, on Rats with Benzo(a)pyrene-induced lung injury through regulation of oxidative stress and inflammation.Molecules20212611321810.3390/molecules26113218 34072086
    [Google Scholar]
  64. AliabadiE. FarahmandM.M. Talaei-KhozaniT. Shahsavari-PourS. The effects of thymoquinone loaded in alginate scaffold on bone regeneration in rabbit mandible defect: The effects of thymoquinone on bone regeneration.Galen Med. J.20231211010.31661/gmj.v12i.3141 39464544
    [Google Scholar]
  65. NoorbakhshM.F. HayatiF. SamarghandianS. Shaterzadeh-YazdiH. FarkhondehT. An overview of hepatoprotective effects of thymoquinone.Recent Pat. Food Nutr. Agric.201891142210.2174/2212798410666180221105503 29473535
    [Google Scholar]
  66. Abo MansourH.E. ElberriA.I. GhoneimM.E.S. SammanW.A. AlhaddadA.A. AbdallahM.S. El-BerriE.I. SalemM.A. MosalamE.M. The potential neuroprotective effect of thymoquinone on scopolamine-induced in vivo Alzheimer’s disease-like condition: Mechanistic insights.Molecules20232818656610.3390/molecules28186566 37764343
    [Google Scholar]
  67. SaadatM. DahmardehN. SheikhbahaeiF. MokhtariT. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: A comprehensive review on molecular mechanisms in preclinical studies.Naunyn Schmiedebergs Arch. Pharmacol.202439763541356410.1007/s00210‑023‑02832‑8 38010395
    [Google Scholar]
  68. ChenZ. BrodieM.J. DingD. KwanP. Editorial: Epidemiology of epilepsy and seizures.Front. Epidemiol.20233127316310.3389/fepid.2023.1273163 38455942
    [Google Scholar]
  69. FisherR.S. AcevedoC. ArzimanoglouA. BogaczA. CrossJ.H. ElgerC.E. EngelJ.Jr ForsgrenL. FrenchJ.A. GlynnM. HesdorfferD.C. LeeB.I. MathernG.W. MoshéS.L. PeruccaE. SchefferI.E. TomsonT. WatanabeM. WiebeS. ILAE official report: A practical clinical definition of epilepsy.Epilepsia201455447548210.1111/epi.12550 24730690
    [Google Scholar]
  70. ChaudharyA. MehraP. KeshriA.K. RawatS.S. MishraA. PrasadA. The emerging role of toll-like receptor-mediated neuroinflammatory signals in psychiatric disorders and acquired epilepsy.Mol. Neurobiol.20246131527154210.1007/s12035‑023‑03639‑7 37725212
    [Google Scholar]
  71. BeyazçıçekE. AvcıD.A. BeyazçıçekÖ. Effects of chronic administration of thymoquinone on penicillin induced epileptiform activity in rats.Anadolu Klinigi2023281384710.21673/anadoluklin.1168238
    [Google Scholar]
  72. MalaníkM. ČulenováM. SychrováA. SkibaA. Skalicka-WoźniakK. ŠmejkalK. Treating epilepsy with natural products: Nonsense or possibility?Pharmaceuticals (Basel)2023168106110.3390/ph16081061 37630977
    [Google Scholar]
  73. UllahI. BadshahH. NaseerM.I. LeeH.Y. KimM.O. Thymoquinone and vitamin C attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus.Neuromolecular Med.2015171354610.1007/s12017‑014‑8337‑3 25429759
    [Google Scholar]
  74. Monzio CompagnoniG. Di FonzoA. CortiS. ComiG.P. BresolinN. MasliahE. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease.Mol. Neurobiol.20205772959298010.1007/s12035‑020‑01926‑1 32445085
    [Google Scholar]
  75. ChopadeP. ChopadeN. ZhaoZ. MitragotriS. LiaoR. Chandran SujaV. Alzheimer’s and Parkinson’s disease therapies in the clinic.Bioeng. Transl. Med.202381e1036710.1002/btm2.10367 36684083
    [Google Scholar]
  76. SajjadR. ArifR. ShahA.A. ManzoorI. MustafaG. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein.Indian J. Pharm. Sci.2018804581591
    [Google Scholar]
