Skip to content
2000
image of Emerging Insights and Innovations in Acridine Derivatives: A Review

Abstract

Acridine derivatives represent a promising class of compounds in anticancer drug development, owing to their versatile mechanisms of action and synthetic flexibility. These compounds can intercalate between DNA base pairs, disrupting vital cellular processes such as DNA replication and transcription, which underscores their potential as potent anticancer agents. This intercalation not only inhibits tumor growth but also enhances cancer cell sensitivity to other therapeutic interventions, improving overall treatment efficacy. The synthesis of acridine derivatives involves several named reactions and synthetic schemes, such as the Ullmann, Bernthsen, and Friedlander syntheses. These methods allow for the production of derivatives with specific substitution patterns and biological activities, enabling researchers to optimize pharmacological properties like bioavailability and target specificity. Recent research has produced acridine derivatives with enhanced cytotoxicity and improved selectivity against various cancer types. Notable examples include spiro compounds and 3,9-disubstituted acridines, which have shown potent antitumor activities in preclinical studies, paving the way for further development and clinical evaluation. Acridine derivatives hold significant promise in the fight against cancer, offering novel avenues for therapeutic innovation and advancement in oncology. Interdisciplinary efforts integrating synthetic chemistry, pharmacology, and molecular biology will be essential to fully harness their therapeutic potential and address the complex challenges of cancer treatment.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072346755250118081934
2025-02-06
2025-10-13
Loading full text...

Full text loading...

References

  1. Varakumar P. Rajagopal K. Aparna B. Raman K. Byran G. Gonçalves Lima C.M. Rashid S. Nafady M.H. Emran T.B. Wybraniec S. Acridine as an anti-tumour agent: A critical review. Molecules 2022 28 1 193 10.3390/molecules28010193 36615391
    [Google Scholar]
  2. Davey M.G. Miller N. McInerney N.M. A review of epidemiology and cancer biology of malignant melanoma. Cureus 2021 13 5 e15087 10.7759/cureus.15087 34155457
    [Google Scholar]
  3. Cooper G.M. The Cell: A Molecular Approach. 2nd Ed. Sunderland (MA) Sinauer Associates 2000
    [Google Scholar]
  4. Mieszkowski M.R. Cancer – A biophysicist’s point of view. In: Digital Recordings. Available from: recordings.com/publ/cancer.html (Accessed on: March 15 2010). 2010
  5. Hanselmann R.G. Welter C. Origin of Cancer: Cell work is the key to understanding cancer initiation and progression. Front. Cell Dev. Biol. 2022 10 787995 10.3389/fcell.2022.787995 35300431
    [Google Scholar]
  6. Sharma G. Dave R. Sanadya J. Sharma P. Sharma K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 2010 1 2 109 126 10.4103/2231‑4040.72251 22247839
    [Google Scholar]
  7. Helmberg A. Normal growth regulation: Proto-oncogenes. Available from: http://helmberg.at/carcinogenesis.htm (Accessed on: March 17 2010). 2010
  8. Diet and Physical Activity What’s the Cancer Connection? Available from: http://www.cancer.org/docroot/PED/content/PED_3_1x_Link_Beteen _Lifestyle_and_CancerMarch03.asp (Accessed on: March 17 2010). 2010
  9. Fromer M. New SEER report documents high risk of second cancers in cancer survivors. Oncol. Times 2007 29 5 8 10.1097/01.COT.0000267748.71667.2d
    [Google Scholar]
  10. Ershler W.B. The Influence of Advanced Age Occurrence on Cancer and Growth. Biological Basis of Geriatric Oncology. Cancer Treatment and Research Balducci L. Extermann M. Boston, MA Springer 2005 124 75 87 10.1007/0‑387‑23962‑6_4
