Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

Introduction

The marine clam is a common bivalve mollusk found in many coastal regions in the Philippines but is underutilized despite its nutritional value. The study aimed to determine the bioactive potential of for its optimum utilization as a promising novel source of metabolites with pharmaceutical potential.

Methods

The proposed approach in the profiling of metabolites included solvent extraction, fractionation by C18 column chromatography and liquid chromatography-mass spectrometry (LC-MS)-guided profiling of the active fractions. Biological investigations comprised cytotoxicity, antibacterial and antioxidant activity assessments.

Results

The methanol solvent fractions obtained from the water layer of contained various chemical constituents namely alkaloids, terpenoids, linear and cyclic peptides, cytotoxic macrolides, among others based on LC-MS analysis. The 100% methanol fraction showed the highest inhibitory effect against MCF-7 human breast cancer cells among other fractions with an IC value of 118.57 ± 0.14 g/mL. Moreover, the fractions also inhibited the growth of Gram-positive and Gram-negative bacterial strains tested and showed strong antioxidant potential as a 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenger.

Conclusion

Our findings demonstrated the effectiveness and complementary nature of LC-MS metabolites profiling in conjunction with bioassays for the identification of bioactive constituents in the marine clam . The bioactive fractions from may be utilized as useful ingredients for developing pharmaceutical and nutraceutical applications.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072345842241214091923
2024-12-18
2025-09-04
Loading full text...

Full text loading...

