Skip to content
2000
image of Study of the Biological Activities of Aethiopinone Isolated from the Hexane Extract of Salvia argentea L. Roots and its Combinations with Reference Products

Abstract

Background

In recent years, chemical and biological studies have explored medicinal plants to develop new treatments for oxidative stress, inflammation, and diabetes.

Objective

This study aims to characterize for the first time the chemical composition of the hexane extract from the roots of using GC and GC/MS techniques. We also isolated its major compound and evaluated its biological activities, including its antioxidant, anti-inflammatory, antidiabetic, and hemolytic effects, as well as the combination of this major compound with reference drugs.

Methods

Antioxidant activity was assessed using DPPH, -carotene, and phosphomolybdenic tests. The anti-inflammatory effect was measured by the egg albumin denaturation method and protein denaturation inhibition. The antidiabetic activity was determined by evaluating the inhibition of α-amylase, with acarbose as a positive reference. The combined effect of aethiopinone with standards was also studied to reduce the minimum effective dose and minimize side effects.

Results

The hexane extract of is mainly composed of aethiopinone (53.3%) and ferruginol (20.5%). aethiopinone was isolated and identified using spectroscopic methods, including 1H NMR, 13C NMR, and IR. The biological activity assessment showed that hexane extract and aethiopinone had promising antioxidant, anti-inflammatory, and antidiabetic properties. In addition, synergistic effects were observed when aethiopinone was combined with positive references, resulting in a significant reduction of the required minimum inhibitory concentrations. The human erythrocyte toxicity assessment showed that hexane extract and aethiopinone induced very low hemolysis levels, reaching 24.18% and 31.13%, respectively, at high concentrations of 2000 μg/mL.

Conclusion

Further research is needed to confirm their therapeutic effects and assess their potential for use in the pharmaceutical industry.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072356174241228013353
2025-01-20
2025-11-10
Loading full text...

Full text loading...