    [Google Scholar]
  11. Bray F. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  12. Schwartz S.M. Epidemiology of cancer. Clin. Chem. 2024 70 1 140 149 10.1093/clinchem/hvad202 38175589
    [Google Scholar]
  13. Leslie S.W. Soon-Sutton T.L. Skelton W.P. Prostate Cancer. StatPearls. Treasure Island, FL StatPearls Publishing 2024 29261872
    [Google Scholar]
  14. Hassanpour S.H. Dehghani M. Review of cancer from perspective of molecular. J. Canc. Rese. Pract. 2017 4 4 127 129 10.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  15. Miranda T.G. Ciribelli N.N. Bihain M.F.R. Santos Pereira A.K. Cavallini G.S. Pereira D.H. Interactions between DNA and the acridine intercalator: A computational study. Comput. Biol. Chem. 2024 109 108029 10.1016/j.compbiolchem.2024.108029 38387123
    [Google Scholar]
  16. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  17. Albert A. The Acridines. 2nd Ed. London Edward Arnold Publishers, Ltd. 1966
    [Google Scholar]
  18. Longley D.B. Johnston P.G. Molecular mechanisms of drug resistance. J. Pathol. 2005 205 2 275 292 10.1002/path.1706 15641020
    [Google Scholar]
  19. Huynh M. Vinck R. Gibert B. Gasser G. Strategies for the nuclear delivery of metal complexes to cancer cells. Adv. Mater. 2024 36 16 2311437 10.1002/adma.202311437 38174785
    [Google Scholar]
  20. Denny W. Chemotherapeutic effects of acridine derivatives. Med. Chem. Rev. Online 2004 1 3 257 266 10.2174/1567203043401923
    [Google Scholar]
  21. Demeunynck M. Antitumour acridines. Expert Opin. Ther. Pat. 2004 14 1 55 70 10.1517/13543776.14.1.55
    [Google Scholar]
  22. Denny W. Baguley B. Dual topoisomerase I/II inhibitors in cancer therapy. Curr. Top. Med. Chem. 2003 3 3 339 353 10.2174/1568026033452555 12570767
    [Google Scholar]
  23. Hannun Y.A. Bell R.M. Aminoacridines, potent inhibitors of protein kinase C. J. Biol. Chem. 1988 263 11 5124 5131 10.1016/S0021‑9258(18)60688‑X 3258596
    [Google Scholar]
  24. Chen Q. Deady L.W. Polya G.M. Inhibition of wheat embryo calcium-dependent protein kinase by acridines and azaacridines. Phytochemistry 1994 36 5 1153 1159 10.1016/S0031‑9422(00)89629‑6 7765360
    [Google Scholar]
  25. Chen Q. Deady L.W. Polya G.M. Differential inhibition of cyclic AMP-dependent protein kinase, myosin light chain kinase and protein kinase C by azaacridine and acridine derivatives. Biol. Chem. Hoppe. Seyler. 1994 375 4 223 235 10.1515/bchm3.1994.375.4.223 8060530
    [Google Scholar]
  26. Huwe A. Mazitschek R. Giannis A. Small molecules as inhibitors of cyclin-dependent kinases. Angew. Chem. Int. Ed. 2003 42 19 2122 2138 10.1002/anie.200200540 12761741
    [Google Scholar]
  27. Riou J.F. G-quadruplex interacting agents targeting the telomeric G-overhang are more than simple telomerase inhibitors. Curr. Med. Chem. Anticancer Agents 2004 4 5 439 443 10.2174/1568011043352740 15379700
    [Google Scholar]
  28. Goni L.K.M.O. Jafar Mazumder M.A. Tripathy D.B. Quraishi M.A. Acridine and its derivatives: Synthesis, biological, and anticorrosion properties. Materials (Basel) 2022 15 21 7560 10.3390/ma15217560 36363152
    [Google Scholar]
  29. Kumar R. Kaur M. Kumari M. Acridine: A versatile heterocyclic nucleus. Acta Pol. Pharm. 2012 69 1 3 9 22574501
    [Google Scholar]
  30. Nehme R. Hallal R. El Dor M. Kobeissy F. Gouilleux F. Mazurier F. Zibara K. Repurposing of acriflavine to target chronic myeloid leukemia treatment. Curr. Med. Chem. 2021 28 11 2218 2233 10.2174/1875533XMTA5ENzg5y 32900342
    [Google Scholar]
  31. Piorecka K. Kurjata J. Stanczyk W.A. Acriflavine, an acridine derivative for biomedical application: Current State of the Art. J. Med. Chem. 2022 65 17 11415 11432 10.1021/acs.jmedchem.2c00573 36018000
    [Google Scholar]