References

  1. NaikB. PatilP. Innovative approaches towards utilization of clams.Int. J. Oceanogr. Aquac.202374000279
    [Google Scholar]
  2. ChakrabortyK. JoyM. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview.Food Res. Int.202013710963710.1016/j.foodres.2020.109637 33233216
    [Google Scholar]
  3. PatiP. SahuB.K. PanigrahyR.C. Marine mollusc as a potential drug cabinet: An overview.Indian J. Geo-Mar. Sci.201544961970
    [Google Scholar]
  4. HamedI. ÖzogulF. ÖzogulY. RegensteinJ.M. Marine bioactive compounds and their health benefits: A review.Compr. Rev. Food Sci. Food Saf.201514444646510.1111/1541‑4337.12136
    [Google Scholar]
  5. BenkendorffK. Molluscan biological and chemical diversity: Secondary metabolites and medicinal resources produced by marine molluscs.Biol. Rev. Camb. Philos. Soc.201085475777510.1111/j.1469‑185X.2010.00124.x 20105155
    [Google Scholar]
  6. SousaH. HinzmannM. Review: Antibacterial components of the Bivalve’s immune system and the potential of freshwater bivalves as a source of new antibacterial compounds.Fish Shellfish Immunol.20209897198010.1016/j.fsi.2019.10.062 31676427
    [Google Scholar]
  7. YuY. FanF. WuD. YuC. WangZ. DuM. Antioxidant and ACE inhibitory activity of enzymatic hydrolysates from Ruditapes philippinarum.Molecules2018235118910.3390/molecules23051189 29772679
    [Google Scholar]
  8. ChiC.F. HuF.Y. WangB. LiT. DingG.F. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle.J. Funct. Foods20151530131310.1016/j.jff.2015.03.045
    [Google Scholar]
  9. JoyM. ChakrabortyK. PananghatV. Comparative bioactive properties of bivalve clams against different disease molecular targets.J. Food Biochem.201640459360210.1111/jfbc.12256
    [Google Scholar]
  10. LiuM. ZhaoX. ZhaoJ. XiaoL. LiuH. WangC. ChengL. WuN. LinX. Induction of apoptosis, G0/G1 phase arrest and microtubule disassembly in K562 leukemia cells by Mere15, a novel polypeptide from Meretrix meretrix Linnaeus.Mar. Drugs201210112596260710.3390/md10112596 23203280
    [Google Scholar]
  11. WangC. LiuM. ChengL. WeiJ. WuN. ZhengL. LinX. A novel polypeptide from Meretrix meretrix Linnaeus inhibits the growth of human lung adenocarcinoma.Exp. Biol. Med. (Maywood)2012237444245010.1258/ebm.2012.011337 22522344
    [Google Scholar]
  12. TsaiJ.S. ChenJ.L. PanB.S. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria).Process Biochem.200843774374710.1016/j.procbio.2008.02.019
    [Google Scholar]
  13. LiY. NiuD. BaiY. LanT. PengM. DongZ. LiJ. Identification of a novel C1q complement component in razor clam Sinonovacula constricta and its role in antibacterial activity.Fish Shellfish Immunol.20198719320110.1016/j.fsi.2019.01.014 30639866
    [Google Scholar]
  14. LvC. HanY. YangD. ZhaoJ. WangC. MuC. Antibacterial activities and mechanisms of action of a defensin from manila clam Ruditapes philippinarum.Fish Shellfish Immunol.202010326627610.1016/j.fsi.2020.05.025 32439511
    [Google Scholar]
  15. YangX.R. QiuY.T. ZhaoY.Q. ChiC.F. WangB. Purification and characterisation of antioxidant peptides derived from protein hydrolysate of the marine bivalve mollusk Tergillarca granosa.Mar. Drugs201917525110.3390/md17050251 31035632
    [Google Scholar]
  16. TongF. ZhouY. XuY. ChenY. YudintcevaN. ShevtsovM. GaoH. Supramolecular nanomedicines based on host–guest interactions of cyclodextrins.Exploration2023342021011110.1002/EXP.20210111 37933241
    [Google Scholar]
  17. WuS. YanM. LiangM. YangW. ChenJ. ZhouJ. Supramolecular host-guest nanosystems for overcoming cancer drug resistance.Cancer Drug Resist.20236480582710.20517/cdr.2023.77 38263983
    [Google Scholar]
  18. ZhouJ. RaoL. YuG. CookT.R. ChenX. HuangF. Supramolecular cancer nanotheranostics.Chem. Soc. Rev.20215042839289110.1039/D0CS00011F 33524093
    [Google Scholar]
  19. YanM. WuS. WangY. LiangM. WangM. HuW. YuG. MaoZ. HuangF. ZhouJ. Recent progress of supramolecular chemotherapy based on host-guest interactions.Adv. Mater.20243621230424910.1002/adma.202304249 37478832
    [Google Scholar]
  20. KopkaJ. FernieA. WeckwerthW. GibonY. StittM. Metabolite profiling in plant biology: Platforms and destinations.Genome Biol.20045610910.1186/gb‑2004‑5‑6‑109 15186482
    [Google Scholar]
