Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4072
  • E-ISSN: 1875-6646

Abstract

This article offers in-depth information on the pharmacological effects, historical background, and chemical makeup of capsaicin, the primary ingredient in chili peppers. Capsaicin was first discovered in Mexico about 5000 BC, and it has since changed from being a culinary spice to a substance with substantial medicinal potential. It covers the chemical characteristics of capsaicin, how it activates the sympathetic nervous system, and how to measure the heat level of capsaicin using the Scoville Heat Unit (SHU) scale. The production of capsaicin in plants, its connection to substance P and CGRP, and the TRPV1 receptor are all explained in further depth. The article discusses capsaicin's many pharmacological impacts, such as painkilling, anti-inflammatory, antioxidant, antibacterial, cardiovascular, and anti-obesity properties; the article also discusses the spice's pharmacokinetics and mechanisms of action. A summary of current clinical trials indicates continued interest in the possible medical applications of capsaicin. The wealth of data that this analysis concludes highlights capsaicin as a viable topic for more research and development in medicine and healthcare.

Loading

Article metrics loading...

/content/journals/cbc/10.2174/0115734072338291241129095347
2024-12-06
2025-10-27
Loading full text...

Full text loading...

References

  1. BarbozaG.E. GarcíaC.C. BianchettiL.B. RomeroM.V. ScaldaferroM. Monograph of wild and cultivated chili peppers (Capsicum L., Solanaceae).PhytoKeys2022200142310.3897/phytokeys.200.71667 36762372
    [Google Scholar]
  2. ConwayS.J. TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1.Chem. Soc. Rev.20083781530154510.1039/b610226n 18648679
    [Google Scholar]
  3. BasithS. CuiM. HongS. ChoiS. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases.Molecules201621896610.3390/molecules21080966 27455231
    [Google Scholar]
  4. ChangA. RosaniA. QuickJ. Capsaicin.In: StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  5. FattoriV. HohmannM. RossaneisA. Pinho-RibeiroF. VerriW. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses.Molecules201621784410.3390/molecules21070844 27367653
    [Google Scholar]
  6. SzolcsányiJ. Capsaicin and sensory neurones: A historical perspective.Prog. Drug Res.20146813710.1007/978‑3‑0348‑0828‑6_1 24941663
    [Google Scholar]
  7. FriasB. MerighiA. Capsaicin, nociception and pain.Molecules201621679710.3390/molecules21060797 27322240
    [Google Scholar]
  8. DulmesE. GasaoC. MershonT. OsmanI. SchramlA. RaviS. The physiological effects of anticipating spicy food.Lab Thesis, University of Wisconsin-Madison2018
    [Google Scholar]
  9. BasharatS. Capsaicin: Plants of the genus Capsicum and positive effect of oriental spice on skin health.Skin Pharmacol. Physiol.202033633134110.1159/000512196 33401283
    [Google Scholar]
  10. OthmanZ.A.A. AhmedY.B.H. HabilaM.A. GhafarA.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography.Molecules201116108919892910.3390/molecules16108919 22024959
    [Google Scholar]
  11. BatihaG.E.S. AlqahtaniA. OjoO.A. ShaheenH.M. WasefL. ElzeinyM. IsmailM. ShalabyM. MurataT. Zaragoza-BastidaA. Rivero-PerezN. Magdy BeshbishyA. KasoziK.I. JeandetP. HettaH.F. Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids.Int. J. Mol. Sci.20202115517910.3390/ijms21155179 32707790
    [Google Scholar]