References

  1. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015 4 180 183 10.1016/j.redox.2015.01.002 25588755
    [Google Scholar]
  2. Sahakyan G. Vejux A. Sahakyan N. The role of oxidative stress-mediated inflammation in the development of t2dm-induced diabetic nephropathy: Possible preventive action of tannins and other oligomeric polyphenols. Molecules 2022 27 24 9035 10.3390/molecules27249035 36558167
    [Google Scholar]
  3. Benhamidat L. Dib M.E.A. Bensaid O. Keniche A. ouar I.E. Muselli A. Chemical composition and antioxidant, anti-inflammatory and neuroprotective properties of hexane extracts from the roots of Centaurea acaulis and Centaurea pullata. Antiinfect. Agents 2022 20 5 e100622205831 10.2174/2211352520666220610113750
    [Google Scholar]
  4. Tan B.L. Norhaizan M.E. Liew W.P.P. Sulaiman Rahman H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front. Pharmacol. 2018 9 1162 10.3389/fphar.2018.01162 30405405
    [Google Scholar]
  5. Kıran T.R. Otlu O. Karabulut A.B. Oxidative stress and antioxidants in health and disease. J. Lab. Med. 2023 47 1 1 11 10.1515/labmed‑2022‑0108
    [Google Scholar]
  6. Stankov S.V. Definition of inflammation, causes of inflammation and possible anti-inflammatory strategies. Open Inflamm. J. 2012 5 1 9 10.2174/1875041901205010001
    [Google Scholar]
  7. Taurone S. Ralli M. Nebbioso M. Greco A. Artico M. Attanasio G. Gharbiya M. Plateroti A.M. Zamai L. Micera A. The role of inflammation in diabetic retinopathy: A review. Eur. Rev. Med. Pharmacol. Sci. 2020 24 20 10319 10329 33155187
    [Google Scholar]
  8. Burgos-Morón E. Abad-Jiménez Z. Martínez de Marañón A. Iannantuoni F. Escribano-López I. López-Domènech S. Salom C. Jover A. Mora V. Roldan I. Solá E. Rocha M. Víctor V.M. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J. Clin. Med. 2019 8 9 1385 10.3390/jcm8091385 31487953
    [Google Scholar]
  9. Cloete L. Diabetes mellitus: An overview of the types, symptoms, complications and management. Nurs. Stand. 2022 37 1 61 66 10.7748/ns.2021.e11709 34708622
    [Google Scholar]
  10. Majety P. Lozada Orquera F.A. Edem D. Hamdy O. Pharmacological approaches to the prevention of type 2 diabetes mellitus. Front. Endocrinol. 2023 14 1118848 10.3389/fendo.2023.1118848 36967777
    [Google Scholar]
  11. Heller S.R. Peyrot M. Oates S.K. Taylor A.D. Hypoglycemia in patient with type 2 diabetes treated with insulin: It can happen. BMJ Open Diabetes Res. Care 2020 8 1 e001194 10.1136/bmjdrc‑2020‑001194 32546549
    [Google Scholar]
  12. Rasouli H. Hosseini-Ghazvini S.M.B. Adibi H. Khodarahmi R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 2017 8 5 1942 1954 10.1039/C7FO00220C 28470323
    [Google Scholar]
  13. Gong L. Feng D. Wang T. Ren Y. Liu Y. Wang J. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020 8 12 6320 6337 10.1002/fsn3.1987 33312519
    [Google Scholar]
  14. Luethi D. Liechti M.E. Designer drugs: Mechanism of action and adverse effects. Arch. Toxicol. 2020 94 4 1085 1133 10.1007/s00204‑020‑02693‑7 32249347
    [Google Scholar]
  15. de Oliveira M.C. Vides M.C. Lassi D.L.S. Torales J. Ventriglio A. Bombana H.S. Leyton V. Périco C.A.M. Negrão A.B. Malbergier A. Castaldelli-Maia J.M. Toxicity of synthetic cannabinoids in K2/spice: A systematic review. Brain Sci. 2023 13 7 990 10.3390/brainsci13070990 37508922
    [Google Scholar]
  16. Nasim N. Sandeep I.S. Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022 65 3 399 411 10.1007/s13237‑022‑00405‑3 36276225
    [Google Scholar]
  17. Amina T.Z. Manel Z-D.D. Lamia C.B. El Amine D.M. Seasonal variations in the chemical composition of essential oil and antifungal and larvicidal activities of marrubium vulgare, an aromatic plant growing wild in west-algeria. Antiinfect. Agents 2023 21 2 e061222211625 10.2174/2211352521666221206100828
    [Google Scholar]
  18. Ainseba N. Loukili N. Soulimane A. Bellifa S. Dib M.E.A. Muselli A. Antimicrobial and antifungal effects of essential oils from Origanum vulgare, Lavandula officinalis, and Syzygium aromaticum on bacterial strains through gaseous contact. Antiinfect. Agents 2024 22 4 e290124226440 10.2174/0122113525283890240108162525
    [Google Scholar]
  19. Moshari-Nasirkandi A. Alirezalu A. Alipour H. Amato J. Screening of 20 species from lamiaceae family based on phytochemical analysis, antioxidant activity and HPLC profiling. Sci. Rep. 2023 13 1 16987 10.1038/s41598‑023‑44337‑7 37813985
    [Google Scholar]
  20. Ramos da Silva L.R. Ferreira O.O. Cruz J.N. de Jesus Pereira Franco C. Oliveira dos Anjos T. Cascaes M.M. Almeida da Costa W. Helena de Aguiar Andrade E. Santana de Oliveira M. Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evid. Based Complement. Alternat. Med. 2021 2021 1 18 10.1155/2021/6748052 34950215
    [Google Scholar]
  21. Cheminal A. Kokkoris I.P. Strid A. Dimopoulos P. Medicinal and aromatic lamiaceae plants in greece: Linking diversity and distribution patterns with ecosystem services. Forests 2020 11 6 661 10.3390/f11060661
    [Google Scholar]