  21. PratimaN.A. GadikarR. Liquid chromatography-mass spectrometry and its applications: A brief review.Arch. Org. Inorg Chem Sci.201811263410.32474/AOICS.2018.01.000103
    [Google Scholar]
  22. YamashitaM. FennJ.B. Electrospray ion source. Another variation on the free-jet theme.J. Phys. Chem.198488204451445910.1021/j150664a002
    [Google Scholar]
  23. WangZ. DoucetteG.J. Determination of lipophilic marine biotoxins by liquid chromatography-tandem mass spectrometry in five shellfish species from Washington State, USA.J. Chromatogr. A2021163946190210.1016/j.chroma.2021.461902 33486447
    [Google Scholar]
  24. QiuJ. WrightE.J. ThomasK. LiA. McCarronP. BeachD.G. Semi quantitation of paralytic shellfish toxins by hydrophilic interaction liquid chromatography-mass spectrometry using relative molar response factors.Toxins (Basel)202012639810.3390/toxins12060398 32560098
    [Google Scholar]
  25. del Norte-CamposA. BurgosL. VillartaK. A ranked inventory of commercially-important mollusks of Panay, West Central Philippines as a guide to prioritize research. The Philipp.J. Fish.201926119136
    [Google Scholar]
  26. SaffianN.S. PengC.T.C. IliasN. HwaiA.T.S. Overview and challenges of blood cockle culture in Malaysia.IOP Conf. Ser. Earth Environ. Sci.2020414101202010.1088/1755‑1315/414/1/012020
    [Google Scholar]
  27. LopezJ.A.V. Al-LihaibiS.S. AlarifW.M. Abdel-LateffA. NogataY. WashioK. MorikawaM. OkinoT. Wewakazole B, a cytotoxic cyanobactin from the cyanobacterium Moorea producens collected in the Red Sea.J. Nat. Prod.20167941213121810.1021/acs.jnatprod.6b00051 26980238
    [Google Scholar]
  28. DenizotF. LangR. Rapid colorimetric assay for cell growth and survival.J. Immunol. Methods198689227127710.1016/0022‑1759(86)90368‑6 3486233
    [Google Scholar]
  29. WiegandI. HilpertK. HancockR.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.20083216317510.1038/nprot.2007.521 18274517
    [Google Scholar]
  30. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  31. A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing. 2021. Available from: http://www.R-project.org/(accessed on 8-10-2024)
  32. ZhuangB. BiZ.M. WangZ.Y. DuanL. LaiC.J.S. LiuE.H. Chemical profiling and quantitation of bioactive compounds in Platycladi cacumen by UPLC-Q-TOF-MS/MS and UPLC-DAD.J. Pharm. Biomed. Anal.201815420721510.1016/j.jpba.2018.03.005 29550710
    [Google Scholar]
  33. KaurJ. DhimanV. BhadadaS. KatareO.P. GhoshalG. LC/MS guided identification of metabolites of different extracts of Cissus quadrangularis.Food Chem. Adv.2022110008410.1016/j.focha.2022.100084
    [Google Scholar]
  34. GhareebM.A. HamdiS.A.H. FolM.F. IbrahimA.M. Chemical characterization, antibacterial, antibiofilm, and antioxidant activities of the methanolic extract of Paratapes undulatus clams (Born, 1778).J. Appl. Pharm. Sci.2022120521922810.7324/JAPS.2022.120521
    [Google Scholar]
  35. KrishnanS. ChakrabortyK. Functional properties of ethyl acetate-methanol extract of commonly edible molluscs.J. Aquat. Food Prod. Technol.201928772974210.1080/10498850.2019.1638857
    [Google Scholar]
  36. ParasuramanS. KrishnamoorthyV. ChuenL.Y. SivayogiV. KathiresanS. BahariM.B. RajuG. Exploration of antioxidant capacity of extracts of Perna viridis, a marine bivalve.Pharmacogn. Mag.2019156640210.4103/pm.pm_301_19
    [Google Scholar]
  37. FukuzawaS. HayashiY. UemuraD. NagatsuA. YamadaK. IjuinY. The isolation and structure of five new alkaloids, norzoanthamine, oxyzoanthamine, norzoanthaminone, cyclozoanthamine and epinorzoanthamine.Heterocycl. Commun.1995120721410.1515/HC.1995.1.2‑3.207
    [Google Scholar]
  38. MugishimaT. TsudaM. KasaiY. IshiyamaH. FukushiE. KawabataJ. WatanabeM. AkaoK. KobayashiJ. Absolute stereochemistry of citrinadins a and B from marine-derived fungus.J. Org. Chem.200570239430943510.1021/jo051499o 16268618
    [Google Scholar]
  39. MohamedO.G. KhalilZ.G. SantiagoV. CaponR.J. Metarhizides A–C and metarhizosides A–B: PKS-NRPS macrolides and aromatic glycosides from an Australian fish gut-derived fungus, Metarhizium sp. CMB-F624.Tetrahedron202211313275910.1016/j.tet.2022.132759
    [Google Scholar]