  12. AdepojuA.O. OmotosoI.O. Femi-AdepojuA.G. KarimA.B. Comparative studies on the antimicrobial, chemical and biochemical contents of the foliar extracts of Capsicum fructescens L. varieties.Afr. J. Biotechnol.2020191283684510.5897/AJB2020.17258
    [Google Scholar]
  13. GuptaA. JainP. NagoriK. AdnanM. Ajazuddin, Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine.Pharmacol. Res. Mod. Chin. Med.20241210046310.1016/j.prmcm.2024.100463
    [Google Scholar]
  14. RastogiV. PorwalM. SikarwarM.S. SinghB. ChoudharP. MohantaB.C. A review on phytochemical and pharmacological potential of Bhut Jolokia (a cultivar of Capsicum chinense Jacq.).J. Appl. Pharm. Sci.201414510.7324/JAPS.2024.175359
    [Google Scholar]
  15. Von BorowskiR.G. ZimmerK.R. LeonardiB.F. TrentinD.S. SilvaR.C. de BarrosM.P. MacedoA.J. GnoattoS.C.B. GosmannG. ZimmerA.R. Red pepper Capsicum baccatum: source of antiadhesive and antibiofilm compounds against nosocomial bacteria.Ind. Crops Prod.201912714815710.1016/j.indcrop.2018.10.011
    [Google Scholar]
  16. NelsonE.K. The constitution of capsaicin, the pungent principle of capsicum.J. Am. Chem. Soc.19194171115112110.1021/ja02228a011
    [Google Scholar]
  17. SureshD. SrinivasanK. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats.Indian J. Med. Res.2010131682691 20516541
    [Google Scholar]
  18. YaoJ. An investigation of capsaicinoids and bioactive compounds in’Scotch Bonnet’and seven other cultivars of pepper (Capsicum annuum).1993
    [Google Scholar]
  19. Reyes-EscogidoM.L. Gonzalez-MondragonE.G. Vazquez-TzompantziE. Chemical and pharmacological aspects of capsaicin.Molecules20111621253127010.3390/molecules16021253 21278678
    [Google Scholar]
  20. Baas-EspinolaF. Castro-ConchaL. Vázquez-FlotaF. Miranda-HamM. Capsaicin synthesis requires in situ phenylalanine and valine formation in in vitro maintained placentas from Capsicum chinense.Molecules201621679910.3390/molecules21060799 27338325
    [Google Scholar]
  21. KehieM. KumariaS. TandonP. RamchiaryN. Biotechnological advances on in vitro capsaicinoids biosynthesis in capsicum: A review.Phytochem. Rev.201514218920110.1007/s11101‑014‑9344‑6
    [Google Scholar]
  22. RatherM.A. KhanA. WangL. JahanS. RehmanM.U. MakeenH.A. MohanS. TRP channels: Role in neurodegenerative diseases and therapeutic targets.Heliyon202396e1691010.1016/j.heliyon.2023.e16910 37332910
    [Google Scholar]
  23. XiaoT. SunM. ZhaoC. KangJ. TRPV1: A promising therapeutic target for skin aging and inflammatory skin diseases.Front. Pharmacol.202314103792510.3389/fphar.2023.1037925 36874007
    [Google Scholar]
  24. McCartyM.F. DiNicolantonioJ.J. O’KeefeJ.H. Capsaicin may have important potential for promoting vascular and metabolic health.Open Heart201521e00026210.1136/openhrt‑2015‑000262 26113985
    [Google Scholar]
  25. VangeelL. VoetsT. Transient receptor potential channels and calcium signaling.Cold Spring Harb. Perspect. Biol.2019116a03504810.1101/cshperspect.a035048 30910771
    [Google Scholar]
  26. WoodB.M. A study of the spatiotemporal regulation of calmodulin kinase superfamily members in cardiac myocytes. Thesis, University of California,2017
    [Google Scholar]
  27. ZhuZ. JiangY. LiZ. DuY. ChenQ. GuoQ. BanY. GongP. Sensory neuron transient receptor potential vanilloid-1 channel regulates angiogenesis through CGRP in vivo.Front. Bioeng. Biotechnol.202412133850410.3389/fbioe.2024.1338504 38576442
    [Google Scholar]
  28. DuQ. LiaoQ. ChenC. YangX. XieR. XuJ. The role of transient receptor potential vanilloid 1 in common diseases of the digestive tract and the cardiovascular and respiratory system.Front. Physiol.201910106410.3389/fphys.2019.01064 31496955