  22. Hamidpour M. Hamidpour R. Hamidpour S. Shahlari M. Chemistry, pharmacology, and medicinal property of sage (salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J. Tradit. Complement. Med. 2014 4 2 82 88 10.4103/2225‑4110.130373 24860730
    [Google Scholar]
  23. Wu Y.B. Ni Z.Y. Shi Q.W. Dong M. Kiyota H. Gu Y.C. Cong B. Constituents from salvia species and their biological activities. Chem. Rev. 2012 112 11 5967 6026 10.1021/cr200058f 22967178
    [Google Scholar]
  24. Ren Y.J. Cao Y.G. Zeng M.N. Zhang Q.Q. Liu Y.L. Chen X. Fan X-L. Li X-D. He C. Zheng X-K. Feng W-S. Two new diterpenoid quinones with lung protective activity from the roots of Salvia miltiorrhiza. Phytochem. Lett. 2022 51 1 4 10.1016/j.phytol.2022.06.006
    [Google Scholar]
  25. Zhang R. Wang D.D. Tang L.Y. Ji P.X. Li X.M. Guo Z.F. Wang J. Jia J.M. Wang A.H. Salvirrane A.-F. Six undescribed nordrimane sesquiterpene derivatives from Salvia castanea Diels f. tomentosa Stib and their cytotoxic activities. Phytochemistry 2024 218 113958 10.1016/j.phytochem.2023.113958 38154730
    [Google Scholar]
  26. Tavera-Hernández R. Jiménez-Estrada M. Alvarado-Sansininea J.J. Huerta-Reyes M. Chia (Salvia hispanica L.), a pre-hispanic food in the treatment of diabetes mellitus: Hypoglycemic, antioxidant, anti-inflammatory, and inhibitory properties of α-glucosidase and α-amylase, and in the prevention of cardiovascular disease. Molecules 2023 28 24 8069 10.3390/molecules28248069 38138560
    [Google Scholar]
  27. İzol E. 2023
  28. Riccobono L. Maggio A. Rosselli S. Ilardi V. Senatore F. Bruno M. Chemical composition of volatile and fixed oils from of Salvia argentea L. (Lamiaceae) growing wild in Sicily. Nat. Prod. Res. 2016 30 1 25 34 10.1080/14786419.2015.1030742 25880372
    [Google Scholar]
  29. Rayouf M.B.T. Msaada K. Hosni K. Marzouk B. Essential oil constituents of salvia argentea l. from tunisia: Phenological variations. Med. Aromat. Plant Sci. Biotechnol. 2013 7 1 40 44
    [Google Scholar]
  30. Benabdesslem Y. Hachem K. Kahloula K. Slimani M. An ethnopharmacological study of Salvia Argentea used by the local people of Saida in northwestern Algeria. South Asian J. Exp. Biol. 2019 8 4 149 153 10.38150/sajeb.8(4).p149‑153
    [Google Scholar]
  31. Konig W. Joulain D. Hochmuth D. Terpenoids and Related Constituents of Essential Oils, Library of Mass Finder 2.1. Advances in Biological Chemistry Institute of Organic Chemistry, University of Hamburg 2001 5 273 278 10.4236/abc.2015.57024
    [Google Scholar]
  32. Mc Lafferty F. Stauffer D. Wiley Register of Mass Spectral DataMass spectrometry library search system bench-Top/PBM. 6th Ed. Hoboken, New Jersey John Wiley & Sons, Inc. 1994
    [Google Scholar]
  33. Mc Lafferty F.W. Stauffer D.B. The Wiley/NBS Registry of Mass Spectra Data 1st Ed. New-York Wiley-Interscience 1988 1 53
    [Google Scholar]
  34. Standards NIO Technology, PC Version 1.7 of The NIST/EPA/NIH Mass Spectral Library Gaithersburg, MD National Institute of Standards and Technology 1999 1 49
    [Google Scholar]
  35. El-Massry K.F. Farouk A. Abou-Zeid M. Free radical scavenging activity and lipoxygenase inhibition of rosemary (Rosmarinus officinalis l) volatile oil. J. Essent. Oil-Bear. Plants 2008 11 5 536 543 10.1080/0972060X.2008.10643663
    [Google Scholar]
  36. Hatami T. Emami S.A. Miraghaee S.S. Mojarrab M. Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis willd. Iran. J. Pharm. Res. 2014 13 2 551 559 25237350
    [Google Scholar]
  37. Prieto P. Pineda M. Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999 269 2 337 341 10.1006/abio.1999.4019 10222007
    [Google Scholar]
  38. Chandra S. Chatterjee P. Dey P. Bhattacharya S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012 2 1 S178 S180 10.1016/S2221‑1691(12)60154‑3
    [Google Scholar]
  39. Williams L.A.D. O’Connar A. Latore L. Dennis O. Ringer S. Whittaker J.A. Conrad J. Vogler B. Rosner H. Kraus W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 2008 57 4 327 331 19566010
    [Google Scholar]
  40. Wickramaratne M.N. Punchihewa J.C. Wickramaratne D.B.M. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement. Altern. Med. 2016 16 1 466 10.1186/s12906‑016‑1452‑y 27846876
    [Google Scholar]
  41. Li G.X. Liu Z.Q. The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis. Food Chem. Toxicol. 2008 46 3 886 892 10.1016/j.fct.2007.10.020 18069111
    [Google Scholar]
  42. Sexmero Cuadrado M.J. De la Torre M.C. Lin L.Z. Cordell G.A. Rodriguez B. Perales A. Aurea P. Cyclization reactions of the o-naphthoquinone diterpene aethiopinone. A revision of the structure of prionitin. J. Org. Chem. 1992 57 17 4722 4728 10.1021/jo00043a034
    [Google Scholar]
  43. Hernández-Pérez M. Rabanal R.M. Arias A. de La Torre M.C. Rodríguez B. Aethiopinone, an antibacterial and cytotoxic agent from Salvia aethiopis roots. Pharm. Biol. 1999 37 1 17 21 10.1076/phbi.37.1.17.6321
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072356174241228013353
Loading
/content/journals/cbc/10.2174/0115734072356174241228013353
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: aethiopinone ; combination ; hemolytic activity ; biological activities ; Salvia argentea ; α-amylase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test