  40. FusetaniN. SugawaraT. MatsunagaS. Bioactive marine metabolites. 41. Theopederins A-E, potent antitumor metabolites from a marine sponge, Theonella sp.J. Org. Chem.199257143828383210.1021/jo00040a021
    [Google Scholar]
  41. BaiJ. LiuD. YuS. ProkschP. LinW. Amicoumacins from the marine-derived bacterium Bacillus sp. with the inhibition of NO production.Tetrahedron Lett.201455456286629110.1016/j.tetlet.2014.09.100
    [Google Scholar]
  42. LiJ. YangF. WangZ. WuW. LiuL. WangS.P. ZhaoB.X. JiaoW.H. XuS.H. LinH.W. Unusual anti-inflammatory meroterpenoids from the marine sponge Dactylospongia sp.Org. Biomol. Chem.201816366773678210.1039/C8OB01580E 30191932
    [Google Scholar]
  43. CuevasB. ArrobaA.I. de los ReyesC. Gómez-JaramilloL. González-MontelongoM.C. ZubíaE. Diterpenoids from the brown alga Rugulopteryx okamurae and their anti-inflammatory activity.Mar. Drugs2021191267710.3390/md19120677 34940676
    [Google Scholar]
  44. ChenS.R. WangS.W. ChangF.R. ChengY.B. Anti-lymphangiogenic alkaloids from the zoanthid Zoanthus vietnamensis collected in Taiwan.J. Nat. Prod.201982102790279910.1021/acs.jnatprod.9b00451 31584818
    [Google Scholar]
  45. Cen-PachecoF. MartínM. FernándezJ. Hernández DaranasA. New oxidized zoanthamines from a Canary Islands Zoanthus sp.Mar. Drugs201412105188519610.3390/md12105188 25317536
    [Google Scholar]
  46. JeongH. JoS. BaeM. KimY. MoonK. Actinoflavosides B-D, flavonoid type glycosides from tidal mudflat-derived Actinomyces.Mar. Drugs202220956510.3390/md20090565 36135754
    [Google Scholar]
  47. TanakaJ. HigaT. Zampanolide, a new cytotoxic marcrolide from a marine sponge.Tetrahedron Lett.199637315535553810.1016/0040‑4039(96)01149‑5
    [Google Scholar]
  48. RaoC.B. AnjaneyulaA.S.R. SarmaN.S. VenkatateswarluY. RosserR.M. FaulknerD.J. ChenM.H.M. ClardyJ. Zoanthamine; A novel alkaloid from a marine zoanthid.J. Am. Chem. Soc.1984106257983798410.1021/ja00337a062
    [Google Scholar]
  49. BerlinckR.G.S. BraekmanJ.C. DalozeD. HallengaK. OttingerR. BrunoI. RiccioR. Two new guanidine alkaloids from the mediterranean sponge crambe crambe.Tetrahedron Lett.199031456531653410.1016/S0040‑4039(00)97109‑0
    [Google Scholar]
  50. LinW. LiH. WuZ. SuJ. ZhangZ. YangL. DengX. XuQ. Paspalines C-D and Paxillines B-D: New indole diterpenoids from Penicillium brefeldianum WZW-F-69.Mar. Drugs2022201168410.3390/md20110684 36355007
    [Google Scholar]
  51. XuX. PiggottA.M. YinL. CaponR.J. SongF. Symphyocladins A–G: bromophenol adducts from a Chinese marine red alga, Symphyocladia latiuscula.Tetrahedron Lett.201253162103210610.1016/j.tetlet.2012.02.044
    [Google Scholar]
  52. LiangX. ZhangX.Y. NongX.H. WangJ. HuangZ.H. QiS.H. Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020.Tetrahedron201672223092309710.1016/j.tet.2016.04.032
    [Google Scholar]
  53. ChangY. XingL. SunC. LiangS. LiuT. ZhangX. ZhuT. PfeiferB.A. CheQ. ZhangG. LiD. Monacycliones G-K and ent-gephyromycin A, angucycline derivatives from the marine-derived Streptomyces sp. HDN15129.J. Nat. Prod.20208392749275510.1021/acs.jnatprod.0c00684 32840364
    [Google Scholar]
  54. LiJ. LiZ. ChenT. YeG. QiuL. LongY. New azaphilones from mangrove endophytic fungus Penicillium sclerotiorin SCNU-F0040.Nat. Prod. Res.202337229630410.1080/14786419.2021.1959580 34498957
    [Google Scholar]
  55. UtkinaN.K. DenisenkoV.A. Tauroarenarones A and B, new taurine-containing meroterpenoids from the marine sponge Dysidea sp. Nat. Prod. Commun.,2014961934578X140090060610.1177/1934578X1400900606 25115071
  56. AnC.Y. LiX.M. LuoH. LiC.S. WangM.H. XuG.M. WangB.G. 4-Phenyl-3,4-dihydroquinolone derivatives from Aspergillus nidulans MA-143, an endophytic fungus isolated from the mangrove plant Rhizophora stylosa.J. Nat. Prod.201376101896190110.1021/np4004646 24099304
    [Google Scholar]
  57. CiminielloP. Dell’AversanoC. FattorussoE. ForinoM. MagnoS. SanteliaF.U. MoutsosV.I. PitsinosE.N. CouladourosE.A. Oxazinins from toxic mussels: isolation of a novel oxazinin and reassignment of the C-2 configuration of oxazinin-1 and -2 on the basis of synthetic models.Tetrahedron200662337738774310.1016/j.tet.2006.05.070
    [Google Scholar]
  58. KusumiT. OhtaniI. InouyeY. KakisawaH. Absolute configurations of cytotoxic marine cembranolides; Consideration of mosher’s method.Tetrahedron Lett.198829374731473410.1016/S0040‑4039(00)80593‑6