    [Google Scholar]
  29. YoshieK. RajendranP.S. MassoudL. KwonO. TadimetiV. SalavatianS. ArdellJ.L. ShivkumarK. AjijolaO.A. Cardiac vanilloid receptor-1 afferent depletion enhances stellate ganglion neuronal activity and efferent sympathetic response to cardiac stress.Am. J. Physiol. Heart Circ. Physiol.20183145H954H96610.1152/ajpheart.00593.2017 29351450
    [Google Scholar]
  30. CaoY.Q. MantyhP.W. CarlsonE.J. GillespieA.M. EpsteinC.J. BasbaumA.I. Primary afferent tachykinins are required to experience moderate to intense pain.Nature1998392667439039410.1038/32897 9537322
    [Google Scholar]
  31. CaterinaM. PangZ. TRP channels in skin biology and pathophysiology.Pharmaceuticals2016947710.3390/ph9040077 27983625
    [Google Scholar]
  32. McCoyE.S. Taylor-BlakeB. StreetS.E. PribiskoA.L. ZhengJ. ZylkaM.J. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold.Neuron201378113815110.1016/j.neuron.2013.01.030 23523592
    [Google Scholar]
  33. ZhangL. HoffA.O. WimalawansaS.J. CoteG.J. GagelR.F. WestlundK.N. Arthritic calcitonin/α calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity.Pain200189226527310.1016/S0304‑3959(00)00378‑X 11166483
    [Google Scholar]
  34. GustavssonN. WuB. HanW. Calcium sensing in exocytosis.Adv. Exp. Med. Biol.201274073175710.1007/978‑94‑007‑2888‑2_32 22453967
    [Google Scholar]
  35. DevesaI. Ferrándiz-HuertasC. MathivananS. WolfC. LujánR. ChangeuxJ.P. Ferrer-MontielA. αCGRP is essential for algesic exocytotic mobilization of TRPV1 channels in peptidergic nociceptors.Proc. Natl. Acad. Sci. USA201411151183451835010.1073/pnas.1420252111 25489075
    [Google Scholar]
  36. RussellF.A. KingR. SmillieS.J. KodjiX. BrainS.D. Calcitonin gene-related peptide: Physiology and pathophysiology.Physiol. Rev.20149441099114210.1152/physrev.00034.2013 25287861
    [Google Scholar]
  37. SpekkerE. TanakaM. SzabóÁ. VécseiL. Neurogenic inflammation: The participant in migraine and recent advancements in translational research.Biomedicines20211017610.3390/biomedicines10010076 35052756
    [Google Scholar]
  38. AroraV. CampbellJ.N. ChungM.K. Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain.Pharmacol. Ther.202122010774310.1016/j.pharmthera.2020.107743 33181192
    [Google Scholar]
  39. PershingL.K. ReillyC.A. CorlettJ.L. CrouchD.J. Effects of vehicle on the uptake and elimination kinetics of capsaicinoids in human skin in vivo.Toxicol. Appl. Pharmacol.20042001738110.1016/j.taap.2004.03.019 15451310
    [Google Scholar]
  40. ChandaS. BashirM. BabbarS. KogantiA. BleyK. In vitro hepatic and skin metabolism of capsaicin.Drug Metab. Dispos.200836467067510.1124/dmd.107.019240 18180272
    [Google Scholar]
  41. Benítez-AngelesM. Morales-LázaroS.L. Juárez-GonzálezE. RosenbaumT. TRPV1: Structure, endogenous agonists, and mechanisms.Int. J. Mol. Sci.20202110342110.3390/ijms21103421 32408609
    [Google Scholar]
  42. CortrightD.N. SzallasiA. Biochemical pharmacology of the vanilloid receptor TRPV1.Eur. J. Biochem.2004271101814181910.1111/j.1432‑1033.2004.04082.x 15128291
    [Google Scholar]
  43. KáraiL.J. RussellJ.T. IadarolaM.J. OláhZ. Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons.J. Biol. Chem.200427916163771638710.1074/jbc.M310891200 14963041
    [Google Scholar]
  44. PingleS.C. MattaJ.A. AhernG.P. “Capsaicin receptor: TRPV1 a promiscuous TRP channel,” Transient Receptor Potential (TRP).Channels2007179155171
    [Google Scholar]