  32. Scatozza F. D’Amore A. Fontanella R.A. De Cesaris P. Marampon F. Padula F. Ziparo E. Riccioli A. Filippini A. Toll-Iike receptor-3 activation enhances malignant traits in human breast cancer cells through hypoxia-inducible factor-1α. Anticancer Res. 2020 40 10 5379 5391 10.21873/anticanres.14546 32988857
    [Google Scholar]
  33. Martí-Díaz R. Montenegro M.F. Cabezas-Herrera J. Goding C.R. Rodríguez-López J.N. Sánchez-del-Campo L. Acriflavine, a potent inhibitor of HIF-1α, disturbs glucose metabolism and suppresses ATF4-protective pathways in melanoma under non-hypoxic conditions. Cancers (Basel) 2020 13 1 102 10.3390/cancers13010102 33396270
    [Google Scholar]
  34. Roopan S.M. Bharathi A. Al-Dhabi N.A. Arasu M.V. Madhumitha G. Synthesis and insecticidal activity of acridone derivatives to Aedes aegypti and Culex quinquefasciatus larvae and non-target aquatic species. Sci. Rep. 2017 7 1 39753 10.1038/srep39753 28059104
    [Google Scholar]
  35. Mukherjee A. Sasikala W.D. Chapter One - Drug–dna intercalation: From discovery to the molecular mechanism. Adv. Prot. Chem. Struct. Biol. 2013 92 1 62 10.1016/B978‑0‑12‑411636‑8.00001‑8
    [Google Scholar]
  36. Gatasheh M.K. Kannan S. Hemalatha K. Imrana N. Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala. Int. J. Modern. Sci 2017 3 4 272 278 10.1016/j.kijoms.2017.07.003
    [Google Scholar]
  37. Ehsanian R. Van Waes C. Feller S.M. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Commun. Signal. 2011 9 1 13 10.1186/1478‑811X‑9‑13 21569639
    [Google Scholar]
  38. LiverTox LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD) National Institute of Diabetes and Digestive and Kidney Diseases 2017 31643176
    [Google Scholar]
  39. Bailly C. Pyronaridine: An update of its pharmacological activities and mechanisms of action. Biopolymers 2021 112 4 e23398 10.1002/bip.23398 33280083
    [Google Scholar]
  40. Mayor J. Torriani G. Engler O. Rothenberger S. Identification of novel antiviral compounds targeting entry of hantaviruses. Viruses 2021 13 4 685 10.3390/v13040685 33923413
    [Google Scholar]
  41. Murphy M.B. Mercer S.L. Deweese J.E. Chapter Five - Inhibitors and poisons of mammalian type II topoisomerases. Adv. Molec. Toxicol. 2017 11 203 240 10.1016/B978‑0‑12‑812522‑9.00005‑1
    [Google Scholar]
  42. Kuron D. Pohlmann A. Angenendt L. Kessler T. Mesters R. Berdel W.E. Stelljes M. Lenz G. Schliemann C. Mikesch J.H. Amsacrine-based induction therapy in AML patients with cardiac comorbidities: A retrospective single-center analysis. Ann. Hematol. 2023 102 4 755 760 10.1007/s00277‑023‑05111‑x 36749402
    [Google Scholar]
  43. Gensicka-Kowalewska M. Cholewiński G. Dzierzbicka K. Recent developments in the synthesis and biological activity of acridine/acridone analogues. RSC Advances 2017 7 26 15776 15804 10.1039/C7RA01026E
    [Google Scholar]
  44. Patel M.M. Mali M.D. Patel S.K. Bernthsen synthesis, antimicrobial activities and cytotoxicity of acridine derivatives. Bioorg. Med. Chem. Lett. 2010 20 21 6324 6326 10.1016/j.bmcl.2010.06.001 20850303
    [Google Scholar]
  45. Muscia G.C. Buldain G.Y. Asís S.E. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur. J. Med. Chem. 2014 73 243 249 10.1016/j.ejmech.2013.12.013 24412719
    [Google Scholar]
  46. Krochtová K. Halečková A. Janovec L. Blizniaková M. Kušnírová K. Kožurková M. Novel 3,9-disubstituted acridines with strong inhibition activity against topoisomerase I: Synthesis, biological evaluation and molecular docking study. Molecules 2023 28 3 1308 10.3390/molecules28031308 36770975
    [Google Scholar]
  47. Alhosseini Almodarresiyeh H. Shahab S. Sheikhi M. Filippovich L. Tarun E. Pyrko A. Khancheuski M. Synthesis, characterization, bioactivity and antioxidant properties of new acridine derivatives. Experimental and DFT Studies. Res. Squa. 2023 1 85067 10.2139/ssrn.4385067