  77. IsmailN. IsmailM. MazlanM. LatiffL.A. ImamM.U. IqbalS. AzmiN.H. GhafarS.A.A. ChanK.W. Thymoquinone prevents β-amyloid neurotoxicity in primary cultured cerebellar granule neurons.Cell. Mol. Neurobiol.20133381159116910.1007/s10571‑013‑9982‑z 24101432
    [Google Scholar]
  78. SongJ.X. SzeS.C.W. NgT.B. LeeC.K.F. LeungG.P.H. ShawP.C. TongY. ZhangY.B. Anti-Parkinsonian drug discovery from herbal medicines: What have we got from neurotoxic models?J. Ethnopharmacol.2012139369871110.1016/j.jep.2011.12.030 22212501
    [Google Scholar]
  79. DongJ. ZhangX. WangS. XuC. GaoM. LiuS. LiX. ChengN. HanY. WangX. HanY. Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE pathway.Front. Pharmacol.20211161559810.3389/fphar.2020.615598 33519481
    [Google Scholar]
  80. EbrahimiS.S. OryanS. IzadpanahE. HassanzadehK. Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease.Toxicol. Lett.201727610811410.1016/j.toxlet.2017.05.018 28526446
    [Google Scholar]
  81. FahmyH.M. KhadrawyY.A. Abd-El DaimT.M. ElfekyA.S. Abd RaboA.A. MustafaA.B. MostafaI.T. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model.Physiol. Behav.202022211293410.1016/j.physbeh.2020.112934 32353367
    [Google Scholar]
  82. SharpL.K. LipskyM.S. Screening for depression across the lifespan: A review of measures for use in primary care settings.Am. Fam. Physician200266610011008 12358212
    [Google Scholar]
  83. CzarnyP. WignerP. GaleckiP. SliwinskiT. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression.Prog. Neuropsychopharmacol. Biol. Psychiatry201880Pt C30932110.1016/j.pnpbp.2017.06.036 28669580
    [Google Scholar]
  84. KuzayD. DileközE. ÖzerÇ. Effects of thymoquinone in a rat model of reserpine-induced depression.Braz. J. Pharm. Sci.202258e1984710.1590/s2175‑97902022e19847
    [Google Scholar]
  85. SamadN. ManzoorN. MuneerZ. BhattiS.A. ImranI. Reserpine-induced altered neuro-behavioral, biochemical and histopathological assessments prevent by enhanced antioxidant defence system of thymoquinone in mice.Metab. Brain Dis.20213682535255210.1007/s11011‑021‑00789‑2 34309746
    [Google Scholar]
  86. ShimH.S. BaeC. WangJ. LeeK.H. HankerdK.M. KimH.K. ChungJ.M. LaJ.H. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain.Mol. Pain201915174480691984009810.1177/1744806919840098 30857460
    [Google Scholar]
  87. KaymakE. AkinA.T. ÖztürkE. KarabulutD. KuloğluN. YakanB. Thymoquinone has a neuroprotective effect against inflammation, oxidative stress, and endoplasmic reticulum stress in the brain cortex, medulla, and hippocampus due to doxorubicin.J. Biochem. Mol. Toxicol.20213511e2288810.1002/jbt.22888 34392583
    [Google Scholar]
  88. DurakM.A. OzhanO. YildizA. DurhanM. VardiN. CigremisY. ParlakpinarH. Protective effect of short-term thymoquinone administration on the central nervous system in cisplatin-induced neurotoxicity.Eur. Rev. Med. Pharmacol. Sci.202226196935694310.26355/eurrev_202210_29874 36263573
    [Google Scholar]
  89. BehairyA. ElkomyA. ElsayedF. GaballaM.M.S. SolimanA. AboubakrM. Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity.Naunyn Schmiedebergs Arch. Pharmacol.202439731875188810.1007/s00210‑023‑02739‑4 37773524
    [Google Scholar]
  90. SalimiA. ShabaniM. NikjouA. ChoupaniM. BiniyazM. Exploring the possible mitoprotective and neuroprotective potency of thymoquinone, betanin, and vitamin D against cytarabine‐induced mitochondrial impairment and neurotoxicity in rats’ brain.J. Biochem. Mol. Toxicol.2023372e2325610.1002/jbt.23256 36419121
    [Google Scholar]