  45. Thapa MagarS. ShresthaR. Assessment of antioxidant and antibacterial activities of capsaicin extracted from chili samples of Nepal.Int. J. Adv. Res. (Indore)2023116988100310.21474/IJAR01/17155
    [Google Scholar]
  46. MariniE. MagiG. MingoiaM. PugnaloniA. FacinelliB. Antimicrobial and anti-virulence activity of capsaicin against erythromycin-resistant, cell-invasive group A Streptococci.Front. Microbiol.20156128110.3389/fmicb.2015.01281 26617603
    [Google Scholar]
  47. LiR. LanY. ChenC. CaoY. HuangQ. HoC.T. LuM. Anti-obesity effects of capsaicin and the underlying mechanisms: A review.Food Funct.20201197356737010.1039/D0FO01467B 32820787
    [Google Scholar]
  48. Thanh DuongH. Thuy LinhD.T. Xuan DuyL. Thanh HaT. Cao CuongN. Van TrungP. Minh KhoiN. Quang ThaoL. Huu NghiD. Tuan HiepN. A modern purification by accelerated solvent extraction and centrifugal partition chromatography and biological evaluation of capsaicin from Capsicum chinense.Plant Sci. Today202310.14719/pst.2684
    [Google Scholar]
  49. KnotkovaH. PappagalloM. SzallasiA. Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival?Clin. J. Pain200824214215410.1097/AJP.0b013e318158ed9e 18209521
    [Google Scholar]
  50. SharmaS.K. VijA.S. SharmaM. Mechanisms and clinical uses of capsaicin.Eur. J. Pharmacol.20137201-3556210.1016/j.ejphar.2013.10.053 24211679
    [Google Scholar]
  51. Lo VecchioS. AndersenH.H. ElberlingJ. Arendt-NielsenL. Sensory defunctionalization induced by 8% topical capsaicin treatment in a model of ultraviolet-B-induced cutaneous hyperalgesia.Exp. Brain Res.202123992873288610.1007/s00221‑021‑06170‑0 34302514
    [Google Scholar]
  52. AnandP. BleyK. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch.Br. J. Anaesth.2011107449050210.1093/bja/aer260 21852280
    [Google Scholar]
  53. LuongoL. CostaB. D’AgostinoB. GuidaF. ComelliF. GattaL. MatteisM. SulloN. De PetrocellisL. de NovellisV. MaioneS. Di MarzoV. Palvanil, a non-pungent capsaicin analogue, inhibits inflammatory and neuropathic pain with little effects on bronchopulmonary function and body temperature.Pharmacol. Res.201266324325010.1016/j.phrs.2012.05.005 22634607
    [Google Scholar]
  54. ShenC.L. SchuckA. TompkinsC. DunnD.M. NeugebauerV. Bioactive compounds for fibromyalgia-like symptoms: A narrative review and future perspectives.Int. J. Environ. Res. Public Health2022197414810.3390/ijerph19074148 35409832
    [Google Scholar]
  55. ZhangY. LiuY. SunJ. ZhangW. GuoZ. MaQ. Arachidonic acid metabolism in health and disease.MedComm202345e36310.1002/mco2.363 37746665
    [Google Scholar]
  56. SrinivasanK. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review.Crit. Rev. Food Sci. Nutr.20165691488150010.1080/10408398.2013.772090 25675368
    [Google Scholar]
  57. SrinivasanK. Antioxidant potential of spices and their active constituents.Crit. Rev. Food Sci. Nutr.201454335237210.1080/10408398.2011.585525 24188307
    [Google Scholar]
  58. Akhilender NaiduK. ThippeswamyN.B. Inhibition of human low density lipoprotein oxidation by active principles from spices.Mol. Cell. Biochem.20022291/2192310.1023/A:1017930708099 11936843
    [Google Scholar]
  59. KursunluogluG. TaskiranD. Ayar KayaliH. The investigation of the antitumor agent toxicity and capsaicin effect on the electron transport chain enzymes, catalase activities and lipid peroxidation levels in lung, heart and brain tissues of rats.Molecules20182312326710.3390/molecules23123267 30544766
    [Google Scholar]
  60. KogureK. GotoS. NishimuraM. YasumotoM. AbeK. OhiwaC. SassaH. KusumiT. TeradaH. Mechanism of potent antiperoxidative effect of capsaicin.Biochim. Biophys. Acta, Gen. Subj.200215731849210.1016/S0304‑4165(02)00335‑5 12383946