    [Google Scholar]
  48. Albino S.L. da Silva Moura W.C. Reis M.M.L. Sousa G.L.S. da Silva P.R. de Oliveira M.G.C. Borges T.K.S. Albuquerque L.F.F. de Almeida S.M.V. de Lima M.C.A. Kuckelhaus S.A.S. Nascimento I.J.S. Junior F.J.B.M. da Silva T.G. de Moura R.O. ACW-02 an acridine triazolidine derivative presents antileishmanial activity mediated by DNA interaction and immunomodulation. Pharmaceuticals (Basel) 2023 16 2 204 10.3390/ph16020204 37259353
    [Google Scholar]
  49. Khatab H.A. Hammad S.F. El-Fakharany E.M. Hashem A.I. El-Helw E.A.E. Synthesis and cytotoxicity evaluation of novel 1,8-acridinedione derivatives bearing phthalimide moiety as potential antitumor agents. Sci. Rep. 2023 13 1 15093 10.1038/s41598‑023‑41970‑0 37699954
    [Google Scholar]
  50. Garberová M. Potočňák I. Tvrdoňová M. Majirská M. Bago-Pilátová M. Bekešová S. Kováč A. Takáč P. Khiratkar K. Kudličková Z. Elečko J. Vilková M. Derivatives incorporating acridine, pyrrole, and thiazolidine rings as promising antitumor agents. Molecules 2023 28 18 6616 10.3390/molecules28186616 37764394
    [Google Scholar]
  51. Anh D.T.T. Giang L.N.T. Van Tuyen N. Giang N.T.Q. Thanh N.H. An efficient synthesis of acridine‐aza‐anthraquinone hybrid compounds under microwave irradiation. Vietnam J. Chem. 2023 61 2 262 268 10.1002/vjch.202200164
    [Google Scholar]
  52. Elmusa M. Elmusa S. Mert S. Kasımoğulları R. Türkan F. Atalar M.N. Bursal E. One-pot three-component synthesis of novel pyrazolo-acridine derivatives and assessment of their acetylcholinesterase inhibitory properties: An in vitro and in silico study. J. Mol. Struct. 2023 1274 134553 10.1016/j.molstruc.2022.134553
    [Google Scholar]
  53. Ahmed U. Manzoor M. Qureshi S. Mazhar M. Fatima A. Aurangzeb S. Hamid M. Khan K.M. Khan N.A. Rashid Y. Anwar A. Anti-amoebic effects of synthetic acridine-9(10H)-one against brain-eating amoebae. Acta Trop. 2023 239 106824 10.1016/j.actatropica.2023.106824 36610529
    [Google Scholar]
  54. Sousa G. de Almeida M.C.F. Lócio L.L. dos Santos V.L. Bezerra D.P. Silva V.R. de Almeida S.M.V. Simon A. Honório T.S. Cabral L.M. Castro R.N. de Moura R.O. Kümmerle A.E. Synthesis and evaluation of antiproliferative activity, topoisomerase IIα inhibition, DNA binding and non-clinical toxicity of new acridine–thiosemicarbazone derivatives. Pharmaceuticals (Basel) 2022 15 9 1098 10.3390/ph15091098 36145320
    [Google Scholar]
  55. Maciejewska K. Czarnecka K. Kręcisz P. Niedziałek D. Wieczorek G. Skibiński R. Szymański P. Novel cyclopentaquinoline and acridine analogs as multifunctional, potent drug candidates in Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 11 5876 10.3390/ijms23115876 35682556
    [Google Scholar]
  56. Huo L. Liu X. Jaiswal Y. Xu H. Chen R. Lu R. Nong Y. Williams L. Liang Y. Jia Z. Design and synthesis of acridine-triazole and acridine-thiadiazole derivatives and their inhibitory effect against cancer cells. Int. J. Mol. Sci. 2022 24 1 64 10.3390/ijms24010064 36613504
    [Google Scholar]
  57. Kumar A. Madderla S. Dharavath R. Nalaparaju N. Katta R. Gundu S. Thumma V. Microwave assisted synthesis of N-substituted acridine‐1,8‐dione derivatives: Evaluation of antimicrobial activity. J. Heterocycl. Chem. 2022 59 7 1180 1190 10.1002/jhet.4458
    [Google Scholar]
  58. Sulthanudeen S. Imran P.M. Selvakumaran M. Kubaib A. Novel acridone derivatives probed using DFT, including design, synthesis, characterization with anti-oxidant and anti-mitotic screening. Results Chem. 2023 5 100753 10.1016/j.rechem.2022.100753
    [Google Scholar]