  91. AhmedS. OmarH.E.D. SolimanM. Abdel ShakorA.B. SayedM. OmarO. Abd ElghaffarS. Vincristine-induced neurotoxicity in rats mediated by upregulation of INOS, IBA1, Nestin, PARP and Caspase 3: Ameliorative effect of erythropoietin and thymoquinone.Magallat Asyut al-Tibiyyat al-Baytariyyat20236917917218510.21608/avmj.2023.223481.1171
    [Google Scholar]
  92. TaghyanR. OmarH.E.D. Abd-ElzaherM. Abd ElghaffarS. Ameliorative effects of erythropoietin and thymoquinone on vincristine-induced brain toxicity in albino rats.Assiut Vet. Med. J.202268173435610.21608/avmj.2022.132805.1053
    [Google Scholar]
  93. OoT.T. PratchayasakulW. ChattipakornN. ChattipakornS.C. Emerging roles of toll-like receptor 4 in chemotherapy-induced neurotoxicity.Neurotoxicology20229311212710.1016/j.neuro.2022.09.006 36152729
    [Google Scholar]
  94. XingH. ZhangS. YouM. YanM. ZhangJ. ChenJ. ChenY. LiuX. ZhuJ. Thymoquinone alleviates paclitaxel-induced peripheral neuropathy through regulation of the TLR4-MyD88] inflammatory pathway.ACS Chem. Neurosci.202314203804381710.1021/acschemneuro.3c00411 37813830
    [Google Scholar]
  95. JaiswaraP.K. ShuklaS.K. Chemotherapy-mediated neuronal aberration.Pharmaceuticals (Basel)2023168116510.3390/ph16081165 37631080
    [Google Scholar]
  96. ÜstünR. OğuzE.K. ŞekerA. KorkayaH. Thymoquinone prevents cisplatin neurotoxicity in primary DRG neurons.Neurotoxicology201869687610.1016/j.neuro.2018.09.001 30227172
    [Google Scholar]
  97. KandeilM.A. MahmoudM.O. Abdel-RazikA.R.H. GomaaS.B. Thymoquinone and geraniol alleviate cisplatin-induced neurotoxicity in rats through downregulating the p38 MAPK/STAT-1 pathway and oxidative stress.Life Sci.201922814515110.1016/j.lfs.2019.04.065 31047895
    [Google Scholar]
  98. KandeilM.A. GomaaS.B. MahmoudM.O. The effect of some natural antioxidants against cisplatin-induced neurotoxicity in rats: Behavioral testing.Heliyon202068e0470810.1016/j.heliyon.2020.e04708 32885073
    [Google Scholar]
  99. AleneziS.K. The ameliorative effect of thymoquinone on vincristine-induced peripheral neuropathy in mice by modulating cellular oxidative stress and cytokine.Life (Basel)202213110110.3390/life13010101 36676049
    [Google Scholar]
  100. ArifM. RehmanN.U. MalikH. UsmanM. TokhiA. ShahS.S. RaufP.D.K. Exploring the potential pharmacological effect of thymoquinone in ameliorating the acquisition and expression of vincristine induced neuropathic pain in mice. Int. J. Phar. Integ. Health.Sci.202451607110.56536/ijpihs.v5i1.112
    [Google Scholar]
  101. ŞakalarÇ. İzgiK. İskenderB. SezenS. AksuH. ÇakırM. KurtB. TuranA. CanatanH. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer.Tumour Biol.20163744467447710.1007/s13277‑015‑4307‑0 26500095
    [Google Scholar]
  102. KhazaeiM.R. BozorgiM. KhazaeiM. MoradiA. BozorgiA. Computational and in vitro analyses on synergistic effects of paclitaxel and thymoquinone in suppressing invasive breast cancer cells.Mol. Biol. Rep.202451138810.1007/s11033‑024‑09328‑5 38446390
    [Google Scholar]
  103. MuG. ZhangL. LiH. LiaoY. YuH. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of Notch1, PI3K/Akt/] mTOR regulated signaling pathways in pancreatic cancer.Dig. Dis. Sci.20156041067108010.1007/s10620‑014‑3394‑x 25344906
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072363817250108095734
Loading
/content/journals/cbc/10.2174/0115734072363817250108095734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test