    [Google Scholar]
  61. OchiT. TakaishiY. KogureK. YamautiI. Antioxidant activity of a new capsaicin derivative from Capsicum annuum.J. Nat. Prod.20036681094109610.1021/np020465y 12932131
    [Google Scholar]
  62. KempaiahR.K. SrinivasanK. Influence of dietary curcumin, capsaicin and garlic on the antioxidant status of red blood cells and the liver in high-fat-fed rats.Ann. Nutr. Metab.200448531432010.1159/000081198 15467281
    [Google Scholar]
  63. KempaiahR.K. SrinivasanK. Antioxidant status of red blood cells and liver in hypercholesterolemic rats fed hypolipidemic spices.Int. J. Vitam. Nutr. Res.200474319920810.1024/0300‑9831.74.3.199 15296079
    [Google Scholar]
  64. NakagawaH. HiuraA. Capsaicin, transient receptor potential (TRP) protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons.Kaibogaku Zasshi200681313515510.1111/j.1447‑073X.2006.00141.x 16955665
    [Google Scholar]
  65. AdetunjiT.L. OlawaleF. OlisahC. AdetunjiA.E. AremuA.O. Capsaicin: A two-decade systematic review of global research output and recent advances against human cancer.Front. Oncol.20221290848710.3389/fonc.2022.908487 35912207
    [Google Scholar]
  66. FüchtbauerS. MousaviS. BereswillS. HeimesaatM.M. Antibacterial properties of capsaicin and its derivatives and their potential to fight antibiotic resistance - A literature survey.Eur. J. Microbiol. Immunol. (Bp.)2021111101710.1556/1886.2021.00003 33764892
    [Google Scholar]
  67. PeriferakisA.T. PeriferakisA. PeriferakisK. CaruntuA. BadarauI.A. Savulescu-FiedlerI. ScheauC. CaruntuC. Antimicrobial properties of capsaicin: Available data and future research perspectives.Nutrients20231519409710.3390/nu15194097 37836381
    [Google Scholar]
  68. Valera-VeraE.A. ReigadaC. SayéM. DigirolamoF.A. GalceranF. MirandaM.R. PereiraC.A. Effect of capsaicin on the protozoan parasite Trypanosoma cruzi.FEMS Microbiol. Lett.202036723fnaa19410.1093/femsle/fnaa194 33232444
    [Google Scholar]
  69. SarojS. SahaS. AliA. GuptaS.K. BharadwajA. AgrawalT. PalS. RakshitT. Plant extracellular nanovesicle-loaded hydrogel for topical antibacterial wound healing in vivo. ACS Appl. Bio Mater.,2024acsabm.4c0099210.1021/acsabm.4c0099239377525
  70. ZahnerM.R. LiD.P. ChenS.R. PanH.L. Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats.J. Physiol.2003551Pt 251552310.1113/jphysiol.2003.048207
    [Google Scholar]
  71. PobleteI.M. OrliacM.L. BrionesR. GraschinskyE. ToroJ.P. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed.J. Physiol.2005568Pt 253955110.1113/jphysiol.2005.094292
    [Google Scholar]
  72. SchultzH. UstinovaE.E. Capsaicin receptors mediate free radical-induced activation of cardiac afferent endings.Cardiovasc. Res.199838234835510.1016/S0008‑6363(98)00031‑5 9709395
    [Google Scholar]
  73. PanH.L. ChenS.R. Sensing tissue ischemia: another new function for capsaicin receptors?Circulation2004110131826183110.1161/01.CIR.0000142618.20278.7A 15364816
    [Google Scholar]
  74. SteagallR.J. SipeA.L. WilliamsC.A. JoynerW.L. SinghK. Substance P release in response to cardiac ischemia from rat thoracic spinal dorsal horn is mediated by TRPV1.Neuroscience201221410611910.1016/j.neuroscience.2012.04.023 22525132
    [Google Scholar]
  75. IdeR. SaikiC. MakinoM. MatsumotoS. TRPV1 receptor expression in cardiac vagal afferent neurons of infant rats.Neurosci. Lett.20125071677110.1016/j.neulet.2011.11.055 22178141
    [Google Scholar]