  59. Rupar J. Dobričić V. Grahovac J. Radulović S. Skok Ž. Ilaš J. Aleksić M. Brborić J. Čudina O. Synthesis and evaluation of anticancer activity of new 9-acridinyl amino acid derivatives. RSC Med. Chem. 2020 11 3 378 386 10.1039/C9MD00597H 33479643
    [Google Scholar]
  60. Lotfi S. Rahmani T. Hatami M. Pouramiri B. Kermani E.T. Rezvannejad E. Mortazavi M. Fathi Hafshejani S. Askari N. Pourjamali N. Zahedifar M. Design, synthesis and biological assessment of acridine derivatives containing 1,3,4-thiadiazole moiety as novel selective acetylcholinesterase inhibitors. Bioorg. Chem. 2020 105 104457 10.1016/j.bioorg.2020.104457 33339082
    [Google Scholar]
  61. Gobinath P. Packialakshmi P. Daoud A. Alarifi S. Idhayadhulla A. Radhakrishnan S. Grindstone chemistry: Design, one-pot synthesis, and promising anticancer activity of Spiro[acridine-9,2′-indoline]-1,3,8-trione derivatives against the MCF-7 cancer cell line. Molecules 2020 25 24 5862 10.3390/molecules25245862 33322433
    [Google Scholar]
  62. Karelou M. Kourafalos V. Tragomalou A.P. Marakos P. Pouli N. Tsitsilonis O.E. Gikas E. Kostakis I.K. Synthesis, biological evaluation and stability studies of some novel aza-acridine aminoderivatives. Molecules 2020 25 19 4584 10.3390/molecules25194584 33049986
    [Google Scholar]
  63. Oyedele A.S. Bogan D.N. Okoro C.O. Synthesis, biological evaluation and virtual screening of some acridone derivatives as potential anticancer agents. Bioorg. Med. Chem. 2020 28 9 115426 10.1016/j.bmc.2020.115426 32201193
    [Google Scholar]
  64. Wang B.W. Li L. Liu H.D. Chen D.S. Efficient one-pot synthesis of spiro[indoline-3,11′-pyrazolo[3,4-a]acridine]- 2,10‘(1’H)-dione derivatives catalyzed by L-proline. Polycycl. Aromat. Compd. 2020 42 2 1 15 10.1080/10406638.2020.1858884
    [Google Scholar]
  65. Aarjane M. Slassi S. Amine A. Synthesis, antibacterial evaluation and computational studies of new acridone-1,2,3-triazole hybrids. J. Mol. Struct. 2021 1241 130636 10.1016/j.molstruc.2021.130636
    [Google Scholar]
  66. Chen R. Huo L. Jaiswal Y. Huang J. Zhong Z. Zhong J. Williams L. Xia X. Liang Y. Yan Z. Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives. Molecules 2019 24 11 2065 10.3390/molecules24112065 31151235
    [Google Scholar]
  67. Mousavi S.R. Nodeh H.R. Foroumadi A. Magnetically recoverable graphene-based nanoparticles for the one-pot synthesis of acridine derivatives under solvent-free conditions. Polycycl. Aromat. Compd. 2019 41 4 746 760 10.1080/10406638.2019.1616305
    [Google Scholar]
  68. Mahanti S. Sunkara S. Bhavani R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun. 2019 49 13 1729 1740 10.1080/00397911.2019.1608450
    [Google Scholar]
  69. Perkel A.L. Voronina S.G. Borkina G.G. The role of the Baeyer-Villiger reaction in the liquid-phase oxidation of organic compounds. Russ. Chem. Bull. 2018 67 5 779 786 10.1007/s11172‑018‑2137‑0
    [Google Scholar]
  70. Sharhan O. Heidelberg T. Hashim N.M. Salman A.A. Ali H.M. Jayash S.N. Synthesis and biological study of acridine-based imidazolium salts. RSC Advances 2018 8 68 38995 39004 10.1039/C8RA08138G 35558311
    [Google Scholar]
  71. Berger K.E. McCormick G.M. Jaye J.A. Rozeske C.M. Fort E.H. Synthesis of acridines through alkyne addition to diarylamines. Molecules 2018 23 11 2867 10.3390/molecules23112867 30400283
    [Google Scholar]
  72. Sulyman S.D. Ibraheem S.Y. Jameel R.K. Synthesis of schiff bases derivatives from benzene diamine containing acridine moiety. Rafidain J. Sci 2019 28 2 90 99 10.33899/rjs.2019.159980
    [Google Scholar]
  73. de Melo Rego M.J.B. de Sena W.L.B. de Moura R.O. Jacob I.T.T. Lins E. Lins, T.U.; Pereira, M.C.; do Carmo A Lima, M.; Galdino-Pitta, M.R.; da R Pitta, I.; da Rocha Pitta, M.G. Synthesis and anticancer evaluation of thiazacridine derivatives reveals new selective molecules to hematopoietic neoplastic cells. Comb. Chem. High Throughput Screen. 2017 20 8 713 718 10.2174/1386207320666170724114802 28738767