    [Google Scholar]
  59. TakamuraH. KikuchiT. EndoN. FukudaY. KadotaI. Total synthesis of sarcophytonolide H and isosarcophytonolide D: structural revision of isosarcophytonolide D and structure–antifouling activity relationship of sarcophytonolide H.Org. Lett.20161892110211310.1021/acs.orglett.6b00737 27093115
    [Google Scholar]
  60. SasakiM. TsudaM. SekiguchiM. MikamiY. KobayashiJ. Perinadine A, a novel tetracyclic alkaloid from marine-derived fungus Penicillium citrinum.Org. Lett.20057194261426410.1021/ol051695h 16146402
    [Google Scholar]
  61. ZouR. WeiC. ZhangX. ZhouD. XuJ. Alkaloids from endophytic fungus Aspergillus fumigatus HQD24 isolated from the Chinese mangrove plant Rhizophora mucronata.Nat. Prod. Res.202236195069507310.1080/14786419.2021.1916017 34180322
    [Google Scholar]
  62. RoseA.F. ScheuerP.J. SpringerJ.P. ClardyJ. Stylocheilamide, an unusual constituent of the sea hare Stylocheilus longicauda.J. Am. Chem. Soc.1978100247665767010.1021/ja00492a039
    [Google Scholar]
  63. AielloA. FattorussoE. MennaM. CarnuccioR. IuvoneT. New cytotoxic steroids from the marine sponge Dysidea fragilis coming from the lagoon of Venice.Steroids1995601066667310.1016/0039‑128X(95)00055‑U 8539774
    [Google Scholar]
  64. FrançaP.H.B. BarbosaD.P. da SilvaD.L. RibeiroÊ.A.N. SantanaA.E.G. SantosB.V.O. Barbosa-FilhoJ.M. QuintansJ.S.S. BarretoR.S.S. Quintans-JúniorL.J. Araújo-JúniorJ.X. Indole alkaloids from marine sources as potential leads against infectious diseases.BioMed Res. Int.2014201411210.1155/2014/375423 24995289
    [Google Scholar]
  65. GulW. HamannM.T. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases.Life Sci.200578544245310.1016/j.lfs.2005.09.007 16236327
    [Google Scholar]
  66. MundalD.A. SarpongR. Synthetic studies toward the citrinadin A and B core architecture.Org. Lett.201315194952495510.1021/ol402177a 24050750
    [Google Scholar]
  67. TaufaT. SinghA.J. HarlandC.R. PatelV. JonesB. HalafihiT. MillerJ.H. KeyzersR.A. NorthcoteP.T. Zampanolides B–E from the marine sponge Cacospongia mycofijiensis: Potent cytotoxic macrolides with microtubule-stabilizing activity.J. Nat. Prod.201881112539254410.1021/acs.jnatprod.8b00641 30371079
    [Google Scholar]
  68. MeyerC.T. WootenD.J. PaudelB.B. BauerJ. HardemanK.N. WestoverD. LovlyC.M. HarrisL.A. TysonD.R. QuarantaV. Quantifying drug combination synergy along potency and efficacy axes.Cell Syst.20198297108.e1610.1016/j.cels.2019.01.003 30797775
    [Google Scholar]
  69. OdeleyeT. LuJ. WhiteW.L. Cytotoxicity of New Zealand surf clam extracts against hormone sensitive cancer cell lines.Food Biosci.20203510056810.1016/j.fbio.2020.100568
    [Google Scholar]
  70. LiaoN. ZhongJ. ZhangR. YeX. ZhangY. WangW. WangY. ChenS. LiuD. LiuR. Protein-bound polysaccharide from Corbiculafluminea inhibits cell growth in MCF-7 and MDA-MB-231 human breast cancer cells.PLoS One20161112e016788910.1371/journal.pone.0167889 27959954
    [Google Scholar]
  71. SahayanathanG.J. GuhaS. ChinnasamyA. Antiproliferative effect of crude proteins extracted from marine clam Donax variabilis on human cancer cell lines.Int. J. Pharm. Sci. Res.2018931803188
    [Google Scholar]
  72. SakeF. NasserO. SabhaA. Antimicrobial activity of some crude marine Mollusca extracts against some human pathogenic bacteria.SSRG Intl. J. Agri. Environ. Sci20207112
    [Google Scholar]
  73. IbrahimH.A.H. ElatribyD.E. HamedM.M. Antimicrobial activity of some Egyptian marine invertebrates, Red Sea. Egypt.J. Aquat. Biol. Fish.20202432134010.21608/ejabf.2020.98494
    [Google Scholar]
  74. GiftsonH. PattersonJ. Evaluation of antibacterial activity of crude extracts of gastropod, Harpa davidis, Roding 1798, from Kanyakumari coast against isolated human and fish pathogens.Asian J. Pharm. Clin. Res.201693159162
    [Google Scholar]
  75. PavlicevicM. MaestriE. MarmiroliM. Marine bioactive peptides-an overview of generation, structure and application with a focus on food sources.Mar. Drugs202018842410.3390/md18080424 32823602
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072345842241214091923
Loading
/content/journals/cbc/10.2174/0115734072345842241214091923
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test