  76. JonesW.K. FanG.C. LiaoS. ZhangJ.M. WangY. WeintraubN.L. KraniasE.G. SchultzJ.E. LorenzJ. RenX. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling.Circulation,200912011_suppl_1(Suppl.)S1S910.1161/CIRCULATIONAHA.108.84393819752352
    [Google Scholar]
  77. WangL. WangD.H. TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice.Circulation2005112233617362310.1161/CIRCULATIONAHA.105.556274 16314376
    [Google Scholar]
  78. SextonA. McDonaldM. CaylaC. ThiemermannC. AhluwaliaA. 12‐Lipoxygenase‐derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1.FASEB J.200721112695270310.1096/fj.06‑7828com 17470568
    [Google Scholar]
  79. MittelstadtS.W. NelsonR.A. DaanenJ.F. KingA.J. KortM.E. KymP.R. LubbersN.L. CoxB.F. LynchJ.J. III Capsaicin-induced inhibition of platelet aggregation is not mediated by transient receptor potential vanilloid type 1.Blood Coagul. Fibrinolysis2012231949710.1097/MBC.0b013e32834ddf18 22089942
    [Google Scholar]
  80. AdamsM.J. AhujaK.D.K. GeraghtyD.P. Effect of capsaicin and dihydrocapsaicin on in vitro blood coagulation and platelet aggregation.Thromb. Res.2009124672172310.1016/j.thromres.2009.05.001
    [Google Scholar]
  81. ChenQ. ZhuH. ZhangY. ZhangY. WangL. ZhengL. Vasodilating effect of capsaicin on rat mesenteric artery and its mechanism.Zhejiang Da Xue Xue Bao Yi Xue Ban201342217718310.3785/j.issn.1008‑9292.2013.02.008 23585004
    [Google Scholar]
  82. YangD. LuoZ. MaS. WongW.T. MaL. ZhongJ. HeH. ZhaoZ. CaoT. YanZ. LiuD. ArendshorstW.J. HuangY. TepelM. ZhuZ. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension.Cell Metab.201012213014110.1016/j.cmet.2010.05.015 20674858
    [Google Scholar]
  83. HarperA.G.S. BrownlowS.L. SageS.O. A role for TRPV1 in agonist‐evoked activation of human platelets.J. Thromb. Haemost.20097233033810.1111/j.1538‑7836.2008.03231.x 19036069
    [Google Scholar]
  84. ArandaF.J. VillalaínJ. Gómez-FernándezJ.C. Capsaicin affects the structure and phase organization of phospholipid membranes.Biochim. Biophys. Acta Biomembr.19951234222523410.1016/0005‑2736(94)00293‑X 7696298
    [Google Scholar]
  85. MeddingsJ.B. HogaboamC.M. TranK. ReynoldsJ.D. WallaceJ.L. Capsaicin effects on non-neuronal plasma membranes.Biochim. Biophys. Acta Biomembr.199110701435010.1016/0005‑2736(91)90144‑W 1751537
    [Google Scholar]
  86. SylvesterD.M. LaHannT.R. Effects of capsaicinoids on platelet aggregation.Proc. West. Pharmacol. Soc.19893295100 2780623
    [Google Scholar]
  87. RaghavendraR.H. NaiduK.A. Spice active principles as the inhibitors of human platelet aggregation and thromboxane biosynthesis.Prostaglandins Leukot. Essent. Fatty Acids2009811737810.1016/j.plefa.2009.04.009 19501497
    [Google Scholar]
  88. AkaboriH. YamamotoH. TsuchihashiH. MoriT. FujinoK. ShimizuT. EndoY. TaniT. Transient receptor potential vanilloid 1 antagonist, capsazepine, improves survival in a rat hemorrhagic shock model.Ann. Surg.2007245696497010.1097/01.sla.0000255577.80800.e1 17522523
    [Google Scholar]
  89. YoshiokaM. St-PierreS. SuzukiM. TremblayA. Effects of red pepper added to high-fat and high-carbohydrate meals on energy metabolism and substrate utilization in Japanese women.Br. J. Nutr.199880650351010.1017/S0007114598001597 10211048
    [Google Scholar]
  90. KangJ.H. TsuyoshiG. Le NgocH. KimH.M. TuT.H. NohH.J. KimC.S. ChoeS.Y. KawadaT. YooH. YuR. Dietary capsaicin attenuates metabolic dysregulation in genetically obese diabetic mice.J. Med. Food201114331031510.1089/jmf.2010.1367 21332406
    [Google Scholar]