    [Google Scholar]
  74. Ulus R. Esirden İ. Aday B. Turgut G.Ç. Şen A. Kaya M. Synthesis of novel acridine-sulfonamide hybrid compounds as acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Med. Chem. Res. 2018 27 2 634 641 10.1007/s00044‑017‑2088‑2
    [Google Scholar]
  75. Kudryavtseva T.N. Lamanov A.Y. Klimova L.G. Nazarov G.V. Synthesis and antimicrobial activity of acridine carboxylic acid derivatives containing a piperazine moiety. Russ. Chem. Bull. 2017 66 1 123 128 10.1007/s11172‑017‑1709‑8
    [Google Scholar]
  76. Salem O.M. Vilková M. Janočková J. Jendželovský R. Fedoročko P. Imrich J. Kožurková M. Synthesis, spectral characterization, DNA binding ability and anti-cancer screening of new acridine-based derivatives. Med. Chem. Res. 2017 26 10 2309 2321 10.1007/s00044‑017‑1931‑9
    [Google Scholar]
  77. El-Sheshtawy H.S. Assran A.S. AbouBaker A.M. Synthesis, structural characterization, spectroscopic properties, and theoretical investigations of aminoacridine derivatives. Polycycl. Aromat. Compd. 2019 39 1 1 3 10.1080/10406638.2016.1255234
    [Google Scholar]
  78. Parihar K. Zaveri M. Jain G. Kawathekar N. Dwivedi R. Design, synthesis and evaluation of hybrids based on quinoline and acridine scaffolds as antimalarial agents. Int. J. Pharm. Pharm. Res. 2016 7 227 242
    [Google Scholar]
  79. Kaya M. Yıldırır Y. Çelik G.Y. Synthesis, characterization, and in vitro antimicrobial and antifungal activity of novel acridines. Pharm. Chem. J. 2015 48 11 722 726 10.1007/s11094‑015‑1181‑4
    [Google Scholar]
  80. De Almeida S. Lafayette E. Da Silva L. Amorim C. De Oliveira T. Ruiz A. De Carvalho J. De Moura R. Beltrão E. De Lima M. Júnior L. Synthesis, DNA binding, and antiproliferative activity of novel acridine-thiosemicarbazone derivatives. Int. J. Mol. Sci. 2015 16 6 13023 13042 10.3390/ijms160613023 26068233
    [Google Scholar]
  81. Kumar A. Kumar N. Roy P. Sondhi S.M. Sharma A. Synthesis of acridine cyclic imide hybrid molecules and their evaluation for anticancer activity. Med. Chem. Res. 2015 24 8 3272 3282 10.1007/s00044‑015‑1380‑2
    [Google Scholar]
  82. Kumar R. Bahia M.S. Silakari O. Synthesis, cytotoxic activity, and computational analysis of N10-substituted acridone analogs. Med. Chem. Res. 2015 24 3 921 933 10.1007/s00044‑014‑1156‑0
    [Google Scholar]
  83. Arya S. Kumar A. Kumar N. Roy P. Sondhi S.M. Synthesis and anticancer activity evaluation of some acridine derivatives. Med. Chem. Res. 2015 24 5 1942 1951 10.1007/s00044‑014‑1268‑6
    [Google Scholar]
  84. Kumar R. Sharma A. Sharma S. Silakari O. Singh M. Kaur M. Synthesis, characterization and antitumor activity of 2-methyl-9-substituted acridines. Arab. J. Chem. 2017 10 S956 S963 10.1016/j.arabjc.2012.12.035
    [Google Scholar]
  85. El-Moghazy Aly S.M. Abdel Rahman D.E. Abbas S. Design and synthesis of some substituted acridine derivatives of anticipated antitumor activity. Bulletin. Pharma. Sci. Assiut 2007 30 2 213 234
    [Google Scholar]
  86. Kumar S. Guha M. Choubey V. Maity P. Bandyopadhyay U. Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: A mechanistic update. Life Sci. 2007 80 9 813 828 10.1016/j.lfs.2006.11.008 17157328
    [Google Scholar]
  87. Ferguson L.R. Denny W.A. Genotoxicity of non-covalent interactions: DNA intercalators. Mutat. Res. 2007 623 1-2 14 23 10.1016/j.mrfmmm.2007.03.014 17498749
    [Google Scholar]
  88. Chavalitshewinkoon P. Wilairat P. Gamage S. Denny W. Figgitt D. Ralph R. Structure-activity relationships and modes of action of 9-anilinoacridines against chloroquine-resistant Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 1993 37 3 403 406 10.1128/AAC.37.3.403 8384810
    [Google Scholar]
  89. Azim M.K. Ahmed W. Khan I.A. Rao N.A. Khan K.M. Identification of acridinyl hydrazides as potent aspartic protease inhibitors. Bioorg. Med. Chem. Lett. 2008 18 9 3011 3015 10.1016/j.bmcl.2008.02.060 18417344
    [Google Scholar]
  90. Santelli-Rouvier C. Pradines B. Berthelot M. Parzy D. Barbe J. Arylsulfonyl acridinyl derivatives acting on Plasmodium falciparum. Eur. J. Med. Chem. 2004 39 9 735 744 10.1016/j.ejmech.2004.05.007
    [Google Scholar]
  91. Popoff I.C. Engle A.R. Whitaker R.L. Singhal G.H. Antimalarial agents. 8. Ring-substituted bis(4-aminophenyl) sulfones and their precursors. J. Med. Chem. 1971 14 12 1166 1169 10.1021/jm00294a006 5116228
    [Google Scholar]
  92. Figgitt D. Denny W. Chavalitshewinkoon P. Wilairat P. Ralph R. In vitro study of anticancer acridines as potential antitrypanosomal and antimalarial agents. Antimicrob. Agents Chemother. 1992 36 8 1644 1647 10.1128/AAC.36.8.1644 1416846
    [Google Scholar]
  93. Yu X.M. Ramiandrasoa F. Guetzoyan L. Pradines B. Quintino E. Gadelle D. Forterre P. Cresteil T. Mahy J.P. Pethe S. Synthesis and biological evaluation of acridine derivatives as antimalarial agents. ChemMedChem 2012 7 4 587 605 10.1002/cmdc.201100554 22331612
    [Google Scholar]
  94. Opsenica I. Burnett J.C. Gussio R. Opsenica D. Todorović N. Lanteri C.A. Sciotti R.J. Gettayacamin M. Basilico N. Taramelli D. Nuss J.E. Wanner L. Panchal R.G. Šolaja B.A. Bavari S. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. J. Med. Chem. 2011 54 5 1157 1169 10.1021/jm100938u 21265542
    [Google Scholar]
  95. Suveyzdis Y.I. Lyakhov S.A. Litvinova L.A. Rybalko S.L. Dyadyun S.T. Antiviral activity of acridinylaminoalcohols and acridinylaminoacid esters. Pharm. Chem. J. 2000 34 10 528 529 10.1023/A:1010303112897
    [Google Scholar]
  96. Goodell J.R. Madhok A.A. Hiasa H. Ferguson D.M. Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorg. Med. Chem. 2006 14 16 5467 5480 10.1016/j.bmc.2006.04.044 16713270
    [Google Scholar]
  97. Artusi S. Nadai M. Perrone R. Biasolo M.A. Palù G. Flamand L. Calistri A. Richter S.N. The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: Implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res. 2015 118 123 131 10.1016/j.antiviral.2015.03.016 25843424
    [Google Scholar]
  98. Read M. Harrison R.J. Romagnoli B. Tanious F.A. Gowan S.H. Reszka A.P. Wilson W.D. Kelland L.R. Neidle S. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci. USA 2001 98 9 4844 4849 10.1073/pnas.081560598 11309493
    [Google Scholar]
  99. Harrison R.J. Cuesta J. Chessari G. Read M.A. Basra S.K. Reszka A.P. Morrell J. Gowan S.M. Incles C.M. Tanious F.A. Wilson W.D. Kelland L.R. Neidle S. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J. Med. Chem. 2003 46 21 4463 4476 10.1021/jm0308693 14521409
    [Google Scholar]
  100. Burger A.M. Dai F. Schultes C.M. Reszka A.P. Moore M.J. Double J.A. Neidle S. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 2005 65 4 1489 1496 10.1158/0008‑5472.CAN‑04‑2910 15735037
    [Google Scholar]
  101. Pépin G. Nejad C. Thomas B.J. Ferrand J. McArthur K. Bardin P.G. Williams B.R.G. Gantier M.P. Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Res. 2017 45 1 198 205 10.1093/nar/gkw878 27694309
    [Google Scholar]
  102. Stewart J.T. Synthesis and biological activity of 9-substituted acridines. J. Pharm. Sci. 1973 62 8 1357 1358 10.1002/jps.2600620830 4725186
    [Google Scholar]
  103. Albert A. The Acridines: Their Preparation, Physical, Chemical, and Biological Properties and Uses. 2nd Ed. London Arnold 1966
    [Google Scholar]