  91. JosseA.R. SherriffsS.S. HolwerdaA.M. AndrewsR. StaplesA.W. PhillipsS.M. Effects of capsinoid ingestion on energy expenditure and lipid oxidation at rest and during exercise.Nutr. Metab. (Lond.)2010716510.1186/1743‑7075‑7‑65 20682072
    [Google Scholar]
  92. LejeuneM.P.G.M. KovacsE.M.R. Westerterp-PlantengaM.S. Effect of capsaicin on substrate oxidation and weight maintenance after modest body-weight loss in human subjects.Br. J. Nutr.200390365165910.1079/BJN2003938 13129472
    [Google Scholar]
  93. WangY. ZhouY. FuJ. Advances in antiobesity mechanisms of capsaicin.Curr. Opin. Pharmacol.2021611510.1016/j.coph.2021.08.012 34537583
    [Google Scholar]
  94. OkumuraT. TsukuiT. HosokawaM. MiyashitaK. Effect of caffeine and capsaicin on the blood glucose levels of obese/diabetic KK-A(y) mice.J. Oleo Sci.201261951552310.5650/jos.61.515 22975786
    [Google Scholar]
  95. LeeG.R. ShinM.K. YoonD.J. KimA.R. YuR. ParkN.H. HanI.S. Topical application of capsaicin reduces visceral adipose fat by affecting adipokine levels in high‐fat diet‐induced obese mice.Obesity (Silver Spring)201321111512210.1002/oby.20246 23505175
    [Google Scholar]
  96. HuW. BianQ. ZhouY. GaoJ. Pain management with transdermal drug administration: A review.Int. J. Pharm.202261812169610.1016/j.ijpharm.2022.121696 35337906
    [Google Scholar]
  97. ParkJ.Y. KawadaT. HanI.S. KimB.S. GotoT. TakahashiN. FushikiT. KurataT. YuR. Capsaicin inhibits the production of tumor necrosis factor α by LPS‐stimulated murine macrophages, RAW 264.7: A PPARγ ligand‐like action as a novel mechanism.FEBS Lett.20045721-326627010.1016/j.febslet.2004.06.084 15304360
    [Google Scholar]
  98. Telleria-DiazA. SchmidtM. KreuschS. NeubertA.K. SchacheF. VazquezE. VanegasH. SchaibleH.G. EbersbergerA. Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: Involvement of prostaglandins and endocannabinoids.Pain20101481263510.1016/j.pain.2009.08.013 19879047
    [Google Scholar]
  99. MerrittJ.C. RichbartS.D. MolesE.G. CoxA.J. BrownK.C. MilesS.L. FinchP.T. HessJ.A. TironaM.T. ValentovicM.A. DasguptaP. Anti-cancer activity of sustained release capsaicin formulations.Pharmacol. Ther.202223810817710.1016/j.pharmthera.2022.108177 35351463
    [Google Scholar]
  100. YeomJ. MaS. KimJ.K. LimY.H. Oxyresveratrol ameliorates dextran sulfate sodium-induced colitis in rats by suppressing inflammation.Molecules2021269263010.3390/molecules26092630 33946346
    [Google Scholar]
  101. RogersJ. UrbinaS.L. TaylorL.W. WilbornC.D. PurpuraM. JägerR. JuturuV. Capsaicinoids supplementation decreases percent body fat and fat mass: Adjustment using covariates in a post hoc analysis.BMC Obes.2018512210.1186/s40608‑018‑0197‑1 30123516
    [Google Scholar]
  102. ValgimigliL. Lipid peroxidation and antioxidant protection.Biomolecules2023139129110.3390/biom13091291 37759691
    [Google Scholar]
  103. GangabhagirathiR. JoshiR. Antioxidant activity of capsaicin on radiation-induced oxidation of murine hepatic mitochondrial membrane preparation.Res. Rep. Biochem.20152015163171
    [Google Scholar]
  104. AhmedR.A. AlamM.F. AlshahraniS. JaliA.M. QahlA.M. KhalidM. MuzafarH.M.A. AlhamamiH.N. AnwerT. Capsaicin ameliorates the cyclophosphamide-induced cardiotoxicity by inhibiting free radicals generation, inflammatory cytokines, and apoptotic pathway in rats.Life202313378610.3390/life13030786 36983940
    [Google Scholar]
/content/journals/cbc/10.2174/0115734072338291241129095347
Loading
/content/journals/cbc/10.2174/0115734072338291241129095347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test