  104. Albert A. Rubbo S.D. Goldacre R.J. Davey M.E. Stone J.D. The influence of chemical constitution on antibacterial activity. Part II: A general survey of the acridine series. Br. J. Exp. Pathol. 1945 26 3 160 192
    [Google Scholar]
  105. Lerman L.S. The structure of the DNA-acridine complex. Proc. Natl. Acad. Sci. USA 1963 49 1 94 102 10.1073/pnas.49.1.94 13929834
    [Google Scholar]
  106. Pal Singh N. Kumar R. Nandan Pra D. Sharma S. Silakari O. Synthesis and antibacterial activity of benzotriazole substituted acridines. Int. J. Bio. Chem. 2011 5 3 193 199 10.3923/ijbc.2011.193.199
    [Google Scholar]
  107. Lyakhov S.A. Suveyzdis Y.I. Bykhovskaya O.V. Isko N.M. Andronati S.A. Litvinova L.A. Biological active acridine derivatives. Part 3: Acridinylamino acids and their esters; Synthesis and cytostatic activity. ChemInform 1997 28 46 chin.199746202 10.1002/chin.199746202 9266595
    [Google Scholar]
  108. Kumar P. Kumar R. Prasad D.N. Synthesis and anticancer study of 9-aminoacridine derivatives. Arab. J. Chem. 2013 6 1 79 85 10.1016/j.arabjc.2012.04.039
    [Google Scholar]
  109. Sondhi S.M. Singh J. Rani R. Gupta P.P. Agrawal S.K. Saxena A.K. Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. Eur. J. Med. Chem. 2010 45 2 555 563 10.1016/j.ejmech.2009.10.042 19926172
    [Google Scholar]
  110. Lang X. Li L. Chen Y. Sun Q. Wu Q. Liu F. Tan C. Liu H. Gao C. Jiang Y. Novel synthetic acridine derivatives as potent DNA-binding and apoptosis-inducing antitumor agents. Bioorg. Med. Chem. 2013 21 14 4170 4177 10.1016/j.bmc.2013.05.008 23735826
    [Google Scholar]
  111. Murugesan D.K. Rajagopal K. Vijayakumar A.R. Sundararajan G. Raman K. Byran G. Murugesan E. Gupta J.K. Kankate R.S. Nainu F. Barua R. Design and synthesis of pyrazole-substituted 9-anilinoacridine derivatives and evaluation against breast cancer. J. Biol. Regulat. Homeost. Agen. 2024 38 4 2845 2859 10.23812/j.biol.regul.homeost.agents.20243804.222
    [Google Scholar]
  112. Kucukbagriacik Y. Elmusa M. Elmusa F. Yilmaz H. Dastouri M. Evaluation of the potential anticancer activity of pyrazole-acridine derivative synthesis in the SH-SY5Y human neuroblastoma cell line. Res. Square 2023 1 40216 10.22541/au.170021924.44640216/v1
    [Google Scholar]
  113. Oppegard L.M. Ougolkov A.V. Luchini D.N. Schoon R.A. Goodell J.R. Kaur H. Billadeau D.D. Ferguson D.M. Hiasa H. Novel acridine-based compounds that exhibit an anti-pancreatic cancer activity are catalytic inhibitors of human topoisomerase II. Eur. J. Pharmacol. 2009 602 2-3 223 229 10.1016/j.ejphar.2008.11.044 19071108
    [Google Scholar]
  114. Kalirajan R. Kulshrestha V. Sankar S. Synthesis, characteriza tion and antitumour activity of some novel oxazine substituted 9-anilinoacridines and their 3D-QSAR studies. Indian J. Pharm. Sci. 2018 80 5 921 929 10.4172/pharmaceutical‑sciences.1000439
    [Google Scholar]
  115. Bacherikov V.A. 9-anilinoacridines as anticancer drugs. Bulletin of Dnipropetrovsk University. Ser. Chem. 2014 22 1 20 10.15421/081416
    [Google Scholar]
  116. Sun Y.W. Chen K.Y. Kwon C.H. Chen K.M. CK0403, a 9-aminoacridine, is a potent anti-cancer agent in human breast cancer cells. Mol. Med. Rep. 2016 13 1 933 938 10.3892/mmr.2015.4604 26648164
    [Google Scholar]
  117. Rao I.R. Punitha P. Premalatha B. Prasad T.S. Synthesis, spectral, anti-diabetic, anti-inflammatory, antioxidant, and molecular docking investigations of acridine derivatives. Res. Square 2024 1 4016445 10.21203/rs.3.rs‑4016445/v1
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072346755250118081934
Loading
/content/journals/cbc/10.2174/0115734072346755250118081934
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Acridine ; Friedlander reaction ; ullmann reaction ; DNA ; anticancer ; cancer cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test